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Multimodal magnetic resonance imaging of acute stroke provides predictive value that can be used
to guide stroke therapy. A flexible artificial neural network (ANN) algorithm was developed and
applied to predict ischemic tissue fate on three stroke groups: 30-, 60-minute, and permanent middle
cerebral artery occlusion in rats. Cerebral blood flow (CBF), apparent diffusion coefficient (ADC),
and spin–spin relaxation time constant (T2) were acquired during the acute phase up to 3 hours and
again at 24 hours followed by histology. Infarct was predicted on a pixel-by-pixel basis using only
acute (30-minute) stroke data. In addition, neighboring pixel information and infarction incidence
were also incorporated into the ANN model to improve prediction accuracy. Receiver-operating
characteristic analysis was used to quantify prediction accuracy. The major findings were the
following: (1) CBF alone poorly predicted the final infarct across three experimental groups;
(2) ADC alone adequately predicted the infarct; (3) CBF + ADC improved the prediction accuracy;
(4) inclusion of neighboring pixel information and infarction incidence further improved the
prediction accuracy; and (5) prediction was more accurate for permanent occlusion, followed by
60- and 30-minute occlusion. The ANN predictive model could thus provide a flexible and objective
framework for clinicians to evaluate stroke treatment options on an individual patient basis.
Journal of Cerebral Blood Flow & Metabolism (2010) 30, 1661–1670; doi:10.1038/jcbfm.2010.56; published online
28 April 2010

Keywords: ANN; DWI; ischemic penumbra; perfusion–diffusion mismatch; predictive model; PWI

Introduction

Multimodal magnetic resonance imaging (MRI) of
acute stroke provides clinically relevant data and
predictive value to guide stroke therapy. Combined
perfusion- and diffusion-weighted MRI is remarkably
sensitive in detecting acute stroke changes and is
becoming the method of choice for diagnosis,
staging, and characterization of ischemic brain
injury. The anatomical mismatch between perfusion
and diffusion abnormality (Kidwell et al, 2003;
Warach, 2003) approximates the potentially salvage-
able ‘ischemic penumbra’ (Astrup et al, 1981a, b;
Hossmann, 1994; Lo et al, 2005). Although the
definition of perfusion–diffusion mismatch has

evolved slightly over the years (Kidwell et al,
2003), it remains widely used to guide acute stroke
treatment in emergency rooms. In contrast, conven-
tional T2-weighted MRI could not detect ischemic
injury until at least 6 hours after stroke onset,
coinciding with vasogenic edema, at which point
the tissue is likely already infarcted.

Prediction of infarct volume on a pixel-by-pixel
basis has been demonstrated using critical thresh-
olds of the apparent diffusion coefficient (ADC) or
cerebral blood flow (CBF) values (Arenillas et al,
2002; Thomalla et al, 2003). Although this approach
is simplistic and has limitations, it is practical
for evaluating treatment effects on lesion volumes.
A more sophisticated prediction algorithm used a
voxel-based generalized linear model (GLM) to
predict tissue infarction in middle cerebral artery
occlusion (MCAO) in rats (Wu et al, 2007) and
human stroke patients (Wu et al, 2001). Predicted
outcome was compared with the tissue’s histology or
end-point T2 imaging. Shen et al (2005b) introduced
another predictive model based on the probability of
infarct (Shen and Duong, 2008). This model docu-
mented the probability-of-infarct profiles of stroke
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rats that underwent different occlusion durations.
Predictions, which were made based on acute stroke
data in the form of probability-of-infarct maps,
showed the likelihood of future infarction on a
pixel-by-pixel basis. Performance analysis showed
accurate prediction when compared with end-point
T2 MRI and histology. These predictive algorithms
have the potential to serve as promising metrics for
diagnosis, prognosis, and therapeutic evaluation of
acute stroke.

