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Abstract
RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing
technologies. Studies using this method have already altered our view of the extent and complexity
of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of
transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the
challenges associated with its application, and the advances made so far in characterizing several
eukaryote transcriptomes.

The transcriptome is the complete set of transcripts in a cell, and their quantity, for a specific
developmental stage or physiological condition. Understanding the transcriptome is essential
for interpreting the functional elements of the genome and revealing the molecular constituents
of cells and tissues, and also for understanding development and disease. The key aims of
transcriptomics are: to catalogue all species of transcript, including mRNAs, non-coding RNAs
and small RNAs; to determine the transcriptional structure of genes, in terms of their start sites,
5′ and 3′ ends, splicing patterns and other post-transcriptional modifications; and to quantify
the changing expression levels of each transcript during development and under different
conditions.

Various technologies have been developed to deduce and quantify the transcriptome, including
hybridization-or sequence-based approaches. Hybridization-based approaches typically
involve incubating fluorescently labelled cDNA with custom-made microarrays or commercial
high-density oligo microarrays. Specialized microarrays have also been designed; for example,
arrays with probes spanning exon junctions can be used to detect and quantify distinct spliced
isoforms1. Genomic tiling microarrays that represent the genome at high density have been
constructed and allow the mapping of transcribed regions to a very high resolution, from several
base pairs to ~100 bp2–5. Hybridization-based approaches are high throughput and relatively
inexpensive, except for high-resolution tiling arrays that interrogate large genomes. However,
these methods have several limitations, which include: reliance upon existing knowledge about
genome sequence; high background levels owing to cross-hybridization6,7; and a limited
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dynamic range of detection owing to both background and saturation of signals. Moreover,
comparing expression levels across different experiments is often difficult and can require
complicated normalization methods.

In contrast to microarray methods, sequence-based approaches directly determine the cDNA
sequence. Initially, Sanger sequencing of cDNA or EST libraries8,9 was used, but this approach
is relatively low throughput, expensive and generally not quantitative. Tag-based methods were
developed to overcome these limitations, including serial analysis of gene expression (SAGE)
10,11, cap analysis of gene expression (CAGE)12–14 and massively parallel signature
sequencing (MPSS)15–17. These tag-based sequencing approaches are high throughput and
can provide precise, ‘digital’ gene expression levels. However, most are based on expensive
Sanger sequencing technology, and a significant portion of the short tags cannot be uniquely
mapped to the reference genome. Moreover, only a portion of the transcript is analysed and
isoforms are generally indistinguishable from each other. These disadvantages limit the use of
traditional sequencing technology in annotating the structure of transcriptomes.

Recently, the development of novel high-throughput DNA sequencing methods has provided
a new method for both mapping and quantifying transcriptomes. This method, termed RNA-
Seq (RNA sequencing), has clear advantages over existing approaches and is expected to
revolutionize the manner in which eukaryotic transcriptomes are analysed. It has already been
applied to Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana,
mouse and human cells18–24. Here, we explain how RNA-Seq works, discuss its challenges
and provide an overview of studies that have used this approach, which have already begun to
change our view of eukaryotic transcriptomes.

RNA-Seq technology and benefits
RNA-Seq uses recently developed deep-sequencing technologies. In general, a population of
RNA (total or fractionated, such as poly(A)+) is converted to a library of cDNA fragments
with adaptors attached to one or both ends (FIG. 1). Each molecule, with or without
amplification, is then sequenced in a high-throughput manner to obtain short sequences from
one end (single-end sequencing) or both ends (pair-end sequencing).The reads are typically
30–400 bp, depending on the DNA-sequencing technology used. In principle, any high-
throughput sequencing technology25 can be used for RNA-Seq, and the Illumina IG18–21,
23,24, Applied Biosystems SOLiD22 and Roche 454 Life Science26–28 systems have already
been applied for this purpose. The Helicos Biosciences tSMS system has not yet been used for
published RNA-Seq studies, but is also appropriate and has the added advantage of avoiding
amplification of target cDNA. Following sequencing, the resulting reads are either aligned to
a reference genome or reference transcripts, or assembled de novo without the genomic
sequence to produce a genome-scale transcription map that consists of both the transcriptional
structure and/or level of expression for each gene.

