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Part one of this mini-series on statistics in cerebrovascular research uses the simplest yet most
common comparison in experimental research (two groups with a continuous outcome variable) to
introduce the very basic concepts of statistical testing: a priori formulation of hypotheses and
definition of planned statistical analysis, error considerations, and power analysis.
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Experimental Design

For ethical and economic reasons, it is important
to design animal experiments properly, analyze the
data correctly, and to use the minimum number of
animals necessary to achieve the scientific objectives
of the study (Festing and Altman, 2002). Recently,
evidence has been presented that weaknesses in
design, analysis, and reporting in experimental
stroke research are prevalent (Dirnagl, 2006), and
that these weaknesses can have quantifiable effects
on the predictiveness and ultimately on the validity
of preclinical research in the cerebrovascular field
(Crossley et al, 2008; Macleod et al, 2008). A
systematic analysis of all papers reporting original
research and published in the Journal of Cerebral
Blood Flow and Metabolism in 2008 has revealed
that deficiencies in experimental design, statistical
analysis, and reporting of data are very common
(Deister, Schlattmann, Dirnagl, unpublished). In a
concerted action, a series of measures to reduce bias
in the design, conduct, analysis, and reporting of
animal experiments modeling human stroke has
been proposed and published simultaneously in
several journals in the field including the Journal

of Cerebral Blood Flow and Metabolism (Macleod
et al, 2009).

We would like to guide researchers of this journal
with a mini-series on the design of experiments, as
well as the analysis, interpretation, and presentation
of data. In the first article, we will start with the
comparison of two experimental conditions, which
is one of the most frequent trial designs in stroke
research. This simple design allows us to introduce
the very basic concepts of Null Hypothesis statistical
testing: a priori formulation of hypotheses and
definition of planned statistical analysis, error con-
siderations, and power analysis, as well as proper
reporting of the data. In future articles, we will
progress to multiple comparisons as well as the
analysis of categorical variables (such as most scores
in outcome evaluation).

Where ever possible, to minimize bias in biome-
dical research, experiments require randomized
allocation to experimental groups and outcome
assessment without knowledge of the assignment to
these groups. We start by formulating a hypothesis
(e.g., ‘Compound X is a neuroprotectant and affects
injury after focal cerebral ischemia’), and then
choose an appropriate study design. After we have
selected an adequate outcome measure, the sample
size of the study needs to be determined a priori. The
primary outcome measure in experimental stroke
research is very often a change in infarct volume
caused by an intervention (pharmacological, genetic,
etc.), but it could be a change in behavior, or cerebral
perfusion, among many other possibilities. It is noted
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that in this stage of planning, inclusion and exclu-
sion criteria need to be set, and provisions for
randomized allocation and blinding (experimental
manipulations, outcome assessment) need to be
made. The principal workflow of planning and
conducting such a study in its most abstract form
is shown on the left panel of Figure 1, whereas a
corresponding example is given on the right.

Errors and Sample Size Calculation

The sample size of the study depends on the error we
are prepared to live with. This error is of two types.
The type I error is the probability of false-positive
results or, in other words, declaring a treatment
difference where none exists. This is also known as
significance level or a-level and is usually fixed not
by reasoning but purely by convention at a= 5%
(two-sided).

But what does it mean if we find that our results
are significant on the 5% level? Please consult
Table 1 and see which interpretations you agree
with!

Some researchers will pick at least one of the
choices of Table 1. However, none of those inter-
pretations is correct! What an a-level of 5% really

implies is that if we were to repeat the analysis many
times, using new data each time, and if the null
hypothesis (H0) were really true, then on only 5% of
these occasions would we (falsely) reject it.

H0 usually states the opposite of what we really
want to find, namely that there is no difference
between the two groups. As we are performing the
statistical test under the assumption that H0 is true,
it is impossible that we make a probability statement
about H0 at the same time. We cannot assess what we
assume to be true (Goodman, 1999)! Thus, P-values
cannot be error probabilities, that is tell us whether
our results are due to chance. In addition, as given a
high enough n even with minor group differences,
we will be able to reject any H0, no matter what the
setting is, a or P can also yield no index of biological
significance; they make our results ‘sizeless.’ In other
words, rejecting H0 is a trivial exercise because
stating that two treatments or samples are identical
( = H0) is always false, and rejecting it is merely a
matter of carrying out enough experiments (i.e.,
having enough power, see below, and Kirk, 1996).