The evolution of ischemic injury is spatially
heterogeneous (Guadagno et al, 2005; Sobesky et al,
2005). Although acute ADC and CBF data are very
informative in predicting outcome, other factors
could also affect stroke outcome. Two of these factors
are neighboring pixel information and infarction
incidence. First, a single pixel or a small island
of normal pixels in the hyperacute phase is often
surrounded by severe ADC and CBF reduction.
These islands of small pixels will likely infarct but
may not be identified as such based on ADC and/or
CBF alone, thus affecting prediction accuracy. Noise
in the data could also give rise to single pixels or
small islands of normal ADC and/or CBF, resulting in
reduced prediction accuracy. Second, incidence of
ischemic injury includes distance from patent afferent
vessels, basal regional blood flow, and metabolism.
For example, the tissue close to the anterior commu-
nicating artery and the posterior cerebral artery has
lower infarction incidence because of collateral flow
(Shen et al, 2004b). Conversely, the hippocampus is
thought to be more susceptible (Smith et al, 1984).
Information regarding infarction incidence can be
derived from an incident map of the infarct frequency,
and can in principle be incorporated into the predictive
model to improve prediction accuracy. Incorporation of
these factors, however, may not be trivial because they
may not be easily parameterized.

The artificial neural network (ANN), inspired by
the neuronal networks in the central nervous system,
is widely used in science and engineering for
prediction and classification. It consists of nodes
that are connected together to form a network with
variable strengths (weights) between different con-
nections. Through training, the relationship between
inputs and outputs in the ANN can be mapped by
altering the weights within the network. It is
particularly useful in solving problems that have
few obvious rules, problems that are difficult to
specify mathematically, and problems that deal with
a large number of parameters. ANN has been used for
clustering of contrast-enhanced perfusion MRI data
(Wismuller et al, 2006) and embolus detection using
MRI (Kemeny et al, 1999). Prediction of functional
outcome associated with clinical variables that are
associated with rehabilitation in stroke (Oczkowski
and Barreca, 1997) has also been described. Compar-
isons of ANN and other predictive models have also
been reported (Tu, 1996).

The aim of this study was to develop and test a
flexible predictive algorithm based on ANN to

predict ischemic tissue fate using acute ADC and
CBF data. Artificial neural network prediction algo-
rithms were evaluated on rat stroke models subjected
to three different occlusion durations (30-, 60-
minute, and permanent MCAO). Predictions using
ADC alone, CBF alone, and ADC + CBF were eval-
uated. In addition, the effects of neighboring pixels
and infarction incidence on prediction accuracy
were also evaluated. Prediction accuracy was quan-
tified using receiver-operating characteristic (ROC)
analysis. Comparisons of prediction accuracy were
made with end-point T2-weighted MRI on a pixel-
by-pixel basis.

Theory

The artificial neural network consists of intercon-
nected nodes that form a network with variable
weights between connections. Figure 1A shows the
model of an artificial neuron. The relationship
between the input and the output of the neuron
can be described as

y ¼ f
Xn

i¼1

wixi þ b

 !
; ð1Þ

where xi is a input signal, wi is the weight, y is the
output, b is the threshold, and f is the activation
function. A typical activation function and the one
used here is the sigmoidal function:

f ðtÞ ¼ 1

1þ e�t
: ð2Þ

Neural networks are formed by connecting these
neurons together. This study used the feed-forward
ANN, in which artificial neuron connections are
arranged in layers in the direction from inputs to
outputs without feedbacks among nodes in the same
layer. Figure 1B shows the feed-forward ANN model
with three layers, input layer, hidden layer, and
output layer, in which the weights, bias, and other
network connections were omitted for clarity. A
supervised training of the ANN model was used. For
the propagation of error, the back-propagation algo-
rithm was used to minimize the cost function x on
the output layer:

x ¼ 1

2

Xn

k¼1

ðyk � YkÞ2; ð3Þ

Model of a neuron Model of feed-forward neural network
input layer hidden layer

output layerw1

b

wn-1

:
: ∑

f()
  

wn

x1

xn-1

xn

y

Figure 1 (A) A model of an artificial neuron and (B) a model of
the feed-forward artificial neural network.
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where yk and Yk are the actual and target outputs
of the neuron k, and n is the number of
neurons of the output layer. The essence of the
back-propagation algorithm is to train the ANN
algorithm by adjusting the weights of the network
connections:

wijðt þ 1Þ ¼ wijðtÞ þ DwijðtÞ; ð4Þ
where wij is the weight between neuron i and neuron j.
The training process was iterative and continued
until the minimum training error, maximum training
epochs, or minimum gradient of the error function
was reached.

