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Review Article

Statistics in experimental cerebrovascular
research: comparison of more than two groups
with a continuous outcome variable
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A common setting in experimental cerebrovascular research is the comparison of more than two
experimental groups. Often, continuous measures such as infarct volume, cerebral blood flow,
or vessel diameter are the primary variables of interest. This article presents the principles of the
statistical analysis of comparing more than two groups using analysis of variance (ANOVA). We will
also explain post hoc comparisons, which are required to show which groups significantly differ
once ANOVA has rejected the null hypothesis. Although statistical packages perform ANOVA and
post hoc contrast at a key stroke, in this study, we use examples from experimental stroke research
to reveal the simple math behind the calculations and the basic principles. This will enable the
reader to understand and correctly interpret the readout of statistical packages and to help prevent
common errors in the comparison of multiple means.
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In part I of this series, we used a simple two-group
comparison of a continuous outcome variable to
introduce the basic concepts of statistical testing: a
priori formulation of hypotheses and planned statis-
tical analysis, error considerations, and power analysis
(Schlattmann and Dirnagl, 2010). We are thus pre-
pared to move one step further and explain another
cornerstone of statistical testing in experimental and
clinical biomedicine: comparing more than two
groups with a continuous outcome variable. This
would seem to be a trivial task. However, a review of
the research literature shows that although multiple
comparisons are among the most frequently used
statistical approaches (Kilkenny et al, 2009), failure
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to adjust for multiple comparisons is highly prevalent
in many fields (Williams et al, 1997; Murphy, 2004).
Already in 1983, Ian Ford observed that errors in
multiple comparisons were common in the first two
volumes of the Journal of Cerebral Blood Flow and
Metabolism (Ford, 1983). In a recent systematic
analysis of all papers published in 2008 in this
journal, we found that this lamentable situation
remains unchanged (Deister et al, in preparation).

Therefore, we believe that it is justified to revisit a
time-honored approach which provides an overall
global test, which is the analysis of variance
(ANOVA). Although all statistical packages and even
simple spreadsheet programs deliver such tests on
the press of a button, we opt to explain the simple
math behind them using the published results of a
typical experiment from experimental stroke re-
search. Only by understanding the basics of a statistical
test will the researcher be able to use it properly
and interpret results given by computer programs.

Example |

Our first example is from a study which asked the
question whether treatment with compound X is
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Figure 1 Infarct volume after MCAO. Box plot: median, first and
third quartile; whiskers: range; dots: data. MCAO, middle
cerebral artery occlusion.

protective in a mouse model of middle cerebral
artery occlusion (MCAQ). The end point of the study
was infarct volume measured from serial brain
sections and staining with hematoxylin—eosin.
Compound X was compared with vehicle treatment
(‘negative’ control) and with an established neuro-
protectant (compound Y) as a ‘positive’ control.

The study design allows us to answer the follow-
ing questions: (1) Is there an effect of compound X on
infarct volume after MCAO in comparison with
vehicle (i.e., is it a neuroprotectant?); (2) Is there an
effect of compound Y in comparison with vehicle?
(i.e., was it possible to protect the brain in this
experimental series?); and (3) How does compound
X compare with a known ‘standard’ (compound Y).

Figure 1 shows box and scatter plots of the data.
Visual inspection already suggests that compound Y,
the established neuroprotectant, indeed protected
the brain. However, the other questions can only be
addressed by a more formal analysis.

Multiple Hypothesis Tests

An intuitive approach to this set of data would be to
perform several t-tests, as described for two-group
comparisons in our recent article (Schlattmann and
Dirnagl, 2010). For example, using t-tests we might
want to compare the vehicle and compound
X groups, as well as the vehicle and compound Y
groups. However, the multiple comparisons involved
will inflate the probability of declaring a significant
difference when it is not in fact present. Thus, it is
necessary to control the type I error, which is the
probability of falsely rejecting the null hypothesis.
If we test a null hypothesis which is true (i.e., there
is no difference between the groups) and perform a
statistical test at the 5% significance level, the
probability of coming to the correct conclusion of
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no difference between groups is 95%. If we perform
two tests (and both null hypotheses are true) without
correction, the probability that no test turns out
with a statistically significant difference is
0.95 x 0.95=0.90. In other words, the probability
that at least one test rejects the null hypothesis at the
5% level is ~10%, given by 1—(0.95 x 0.95). If we
perform four tests without correction, the probability
of obtaining no significantly different comparison
turns out be 0.95*=0.82, and the probability of at
least one erroneously significantly different compar-
ison is given by 1-0.82=0.18. Hence, type I error
increases rapidly with the number of comparisons.
In general, if the null hypothesis is true, the
probability of obtaining no statistically significantly
different comparison when performing k indepen-
dent tests at a significance level of o is rendered
by (1—a)*. Accordingly, the probability of observing
at least one significantly different comparison is
given by 1—(1—a)~

One way to control the overall type I error is to
perform a Bonferroni correction: o is divided by the
number of tests performed (2/k) and used as the new,
corrected significance level. However, this simple
and straightforward procedure comes at the price
of losing statistical power.