The type II error is the false-negative rate or
probability of failing to detect a treatment difference
that actually exists. It is also called the b- error and
1�b is known as the power of the study. Power is the
conditional probability of accepting the alternative
hypothesis (H1, that there is a difference) when it is
true. Regulatory agencies like a (consumer risk) to be
low. Researchers like b (producer risk) to be low.
Power increases ( = b decreases) with effect size (e.g.,
reduction in infarct size): the larger the difference
between the parameters tested, the greater the power
to detect it. Increasing sample size decreases the
standard error, thereby also increasing power. Con-
versely, a large variance (i.e., s.d.) will decrease
power. Note that there is an inverse relation between
a and b: increasing a increases power ( = decreases b),
but also increases the risk of rejecting H0 when it is
actually true.

Let us fix a at 5% and b at 20%, a value often
chosen. Researchers seem to be more afraid of a false-
positive than a false-negative result. To plan the
study, we make the assumption that our data follow
a normal distribution with common s.d. s and means
m1 and m2. The difference of means d= m1�m2 is often
called the effect size. The ratio of difference and
common s.d.

D ¼ d
s

is called the standardized effect. For example, a
reduction of infarct size by d= 30 mm3 results in a
standardized effect size D= 1 if s was also 30 mm3.
These definitions of effect size may be found in the
book by Hulley et al (2007).

Sample size estimation for two independent
samples requires several assumptions and speci-
fications. A minimally relevant effect difference d
and the common s.d. need to be ‘guesstimated’. To
‘guesstimate’ d, we need previous experience with
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outcome evaluation
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Conduct experiments
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Planning of statistical analysis
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Reporting Write paper

Scatter plot of raw data
Mean values, SD
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Figure 1 Study workflow (left panel: principle; right panel:
corresponding example).

Table 1 Interpreting a-level and P-value. Which one of the
following statements is correct? (after Mulaik et al, 1997)

1. The P-value of a significant test is the probability that the
research results are due to chance

2. A hypothesis accepted as significant at the a-level of
significance has the probability of 1�a of being found
significant in future replications of the experiment

3. A hypothesis accepted as significant at the a-level of
significance has a probability of 1�a of being true

4. The size of P of the significance level of a result is an index of
the importance or size of a difference or relation

5. The probability of rejecting H0 is a
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the model; setting d is a matter of pathophysiological
reasoning. In addition, the significance level a and
the desired power need to be set.

If we, for example, want to be able to detect a
reduction in the infarct volume of at least d= 15 mm3

(effect size), and we expect a s.d. of s= 30 mm3, at
80% power and a= 0.05 (two-sided) we need a total
sample size of 128 animals, that is 64 per group
based on the two sample t-test. All major statistical
packages calculate sample size (or power, given the
sample size). If you do not have access to these
commercial programs, a simple, free program is
available on the internet (Faul et al, 2007). Alter-
natively, web browser-based routines allow you to
calculate power and sample size directly on the
internet (e.g., SISA, url see references).

A simple rule of thumb (van Belle, 2008) can also
be used to estimate sample sizes for a two-sided
a= 0.05 and 80% power:

n ¼ 16

D2

If we set standardized effect size D to 0.5, that is,
we want to be able to detect a difference of half the
s.d., then 16/0.52 = 64 subjects per group are needed.

Similar to the type I error, the concept of type II
error is often misunderstood, and consequently
power and sample size calculation have no role in
the overwhelming majority of papers in the cerebro-
vascular and experimental stroke field. Quiz yourself
and try to evaluate the statements in Table 2.

As in Table 1, none of the statements in Table 2 is
correct! The prototypical misunderstanding of the
type II error is that if one has obtained a statistically
significant P-value (e.g., P < 0.05), there is no need to
waste time worrying about type II errors a priori.
Didn’t we reject H0? For various reasons, this is a
fallacy with potentially calamitous impact. When H0
is in fact false (the drug really works, the knockout
mouse has a phenotype, etc.), the overall error rate is
not the a level, but the type II error rate b (Schmidt
and Hunter, 1997). It is impossible to falsely
conclude that H0 is false when in fact it is false!
This trivial insight may have important conse-
quences for the interpretation of experimental data
in cerebrovascular research and ultimately for its
translation to text book or patient: If b is high (i.e.,
statistical power is low), the probability of being able

to reproduce data decreases more and more. For
example, at a power of 0.5, which is not uncommon
in present cerebrovascular research (Dirnagl, 2006),
the probability of being able to replicate the findings
of a study stands at 50% (Mulaik et al, 1997)!