Instead of the commonly used gradient descent
method to minimize cost function, this study used
the resilient back-propagation method (Riedmiller
and Braun, 1993) to speed up convergence. Resilient
back propagation takes into account only the sign of
the partial derivative over all patterns (not the
magnitudes) and acts independently on each
‘weight’, as defined by

DwijðtÞ ¼
�DijðtÞ; if qx

qwij
ðtÞ40

DijðtÞ; if qx
qwij
ðtÞo0

0; else

8><
>: ; ð5Þ

where Dij (t) is the update value corresponding to wij

and is defined as

DijðtÞ ¼
Zþ � Dijðt � 1Þ; if qx

qwij
ðt � 1Þ � qx

qwij
ðtÞ40

Z� � Dijðt � 1Þ; if qx
qwij
ðt � 1Þ � qx

qwij
ðtÞo0

Dijðt � 1Þ; else

8><
>: ;

ð6Þ
with 0 < Z�< 1 < Z+ , D0, Dmax, and Dmin being the
initial, maximum, and minimum values of Dij,
respectively. For each weight, if the partial derivative
of the total error function compared with the last
iteration changes sign, the update value for that
weight is multiplied by Z�, where Z�< 1. If the
last iteration yields the same sign, the update value
is multiplied by Z+, where Z+ > 1. The update
values are calculated for each weight and, in the
end, each weight is replaced by its own update value,
in the direction opposite to that weight’s partial
derivative. This approach is commonly used to
accelerate convergence in a shallow region of the
error function. Here, Z+ is empirically set to 1.2 and
Z� to 0.5.

Materials and methods

Animal Preparations

The data used in this study were those of Shen and
Duong (2008). In brief, a total of 36 Sprague–Dawley
rats (300 to 350 g) were subjected to 30-minute (n = 12),
60-minute (n = 12), and permanent (n = 12) MCAO to
enable comparison with a previously published predic-
tion method (Shen and Duong, 2008). Stroke surgery
and animal preparations have been described elsewhere

(Meng et al, 2004; Shen et al, 2003, 2004a). A femoral
artery was catheterized for blood-gas sampling, conti-
nuous blood pressure, and heart-rate monitoring. Blood
pressure, heart rate, respiration rate, rectal temper-
ature, and blood gases were maintained within normal
physiologic ranges. Rats were initially anesthetized with
chloral hydrate (400 mg/kg, intraperitoneally) and sub-
jected to intraluminal MCAO. Once the animal was
in the magnet, B1% isoflurane was used. The animals
breathed spontaneously without mechanical ventilation
(Meng et al, 2004; Shen et al, 2005a). End-point
T2-weighted MRI was performed at 24 hours after occlu-
sion. Histological infarct volume was determined using
TTC (2,3,5-triphenyltetrazolium chloride) staining and
with edema correction (Meng et al, 2004).

Magnetic Resonance Experiments

Magnetic resonance imaging was performed on a Bruker
4.7-T/40-cm (Billerica, MA, USA) scanner. The animal was
secured in a stereotaxic headset and placed onto an animal
holder, consisting of a surface coil (2.3-cm inner diameter)
for brain imaging and a butterfly neck coil for continuous
arterial spin labeling (Meng et al, 2004). Coil-to-coil
interaction was actively decoupled. Imaging was per-
formed at 30, 60, 90, 120, and 180 minutes, and again at
24 hours after occlusion. For the 30- and 60-minute MCAO
groups, the 30- and 60-minute data, respectively, were
acquired before reperfusion. Reperfusion was accom-
plished remotely without taking the animal out of the
scanner.

Quantitative CBF was measured using the continuous
arterial spin-labeling technique (Duong et al, 2000) with
gradient-echo echo-planar imaging (EPI), matrix =
128� 128 (4 shots for the permanent MCAO group) or
64� 64 (single shot for the 30- and 60-minute MCAO
groups), field of view (FOV) = 2.56 cm� 2.56 cm, repetition
time (TR) = 2 seconds per segment (901 flip angle), echo
time (TE) = 20 milliseconds, and seven 1.5-mm slices.
Paired images were acquired alternately—one with and
the other without arterial spin-labeling preparation. In all,
76 pairs of images were acquired for signal averaging, with
half acquired before and the other half after the ADC
measurements.

The higher resolution in the permanent MCAO group
was a result of our recent successful attempt to achieve
better ischemic definition. Higher resolution could im-
prove prediction by reducing the partial-volume effect, but
it has lower signal-to-noise ratio (SNR) per unit time.
Differences in resolution of the data here were not expected
to alter the overall validity of the ANN approach.