Analysis of Variance

A common approach to compare several groups of
continuous data without losing power is ANOVA,
which provides a single overall test of whether
there are differences between groups or treatments.
The procedure relies on the same assumptions as the
t-test. That is, we need continuous, normally dis-
tributed, and independent data with a common
variance in each group.

One might ask why the procedure is known as
ANOVA, as we compare groups to investigate
whether the population means differ. The term
‘ANOVA’ becomes clear if we understand that this
test is based on partitioning the total variation of the
data into components of within- and between-group
variance. Between-group variability depends on the
size of the difference between group means. This
leads to the so-called variance of means. Obviously,
if all group means are equal, the between-group
variability is zero.

For the data in Table 1, the overall mean equals
67.87; thus, the squared contribution of the first
group to the variance of means is given by
(87.57—67.87)%. As we have made 14 observations,
the total contribution is 14 x(87.57—67.87)2.
Consequently, the variance of means for the three
groups is given by

14x(87.57 — 67.87)% 4+ 15x(82.18 — 67.87)°+
13x(34.24 — 67.87)% = 23,949

Analysis of variance quantifies whether the between-
group variance is larger than expected by chance

1559

Journal of Cerebral Blood Flow & Metabolism (2010) 30, 1558-1563



Statistics in experimental cerebrovascular research: part |1
P Schiattmann and U Dimagl

.@

1560

Table 1 Infarct volumes measured histologically after experi-
mental middle cerebral artery occlusion in the mouse

Vehicle Compound X Compound Y
m=13) m=15) (m=14)
120.07 114.48 50.54
87.43 100.19 26.74
194.72 104.61 66.58
101.88 121.73 25.68
74.64 85.03 63.81
52.14 110.31 5.64
42.19 151.75 7.33
42.89 75.63 37.69
112.29 162.72 1.79
131.27 32.03 53.94
16.94 137.94 21.81
136.71 11.21 43.74
25.30 3.36 49.77
17.20 24.34
4.48
Mean 87.57 82.18 34.24
s.d. 51.66 55.25 21.30

Table 2 Analysis of variance table for the data in Table 1

Source of Degrees Sum  Mean Variance  Pr
variation of freedom of square  ratio (>F)

(d.f.) squares (F-value)
Between groups 2 23,949 11,975 5.79 0.0063
Within groups 39 80,654 2,068

The last column of Table 4 shows the probability to observe a value >6.75
when the null hypothesis is true (Pr( > F)).

than the within-group variance. Under the null
hypothesis, the between-group variance and the
within-group (residual) variance will be the same,
and thus their expected ratio will be equal to one.
The test statistic (F-value) is the ratio of the between-
and within-variance estimates. The larger the
F-value, the more evidence is available against the
null hypothesis that the population group means are
equal.

As we are using two different variance estimates,
we need to consider different degrees of freedom
(d.f.). Therefore, the F-value must be compared with
tables based on the denominator and numerator d.f..
The numerator d.f. depends on the number of groups
k and is given by k—1. The denominator d.f. depends
on the total number of observations n and the
number of groups k. They are calculated as n—k.

The first column of Table 2 shows the source of
variation, the second column shows the d.f., and the
third the corresponding sum of squares. The next
column gives the mean square error, which is the
variance estimate of the between- and within-group
variance. The variance ratio (F-value) is then given
by 11,975/2,068 =5.79. This value of the test statistic
can be compared with tables of the F-distribution
with 2 and 39 d.f. For the data in Table 2, an F-value
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>3.24 would be significant with a P-value <0.05.
The last column of Table 2 shows the probability of
observing a value >5.79 when the null hypothesis is
true (Pr(>F)). Thus, we reject the null hypothesis
that the animal populations are equal. At present, all
of this is performed conveniently by software. Many
packages provide most of the parameters explained
above (e.g., F-values) in their output.

Multiple Comparisons

When a significant F-ratio has been found using
ANOVA, we still do not know which means differ
significantly. Therefore, it is necessary to conduct
post hoc comparisons between pairs of treatments.
There are many procedures for pairwise comparison.
The performance of one or several of these pairwise
comparisons requires a procedure that takes the full
range of potential comparisons into account. For
example, Bonferroni’s correction, Scheffé’s method,
or Tukey’s method could be used. An overview may
be found, e.g., in the book by Armitage et al (2002) or
in the articles by Jaccard et al (1984), Godfrey (1985),
or Seaman et al (1991). See also the list of web
resources following the reference list.