Descriptive Statistics

Categorical data such as behavioral scores or pre-
sence or absence of symptoms can be summarized as
frequencies and percentages. Continuous data such
as infarct volume may be summarized using the
mean and s.d. Table 3 shows data from a typical
experimental stroke experiment and corresponding
summary statistics.

For descriptive purposes, only the s.d. of the data
is an acceptable measure, but not the standard error
of the mean (s.e.m.). The latter is an estimate for the
precision of estimating the mean, not a description of
the sample (Altman and Bland, 2005).

Graphical Display of the Data

It is very common in cerebrovascular research, but
unsatisfactory, to summarize the results of a two-
group comparison of continuous variables with a bar
graph and s.e.m.s. s.e.m.s should not be used for
graphical data presentation (or for data presentation
in the text, see above). Second, displaying only the
mean is the least informative option available. A very
useful graph is the box-and-whisker plot, which
is helpful in interpreting the distribution of data
(see Figure 2). A box-and-whisker plot provides a
graphical summary of a set of data based on the
quartiles of that data set: quartiles are used to split
the data into four groups, each containing 25% of the

Table 2 Interpreting power and type II error. Which one of the
following statements is correct?

1. Power calculations are only necessary if a negative result (i.e.,
no significant P-value) was obtained

2. Power should be calculated after the experiment, since only
then do we know the effect size

3. If P < 0.001, b is not of practical relevance
4. Power and sample size calculations are relevant in clinical

trials or translational preclinical research, but not in
explorative basic research

Table 3 Infarct volumes of a mouse stroke experiment

Group 1 Group 2

167 88
198 99
140 113
166 117
141 103
92 135
76 100

126 116
157 90
114 100
160 76
118 108
120 104
160 63
124 85
146 78
98 92

127 101
Mean 135.0 98.2
s.d. 30.5 17.0

Group 1: vehicle control, Group 2: Compound ‘X’.

Statistics in experimental cerebrovascular research—part I
P Schlattmann and U Dirnagl

476

Journal of Cerebral Blood Flow & Metabolism (2010) 30, 474–479



measurements. By combining the box-and-whisker
plot with a display of each data point as a scatter
plot, a most informative data display can be obtained.

Confirmatory data analysis

A properly designed experiment in which the
hypotheses are stated and type I and II error
considerations as well as the plan for statistical
analysis are specified in advance—and ideally
published later—allows a confirmatory analysis. In
such experiments, the key hypothesis of interest
follows directly from the experiment’s primary
objective, which is always predefined, and is the
hypothesis that is subsequently tested when the
experiment is complete.

For this purpose, statistical tests are used. Statis-
tical tests are constructed on the basis of null
hypothesis, which states that no treatment difference
exists. More formally expressed, the null hypothesis
(H0) states that there is no difference between the
two groups, whereas the alternative hypothesis (H1)
states that there is a difference, which is what we
usually state in our biological hypothesis.

The two-sample t-test is used for independent and
normally distributed data. The general form of an
independent t-test is given by

t ¼ �x1 � �x2

S

Here �x1 and �x2 denote the sample means and S is a
measure of variability of the difference of means (for
details, see for example the book by Armitage et al
(2002)). Large values of |t| lead to the rejection of
the null hypothesis. The distribution of the test

statistic t is determined under the null hypothesis
and the P-value denotes the probability of observing
a value of |t| as large or larger than that observed
when H0 is true.

For our data in Table 3, assuming unequal
variances in each group, we obtain a t-value of
t = 4.47, df = 26.68, and a corresponding P-value of
0.0001. Thus, we reject the null hypothesis of no
treatment difference. Please note that in the case of
unequal variances the t-test is also called Welch test.