Apparent diffusion coefficient maps were obtained by
averaging three data sets acquired with diffusion-sensitive
gradients applied along the x, y, or z direction, using
spin-echo EPI, matrix = 128� 128 (4 shots for the
permanent MCAO group) or 64� 64 (single shot for
the 30- and 60-minute MCAO groups), FOV = 2.56 cm�
2.56 cm, TR = 2 seconds per segment (901 flip angle),
TE = 37.5 milliseconds, seven 1.5-mm slices, and 16 averages,
b = 10, and three directions of 1,270 s/mm2, D= 17.53 ms,
and d= 5.6 ms.
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At 24 hours after occlusion, T2-weighted images were
acquired using the fast spin-echo pulse sequence (echo
time per echo = 6.5 milliseconds) with two different effec-
tive echo times (52 and 104 milliseconds), echo train length
16, and 16 signal averages.

Data Analysis

Five anterior slices were analyzed to avoid susceptibility
distortion around the ear canals. Images were coregistered
using custom-designed semiautomatic coregistration soft-
ware between acute-phase and 24-hour data within the
same animals and between animals as described pre-
viously (Liu et al, 2004; Schmidt et al, 2006; Shen et al,
2005a). Apparent diffusion coefficient maps with intensity
in units of mm2/s (Meng et al, 2004; Shen et al, 2005a) and
CBF maps with intensity in units of mL per gram per min
were calculated (Duong et al, 2000) as described previously
using codes written in Matlab (MathWorks, Natick, MA,
USA). Image displays and overlays were performed using
the STIMULATE software (University of Minnesota). All
data were reported as mean±s.e.m.

Cluster Analysis: The iterative self-organizing data analy-
sis algorithm (ISODATA; Ball and Hall, 1965) was used
to segment and exclude pixels of the cerebrospinal fluid
and the corpus callosum (Shen et al, 2004b). With the
remaining gray matter in the rat brain, ISODATA was then
used to identify pixels belonging to different tissue zones
based on ADC and CBF data, and to determine the final
lesion volume based on end-point MRI data. Multiple
clusters were resolved and identified as ‘normal’, ‘mis-
match,’ and ‘ischemic core’ from the ischemic right
hemisphere at each acute time point (Shen et al, 2004b).
The final lesion was determined using ADC and T2 maps at
24 hours after occlusion.

Spatial Infarction Incidence: To improve prediction
accuracy, spatial infarction incidence maps were obtained
by counting the frequency of infarction for each MCAO
group (which is known as the spatial frequency of infarct;
Shen et al, 2005b). Images from different animals within
the same MCAO group were spatially coregistered and
the infarction incidence maps were computed pixel by
pixel using,

Spatial infarction incidence ðx; y; zÞ

¼ number of animals in which pixel ðx; y; zÞwas infarcted

number of total animals

where x ranged from 1 to 64 or 128, y ranged from
1 to 64 or 128, and z ranged from 1 to 4 (number of
slices). Note that spatial continuity was not used in
our analysis.

Artificial Neural Network: Artificial neural network
algorithms were developed in the Matlab environment
using the ANN toolbox. Three experimental groups were
analyzed: permanent, 60-, and 30-minute MCAO groups.
The ANN was trained and tested using the leave-one-out
method—i.e., one animal was used as the ‘test’ subject and
the remaining animals in the same MCAO group were used

as ‘training’ subjects. This was cycled for all animals in the
same group.

The number of hidden neurons and the number of
training epochs were optimized for ADC alone. The
number of hidden neurons was evaluated from 1, 2, 4, 6,
8, 10, 12, 14, 16, 18, and 20 (with the number of training
epochs being 150). The number of training epochs was
evaluated from 5, 10, 15, 20, 25, and 50, and from 100 to
500 in steps of 100 (with the number of hidden neurons
being 5). The optimal number of training epochs and the
number of hidden neurons were those that yielded the
largest areas under the ROC curves.