Statistical procedures need to be defined a priori
(Schlattmann and Dirnagl, 2010), i.e., between for-
mulating the research hypothesis and performing the
experiments. If ANOVA is the test of choice, post hoc
procedures and contrasts need to be set in case the
null hypothesis is rejected. The choice of post hoc
comparisons depends on the investigator’s needs and
the study design. If confidence intervals are desirable
or the design is unbalanced (i.e., unequal group
sizes) but with equal variances, then the Tukey
procedure is recommended (Stoline, 1981; Bender
and Lange, 2001).

Thus, in the following, we will apply Tukey’s
method to our data in Table 1 to test the null
hypothesis that all possible pairs of treatment means
are equal.

Tukey’s test is one of several methods of ensuring
that the chance of finding a significant difference in
any comparison (under a null hypothesis) is main-
tained at the o-level of the test. In other words, it
preserves ‘family-wise type I error.’

Tukey’s test is often referred to as the HSD
(honestly significant difference) test, and makes use
of a single value against which all differences are
compared. To test all pairwise comparisons among
means using Tukey’s HSD, one computes the test
statistic t; for each pair of means. The test statistic t;
depends on the difference of means, the root mean
square error (within-group mean square error), and
the harmonic mean of the respective sample sizes.

The critical value f.ica is determined from the
distribution of the studentized test statistics. The
number of means in the experiment is used in the
determination of the critical value, and this critical
value is used for all comparisons among means.



Table 3 Multiple comparisons based on Tukey’s procedure with
simultaneous 95% confidence limits

Group Difference Simultaneous Adjusted
comparison between 95% P-value
means confidence
limits
Compound X-vehicle —5.40 —47.40 36.59 0.947
Compound Y-vehicle —53.33 —96.01 —10.66 0.011
Compound Y-Compound X —47.94 —89.11 —6.76 0.019

Table 3 shows that compound Y is significantly
different from the vehicle and compound X group,
whereas the null hypothesis that compound X is
equal to vehicle after MCAO was not rejected.

As noted above, as an alternative procedure, the
Bonferroni method could have been applied. This
implies simply dividing the selected significance
level by the number of comparisons. In our case,
three comparisons are performed for all pairwise
comparisons, which lead to a corrected significance
level of 0.05/3=0.0166. This procedure often lacks
power and as a result other post hoc comparison
methods such as Tukey’s method are preferred.

Two-way Analysis of Variance
Example II

In example I, we used ANOVA to analyze data from a
study with one independent variable (‘treatment’).
We will now address how to analyze data from a
study with two independent variables using two-way
ANOVA.

Royl et al (2009) investigated the hypotheses that
treatment with the inhibitor of phosphodiesterase
type 5, vardenafil, increases cerebral blood flow and
improves functional recovery after temporary focal
cerebral ischemia in mice. Thus, the effects of
vardenafil on survival, functional outcome, lesion
size, and cerebral blood flow after cerebral ischemia
were investigated. Mice were subjected to MCAOQ for
45 minutes or to a sham procedure. In either group,
mice received vardenafil or alternatively vehicle
3 hours after MCAO. The summary data for the pole
test (time in seconds a mouse needs to turn and to
reach the floor after being placed head up on pole), a
measure of motor coordination, are shown in Table 4.

This experiment represents a typical 2 x 2 factorial
design (type of surgery (sham, MCAO) x treatment
(vehicle, vardenafil)). In factorial designs, a factor is
a major independent variable. In this example, we
have two factors: type of treatment and surgery.

This study design allows us to answer the follow-
ing questions: Is there an effect of MCAO on motor
outcome at day 227 Does vardenafil have an effect
on sham animals, and most importantly, can it
improve functional outcome after experimental
stroke? Figure 2 shows box and scatter plots of the
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Table 4 Functional recovery after cerebral ischemia

Sham MCAO
Vehicle Vardenafil Vehicle Vardenafil

m=8) (m=10) m=11) m=11)

5.74 5.31 9.01 7.41

5.26 4.84 6.92 6.58

4.78 6.23 7.96 5.32

5.03 5.57 7.97 6.29

4.64 8.14 6.60 5.97

4.68 5.15 8.67 8.06

5.38 5.09 8.02 10.38

5.97 3.77 8.21 5.84

5.18 5.58 6.09

4.90 5.78 6.01

4.79 6.51

Mean 5.18 5.42 7.23 6.77
s.d. 0.50 1.14 1.38 1.42

MCAO, middle cerebral artery occlusion.
Pole test (performed on day 22 after MCAO): time mouse needs to turn and to
reach the floor after being placed head up on pole.
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Figure 2 Functional recovery after MCAO. Pole test (performed
on day 22 after MCAO): the time the mouse needs to turn and
to reach the floor after being placed head up on pole. Box plot:
median, first and third quartile; whiskers: range; dots: data.
MCAO, middle cerebral artery occlusion.

data. Visual inspection already suggests that MCAO
does seem to have an impact on outcome.