It is also desirable to have an estimate of effect
size. This is given by d= 135.0�98.2 = 36.8. It is the
average difference of infarct volume between the two
treatments. In addition, a 95% confidence interval
can be given for this estimate of effect, which leads
to a 95% CI (20.1, 53.5) based on the t-distribution.
This confidence interval does not contain the
indifference value of zero, which is equivalent to
a statistically significant result on the 5% level.
In general, reporting of an estimate of effect together
with a confidence interval is desirable (Kraemer and
Kupfer, 2006).

Conclusions

William Sealy Gosset (1876 to 1937), the eminent
statistician who under the pseudonym ‘Student’
published the t-distribution mentioned above, was
already aware of the shortcomings of statistical
testing and warned against its ‘unintelligent use.’
We need to use statistics correctly. We hope to
have provided some guidance above, and shall
pursue this issue in further articles of our mini-
series. In addition, we need to use statistical testing
‘intelligently,’ cognizant of its limitations. Statistical
significance testing should not distract us from
our focus on biological (or clinical) significance,
which is measured by the size of an effect and
the implications the effect has for the biological
system or organism. We should also be aware that
‘good evidence’ that a hypothesized effect is real
comes from replication across multiple studies
and cannot be inferred from the result of a single
statistical test.
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Figure 2 Box-and-whisker plot (median, first and third percen-
tiles, range) of the infarct volume data of Table 3, displayed with
the scatter plot of raw data.

Statistics in experimental cerebrovascular research—part I
P Schlattmann and U Dirnagl

477

Journal of Cerebral Blood Flow & Metabolism (2010) 30, 474–479



References

Altman DG, Bland JM (2005) Standard deviations and
standard errors. BMJ 331:903

Armitage P, Berry G, Matthews J (2002) Statistical Methods
in Medical Research, 4th edn. Oxford: Blackwell
Science

Crossley NA, Sena E, Goehler J, Horn J, van der Worp B,
Bath PM, Macleod M, Dirnagl U (2008) Empirical

evidence of bias in the design of experimental stroke
studies: a metaepidemiologic approach. Stroke 39:
929–34

Dirnagl U (2006) Bench to bedside: the quest for quality in
experimental stroke research. J Cereb Blood Flow Metab
26:1465–78

Faul F, Erdfelder F, Lang AG, Buchner A (2007) G*Power 3:
a flexible statistical power analysis program for the
social, behavioral, and biomedical sciences. Behav Res

Glossary

The glossary follows the definitions given by V Easton and J McColl (available online at http://
www.stats.gla.ac.uk/steps/glossary/).

Alternative hypothesis: The alternative hypothesis, H1, is a statement of what a statistical hypothesis test is
set up to establish. For example, in an animal experiment, two treatments are different on average.

Alpha: Denotes the significance level (acceptable type I error), usually 0.05.

Beta: Denotes the acceptable type II error, often 0.2.

Confidence interval: A confidence interval gives an estimated range of values that is likely to include an
unknown population parameter, the estimated range being calculated from a given set of sample data.

Effect size: An effect size is a measure of the strength of the relationship between two variables. For
continuous data, the difference between two means denotes an effect size.

False-positive decision: type I error (see there).

False-negative decision: type II error (see there).

Normal distribution: A normal distribution models continuous data on the whole real line (‘Bell-shaped
curve’).

Null hypothesis: The null hypothesis mostly represents the basis for an argument that has not been proved,
e.g., in an animal experiment, the null hypothesis could state that there is no treatment difference between
two drugs.

Power: Probability of rejecting the null hypothesis when it is false.

P-value: The probability value (P-value) of a statistical hypothesis test is the probability of observing a value
of the test statistic as extreme as or more extreme than that observed if the null hypothesis is true.

Significance level: The significance level of a statistical hypothesis test is a fixed probability of wrongly
rejecting the null hypothesis H0, if it is in fact true. It is usually denoted by a.

Standard deviation: Square root of the variance.

Standard error of the mean: An estimate for the precision of estimating the mean.

Standardized effect size: The difference of means divided by the standard deviation of the outcome variable.

Two-sample t-test: A two-sample t-test is a hypothesis test for answering questions about the mean where the
data are collected from two random samples of independent observations, each from an underlying normal
distribution.

Type I error: In a hypothesis test, a type I error occurs when the null hypothesis is rejected when it is in fact
true; that is, H0 is wrongly rejected.
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widely spread the values of the random variable are likely to be; the larger the variance, the more scattered
the observations on average.
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