Artificial neural network predictions were made for the
30-, 60-minute and permanent MCAO groups using their
corresponding ANN basis sets, namely: (1) the permanent
MCAO ANN basis set was trained and applied to
permanent MCAO animals for prediction, (2) the 60-
minute MCAO ANN basis set was trained and applied to
the 60-minute MCAO animals for prediction, and (3) the
30-minute MCAO ANN basis set was trained and applied
to the 30-minute MCAO animals for prediction. For each
MCAO data set, training was performed for six conditions:
(1) CBF alone, (2) ADC alone, (3) ADC + CBF, (4) ADC + CBF +
two-dimensional (2D) adjacent pixels, (5) ADC + CBF + 3D
adjacent pixels, and (6) ADC + CBF + 3D adjacent pixels +
spatial information. For each MCAO data set, predictions
were then made using only data obtained at 30 minutes
after stroke onset for each of the six conditions. Adjacent
pixels referred to 8 and 26 immediate neighbor pixels in 2D
and 3D, respectively, in which they were treated as
independent inputs of ANN. For example, there were 18
inputs for the ADC + CBF + 2D condition (i.e., for each ADC
pixel there were eight neighbors, totaling nine inputs, and
for each CBF pixels there were eight neighbors, totaling
nine inputs). Spatial information referred to the infarction
incidence map described above.

To further evaluate the hypothetical treatment effects,
prediction was also made for the permanent, 60-, and 30-
minute MCAO groups using only the permanent MCAO
ANN training basis set. Predictions were made for the six
conditions described above.

For ANN analysis, the initial value of all update values
Dij was set as 0.01 (equation (6)). To prevent the weights
from becoming too large, the maximum weight step
determined by the size of the update value was limited,
with the upper bound being arbitrarily set as Dmax = 50. The
minimum step size was fixed at Dmin = 1e�6.

Receiver-operating characteristic analysis was performed
to evaluate the prediction accuracy as described previously
(Shen et al, 2005b). Sensitivity and specificity at the
optimal point and the areas under the ROC curves (AUCs)
were tabulated for comparison.

Comparison With a Previously Published Prediction
Model

Comparison of prediction performance (AUC) by ANN
was also made using a previously published probabi-
listic prediction model, using the identical data sets as
described in Shen et al (2005b) and Shen and Duong
(2008).
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Statistical Analysis

Two-way analysis of variance (ANOVA) with multiple-
comparisons Tukey–Kramer’s correction was used for
comparison among different conditions (Figures 5 and 6).
The paired t-test was used for comparison between
prediction made when training with its own basis set and
that made when training with the permanent MCAO basis
set (Figure 7).

Results

Spatial infarction incidence maps were derived
(Figure 2). Spatial infarction incidence and the
extent of infarction were heterogeneous. The is-
chemic core has a comparatively high infarction
incidence as expected, whereas the mismatch region
has a nonzero infarction incidence and the normal
tissue has close to zero infarction incidence. The
spatial infarction incidence varied significantly
across the three experimental stroke groups.

Figure 3 shows the optimization of the number of
hidden neurons and the number of training epochs
for the ADC data obtained from the permanent,
60-, and 30-minute MCAO groups. The optimal
AUC reached a plateau at 6 hidden neurons and 40
training epochs for all MCAO groups for ADC data
alone. On the basis of these optimization results, we
performed additional optimizations using 7 hidden
neurons and 50 training epochs for all other condi-
tions (ADC, CBF, ADC + CBF, ADC + CBF + 2D, ADC +
CBF + 3D, and ADC + CBF + 3D + spatial information).
The AUCs were not statistically different from the
plateau values shown in Figure 3 for all conditions.
Thus, it was sufficient in all subsequent analysis
of ANN trainings with 7 hidden neurons and 50
training epochs for all conditions.

Representative data sets of the pixel-by-pixel ANN
predictions of subsequent infarction are shown in
Figure 4 for the three experimental stroke groups
under various conditions. Predictions for each
MCAO group used its own basis set and MRI data
obtained at 30 minutes after ischemia. The condi-
tions evaluated were CBF alone, ADC alone, ADC +
CBF, ADC + CBF + 2D, ADC + CBF + 3D, and ADC +
CBF + 3D + spatial information. For references, ADC,
CBF maps, and ISODATA analysis of lesion volume
based on ADC and T2 are also shown. ISODATA
analysis of lesion volume (shown as blue pixels) was
taken as the end-point measure, which had been
previously correlated with histology (Shen et al,
2005b; Shen and Duong, 2008).

The major findings from Figure 4 are as follows.
For the permanent MCAO group, the predicted
infarct maps showed generally good pixel-by-pixel
correspondence with ISODATA cluster analysis of
the end-point MRI data, with the exception of CBF
data alone, which poorly predicted the infarct. With
additional information (going from top to bottom),
predictions were slightly more accurate regarding

lesion location and volume, as well as slightly more
certain (i.e., stronger yellow pixels). For the 60- and
30-minute MCAO groups, prediction with CBF alone
was inaccurate and less certain (stronger orange
pixels) compared with the permanent MCAO group.
With additional information (going from top to
bottom), predictions were more accurate and more
certain. Predicted maps are in general agreement
with ISODATA analysis of lesion volume.