A standard plot in a two-factor experiment is
known an interaction plot and may be given by
the predicted response at each combination of the
factors. Figure 3 shows an interaction plot with no
strong suggestion that vardenafil acts differently in
sham- and MCAO-operated animals, although the
predicted response lines cross.

However, our questions (see above) can only be
addressed properly by a formal analysis. Two-way
ANOVA is the appropriate method for this purpose.

Two-way ANOVA partitions the total variability of
the data into a maximum of four sources. The first
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Figure 3 Interaction plot for the 2 x 2 factorial design: predicted
time to recovery at each combination of the factors of surgery
and drug.

Table 5 Analysis of variance table for the data in Table 4

Source of Degrees of Sum of Mean Variance Pr

variation freedom  squares square ratio (>F)
(df) (F-value)

MCAO 1 28.19 28.19 19.38 0.0001

Drug 1 0.23 0.23 0.16 0.69

MCAO x drug 1 1.19 1.19 0.81 0.37

Within groups 36 52.62 1.46

MCAO, middle cerebral artery occlusion.
The last column of Table 5 shows the probability to observe a value > 6.75
when the null hypothesis is true (Pr( > F)).

Table 6 Multiple comparisons based on Tukey’s procedure with
simultaneous 95% confidence limits (CLs)

Group comparison Difference Simultaneous Adjusted

between 95% P-value

means confidence
limits

MCAO-sham 1.69 0.91 2.47 0.0001
Vardenafil—vehicle -0.15 —0.93 0.62 0.69
MCAQO + vehicle— 2.05 0.54 3.56 0.004
sham + vehicle
MCAO + vardenafil - 1.59 0.07 3.10 0.03
sham + vehicle
MCAO + vardenafil — —0.46 —1.85 0.93 0.81
MCADO + vehicle
MCAO + vardenafil — 1.35 —0.07 2.77 0.07
sham + vardenafil
Sham + vardenafil — 0.23 —1.31 1.77 0.97
sham + vehicle
Sham + vardenafil— —1.81 —3.23 —0.39 0.008
MCADO + vehicle

MCAO, middle cerebral artery occlusion.

source of variation is the variability due the type of
surgery (sham, MCAO), and the second source is the
variability due the type of drug (vehicle, vardenafil).
The third source of variation denotes the interaction
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between the type of surgery and drug. This implies
that vardenafil acts differently in operated or
sham-operated animals. In addition, as in one-way
ANOVA, the within-group (residual) variance needs
to be considered.

Results

Now, for each of the first three sources of variability
an F-test is performed. Looking at the F-test for the
type of surgery, the sum of squares is equal to 28.19,
with 1 d.f. The residual mean square error is given by
52.62 on 36 d.f. Thus, the mean square error is given
by 52.62/36 =1.46. Consequently, the F-test for the
type of surgery is given by 28.19/1.46 =19.29. This
turns out to be significant at the 5% level, with a
corresponding P-value of 0.0001.

The other sources of variance are treated in the
same manner. For example, the F-test for the effect
of drug is given by 0.23/1.46=0.16, P-value=0.69.
Similarly, looking at the results of the two-way
ANOVA in Table 5, there is no evidence for a
significant interaction.

Table 6, in which Tukey’s procedure as post hoc
comparison method has been applied, only reveals
an effect of surgery (animals with sham surgery
perform better than animals after MCAQ). The null
hypotheses that vardenafil provides an equal
outcome in comparison with vehicle after MCAO or
sham operation could not be rejected.

Conclusions

Analysis of variance overcomes the problem that
multiple two-sample t-tests inflate the chance
of committing a type I error by performing a global
hypothesis test comparing three or more means.
Having found a significant group difference in
ANOVA (and only then), we proceed to perform
pairwise comparisons between groups to find sig-
nificant differences between individual groups.

Analysis of variance is a special type of the general
linear model, which can also be applied to more
complex settings. A future article of this series will
show the proper use of a linear model in the analysis
of experimental data.
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Web resources

http://www.itl.nist.gov/div898/handbook/prc/section4/
prc47.htm (Online Engineering Statistics Handbook
on how to make multiple comparisons) (pages last
accessed 16 March 2010).


http://www.itl.nist.gov/div898/handbook/prc/section4/prc47.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc47.htm

http://www.jerrydallal.com/LHSP/mc.htm (Gerard E
Dallal, PhD on multiple comparison procedures)
(pages last accessed 16 March 2010).

http://en.wikipedia.org/wiki/Multiple_comparisons
(Wikipedia article on multiple comparisons) (pages
last accessed 16 March 2010).
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