Quantitative analyses of group data are summar-
ized below. Figure 5 shows the AUCs for predictions

Permanent
MCAO

Infarction incidence map

100%

60-min
MCAO

30-min
MCAO

0%

Figure 2 Spatial infarction incidence maps for the permanent,
60-, and 30-minute middle cerebral artery occlusion (MCAO)
groups. The color bar denotes the infarction incidence from 0%
to 100%. The color reproduction of this figure is available on the
html full text version of the manuscript.
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Figure 3 Optimization of (A) the number of hidden neurons and
(B) the number of training epochs for apparent diffusion
coefficient (ADC) data obtained from the permanent middle
cerebral artery occlusion (MCAO), 60-minute MCAO, and 30-
minute MCAO groups.
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of each MCAO group using its own training basis set.
The general observations were the following: (1) CBF
alone at 30 minutes poorly predicted infarct across
all three experimental groups; (2) ADC alone ade-
quately predicted infarct; (3) CBF +ADC improved
the prediction accuracy; (4) addition of neighboring
pixel information in 2D and 3D only slightly
improved prediction accuracy; (5) addition of infarc-
tion incidence further improved prediction accuracy
slightly; and (6) finally, prediction was more accurate

for the permanent MCAO group, followed by the 60-
and 30-minute MCAO groups.

Specifically, within each MCAO group, predic-
tions made using CBF alone were significantly
different from those obtained using other conditions
(i.e., ADC + CBF, ADC + CBF + 2D, ADC + CBF + 3D,
and ADC + CBF + 3D + spatial information). Further-
more, in the 60-minute MCAO group, the ADC + CBF
+ 3D + infarction incidence condition showed more
significant difference than all other conditions
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Figure 4 Predicted infarct maps for the permanent, and 60-, and 30-minute middle cerebral artery occlusion (MCAO) groups using
their own artificial neural network (ANN) training basis sets. Multislice images are posterior to the anterior slices from left to right.
Predictions were made with cerebral blood flow (CBF) alone, apparent diffusion coefficient (ADC) alone, ADC + CBF, ADC + CBF +
2D adjacent pixels, ADC + CBF + 3D adjacent pixels, and ADC + CBF + 3D adjacent pixels + spatial information. For references,
ADC, CBF maps, and iterative self-organizing data analysis algorithm (ISODATA) analysis of end-point lesion volume based on ADC
and T2 are also shown. Color bar denotes the probability of infarct from 0% to 100%. The color reproduction of this figure is
available on the html full text version of the manuscript.
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Figure 5 The areas under receiver-operating characteristic (ROC) curves for the three different occlusion durations: permanent, 30-
and 60-minute middle cerebral artery occlusion (MCAO). Predictions for each MCAO group training with its own basis set. Two-way
analysis of variance (ANOVA) with multiple comparisons applying Tukey–Kramer’s correction; *P < 0.05.
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(P < 0.05, two-way ANOVA with multiple-compari-
sons Tukey–Kramer’s correction).

To evaluate the effects of reperfusion, predic-
tions for the 30- and 60-minute MCAO groups were
made using the permanent MCAO training basis
set (Figure 6). Areas under the curve for the 30-
and 60-minute MCAO predictions using the perma-
nent MCAO basis set (Figure 6) were smaller than
those obtained using their corresponding basis sets
(Figure 5). The statistical paired t-test comparisons
are shown in Figure 7.

Comparison With a Previously Published Prediction
Model

The AUCs of prediction performance using a pre-
viously published probabilistic prediction model

(Shen et al, 2005b; Shen and Duong, 2008) are
summarized in Table 1. There were no statistical
differences between prediction performances
(AUCs) obtained using ANN in this study and
those obtained by Shen et al (2005b) and Shen and
Duong (2008).

Discussion

A flexible ANN algorithm was developed to predict
the ischemic tissue fate pixel by pixel based on
multimodal MRI data of acute stroke. The efficacy
of the ANN prediction algorithm was evaluated
using reproducible rodent stroke models of various
occlusion durations. Predictions showed the like-
lihood of future infarction on a pixel-by-pixel

Using permanent MCAO ANN basis set
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basis. Moreover, accounting for neighboring pixels
and infarction incidence improved the prediction
accuracy. These results could have important clinical
applications.

Artificial Neural Network Algorithms

A key advantage of the ANN prediction algorithm is
that it does not need the exact mathematical relation
between input and output parameters. A case in
point is that incorporation of the spatial information
does not require it to be explicitly parameterized.
Another advantage of the ANN prediction algorithm
is that the training sample sizes can be augmented
readily as more data sets become available. The
number of image and other input parameters can be
large. A disadvantage of the ANN prediction algo-
rithm is that the computational time increases very
rapidly with the number of parameters (neurons or
layers). However, this is only a one-time computa-
tional cost that is incurred during ‘training’ of the
ANN.

Determining the optimal numbers of hidden nodes
and training epochs remains a major unsolved
problem in ANN. The majority of the studies used
an arbitrary number of hidden nodes and training
epochs (Jorjani et al, 2008; Landeras et al, 2008;
Zhang et al, 2008). In this study, we explicitly
optimized the number of hidden nodes and number
of training epochs. From these data, we found rapid
convergence for the AUCs. The AUC reached a
plateau at 6 hidden neurons and 40 training epochs
for all MCAO groups.

Accounting for Neighboring Pixels

In the ANN prediction algorithms, neighboring
pixels were treated as independent inputs, which is
not the same as (but may have a similar effect as)
spatial smoothing. Accounting for neighboring pixels

generally improved the prediction performance,
although doing so did not yield statistically signifi-
cant difference. By inclusion of the nearest-neighbor-
hood information, the ‘noise’ effect from ‘single
pixel’ errors on prediction could be minimized.
However, inclusion beyond the nearest neighbors
would likely improve AUC but could also potentially
obscure identification of interesting heterogeneous
areas, such as the ischemic penumbra. In this study,
only the immediate neighboring pixels (8 neighbors
in 2D and 26 neighbors in 3D) were used.

Comparison Among Predictive Models

Using the voxel-based generalized linear model
algorithm, Wu et al (2007) predicted infarction in
normal and hypertensive stroke rats that were
subjected to embolic clot occlusion with and without
recombinant tissue plasminogen activator (rt-PA)
treatment at 1 hour after stroke. They found that
pretreatment-predicted outcome compared with
posttreatment histology was highly accurate in
saline-treated rats (92%±5%). Accuracy was signif-
icantly reduced in rt-PA-treated animals (86%±8%).
Animals that reperfused had significantly lower
GLM-predicted infarction risk than nonreperfused
animals, suggesting that tissue was more amenable to
therapy. In another study, Wu et al (2001) compared
the GLM prediction and thresholding methods
applied on human stroke data. At their optimal
operating points, thresholding algorithms combining
DWI and PWI provided 66% sensitivity and 83%
specificity, and GLM algorithms combining DWI
and PWI predicted with 66% sensitivity and 84%
specificity voxels that proceeded to infarct. Thresh-
olding algorithms that combined DWI and PWI
provided significant improvement to algorithms that
used DWI alone but showed no significant improve-
ment over algorithms that used PWI alone. GLM
algorithms that combined DWI and PWI showed
significant improvement over algorithms that used
only DWI or PWI. The performances of thresholding
and GLM algorithms were found to be comparable.

Shen et al (2005b) and Shen and Duong (2008)
documented the probability-of-infarct profiles of
stroke rats that underwent different MCAO dura-
tions. Using only acute ADC and CBF data, pixel-
by-pixel prediction was made and compared with
end-point T2 imaging and histology. The ANN
method showed slightly better performance. How-
ever, there were no statistical differences between
the prediction performance (AUCs) of ANN obtained
in this study and that obtained by Shen et al (2005b)
and Shen and Duong (2008). Although there were
some minor methodological differences in the assign-
ment of training groups, this comparison indicates
that the two approaches yielded comparable perfor-
mance. The key advantage of ANN is that ANN offers
flexibility and can be readily extended to a large
number of input parameters.

Table 1 Comparison of AUC from the probabilistic prediction
algorithm (Shen et al, 2005b; Shen and Duong, 2008) and the
corresponding AUC from ANN

ADC+CBF ADC+CBF+
spatial

ADC+CBF+
3D+spatial

Permanent MCAO
Probabilistic 93±3 92±4 NA
ANN 93±1 95±4 94±2

60-minute MCAO
Probabilistic 90±4 92±3 NA
ANN 89±2 94±1 94±1

30-minute MCAO
Probabilistic 87±3 92±3 NA
ANN 86±3 89±3 88±3

ADC, apparent diffusion coefficient; ANN, artificial neural network; AUC, area
under the curve; CBF, cerebral blood flow; 3D, three-dimensional; Spatial,
spatial information; MCAO, middle cerebral artery occlusion; NA, not analyzed.
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In this study using ANN prediction algorithms, the
areas under the ROC were 86%±3%, 89%±2%, and
93%±1% using ADC + CBF for the 30-, and 60-
minute, and permanent MCAO, respectively. We
further reported that adding neighboring pixel
information and spatial information markedly im-
proved performance measures over ADC and CBF
alone for the 60- and 30-minute MCAO group
(88%±3% and 94%±1%, respectively), but only
slightly for the permanent MCAO group (94%±2%).
These differences were expected because permanent
MCAO was less variable and could be sufficiently
and accurately accounted for with ADC and CBF.
Moreover, to determine the hypothetical effects
of reperfusion on prediction, predictions for the
30- and 60-minute MCAO groups were also done by
using the permanent MCAO basis set. Areas under
the curve for the 30- and 60-minute MCAO predic-
tions using the permanent MCAO basis set were
smaller than those for the permanent MCAO predic-
tion, suggesting that tissue was likely more amenable
to therapy.

In short, these quantitative prediction models
(GLM; Wu et al, 2007), probabilistic model (Shen
et al, 2005b; Shen and Duong, 2008), and ANN (this
study)) based on acute ADC and CBF data were
accurate and yielded comparable AUCs on animal
stroke models. Differences in animal stroke models
(embolic versus suture), anesthetics (halothane ver-
sus isoflurane), and inclusion of slightly different
types of MRI data (dynamic susceptibility contrast
versus arterial spin labeling of CBF) prevented
quantitative comparison. Accounting for infarction
incidence improved the prediction accuracy. These
predictive algorithms have the potential to serve as
promising metrics for diagnosis, prognosis, and
therapeutic evaluation of acute stroke.

Future Perspective

Prediction of tissue fate was reasonably accurate
despite the small sample sizes in this study. Human
stroke is more heterogeneous and so prediction is
likely to be less accurate. The major challenge for
predictive modeling in stroke is categorization of the
type of stroke (i.e., permanent and transient ische-
mia) a priori. In a clinical setting, establishing proper
training basis sets and selecting the proper algo-
rithms to apply is expected to be challenging because
human stroke is more heterogeneous and the stroke
onset time is not well defined. Future studies will
attempt to use ‘model selection’ to determine which
basis set should be applied to a specific stroke
subject. Prediction of human stroke requires seg-
mentation of gray and white matters (white matter
was segmented out in this study and was ignored
because of its small volume; Shen et al, 2005b)
because they have different susceptibilities to infarc-
tion. Incorporation of additional information such as
functional MRI (Dijkhuizen et al, 2003; Shen et al,
2005a), vascular permeability (Dijkhuizen et al,

2002), oxygen consumption, oxygen extraction frac-
tion (An and Lin, 2000), metabolic profile, and/or
relaxation time measurements in stroke is expected
to improve the prediction accuracy. These para-
meters can be readily incorporated in this ANN
approach.

The ANN prediction model may also be applied to
other imaging data such as those obtained from
transient ischemic attack. Many patients with tran-
sient ischemic attack often return to the emergency
room with large stroke within 48 hours (Rothwell
and Warlow, 2005). Translating the success of basic
therapeutic research into proven interventions in
humans has been challenging. Objective and accu-
rate prediction models of tissue fate may provide a
framework in clinical decision making and may help
drug trials by accelerating the identification of the
promising potential therapies. Finally, this predic-
tive approach could individualize the treatment
window for stroke patients and extend current
treatment window options.

Conclusions

This study establishes a flexible ANN predictive
algorithm model and incorporates neighboring pixel
and infarction incidence information to improve the
prediction accuracy of ischemic tissue fate. The ANN
prediction model has potential clinical applications
towards providing quantitative and objective frame-
works to aid clinical decision making in the treat-
ment of acute stroke, testing therapeutic treatments,
and tailoring individual treatment.
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