Although RNA-Seq is still a technology under active development, it offers several key
advantages over existing technologies (Table 1). First, unlike hybridization-based approaches,
RNA-Seq is not limited to detecting transcripts that correspond to existing genomic sequence.
For example, 454-based RNA-Seq has been used to sequence the transcriptome of the Glanville
fritillary butterfly27. This makes RNA-Seq particularly attractive for non-model organisms
with genomic sequences that are yet to be determined. RNA-Seq can reveal the precise location
of transcription boundaries, to a single-base resolution. Furthermore, 30-bp short reads from
RNA-Seq give information about how two exons are connected, whereas longer reads or pair-
end short reads should reveal connectivity between multiple exons. These factors make RNA-
Seq useful for studying complex transcriptomes. In addition, RNA-Seq can also reveal
sequence variations (for example, SNPs) in the transcribed regions22,24.
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A second advantage of RNA-Seq relative to DNA microarrays is that RNA-Seq has very low,
if any, background signal because DNA sequences can been unambiguously mapped to unique
regions of the genome. RNA-Seq does not have an upper limit for quantification, which
correlates with the number of sequences obtained. Consequently, it has a large dynamic range
of expression levels over which transcripts can be detected: a greater than 9,000-fold range
was estimated in a study that analysed 16 million mapped reads in Saccharomyces
cerevisiae18, and a range spanning five orders of magnitude was estimated for 40 million
mouse sequence reads20. By contrast, DNA microarrays lack sensitivity for genes expressed
either at low or very high levels and therefore have a much smaller dynamic range (one-
hundredfold to a few-hundredfold) (FIG. 2). RNA-Seq has also been shown to be highly
accurate for quantifying expression levels, as determined using quantitative PCR (qPCR)18

and spike-in RNA controls of known concentration20. The results of RNA-Seq also show high
levels of reproducibility, for both technical and biological replicates18,22. Finally, because
there are no cloning steps, and with the Helicos technology there is no amplification step, RNA-
Seq requires less RNA sample.

Taking all of these advantages into account, RNA-Seq is the first sequencing-based method
that allows the entire transcriptome to be surveyed in a very high-throughput and quantitative
manner. This method offers both single-base resolution for annotation and ‘digital’ gene
expression levels at the genome scale, often at a much lower cost than either tiling arrays or
large-scale Sanger EST sequencing.

Challenges for RNA-Seq
Library construction

The ideal method for transcriptomics should be able to directly identify and quantify all RNAs,
small or large. Although there are only a few steps in RNA-Seq (FIG. 1), it does involve several
manipulation stages during the production of cDNA libraries, which can complicate its use in
profiling all types of transcript.

Unlike small RNAs (microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), short
interfering RNAs (siRNAs) and many others), which can be directly sequenced after adaptor
ligation, larger RNA molecules must be fragmented into smaller pieces (200–500 bp) to be
compatible with most deep-sequencing technologies. Common fragmentation methods include
RNA fragmentation (RNA hydrolysis or nebulization) and cDNA fragmentation (DNase I
treatment or sonication). Each of these methods creates a different bias in the outcome. For
example, RNA fragmentation has little bias over the transcript body20, but is depleted for
transcript ends compared with other methods (FIG. 3). Conversely, cDNA fragmentation is
usually strongly biased towards the identification of sequences from the 3′ ends of transcripts,
and thereby provides valuable information about the precise identity of these ends18 (FIG. 4).

Some manipulations during library construction also complicate the analysis of RNA-Seq
results. For example, many shorts reads that are identical to each other can be obtained from
cDNA libraries that have been amplified. These could be a genuine reflection of abundant RNA
species, or they could be PCR artefacts. One way to discriminate between these possibilities
is to determine whether the same sequences are observed in different biological replicates.

Another key consideration concerning library construction is whether or not to prepare strand-
specific libraries, as has been done in two studies21,22. These libraries have the advantage of
yielding information about the orientation of transcripts, which is valuable for transcriptome
annotation, especially for regions with overlapping transcription from opposite directions2,
19,29; however, strand-specific libraries are currently laborious to produce because they require
many steps22 or direct RNA–RNA ligation21, which is inefficient. Moreover, it is essential to
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ensure that the antisense transcripts are not artefacts of reverse transcription30. Because of these
complications, most studies thus far have analysed cDNAs without strand information.

Bioinformatic challenges
Like other high-throughput sequencing technologies, RNA-Seq faces several informatics
challenges, including the development of efficient methods to store, retrieve and process large
amounts of data, which must be overcome to reduce errors in image analysis and base-calling
and remove low-quality reads.

Once high-quality reads have been obtained, the first task of data analysis is to map the short
reads from RNA-Seq to the reference genome, or to assemble them into contigs before aligning
them to the genomic sequence to reveal transcription structure. There are several programs for
mapping reads to the genome, including ELAND, SOAP31, MAQ32 and RMAP33

(information about these can be found at the Illumina forum and at SEQanswers). However,
short transcriptomic reads also contain reads that span exon junctions or that contain poly(A)
ends — these cannot be analysed in the same way. For genomes in which splicing is rare (for
example, S. cerevisiae) special attention only needs to be given to poly(A) tails and to a small
number of exon–exon junctions. Poly(A) tails can be identified simply by the presence of
multiple As or Ts at the end of some reads. Exon–exon junctions can be identified by the
presence of a specific sequence context (the GT–AG dinucleotides that flank splice sites) and
confirmed by the low expression of intronic sequences, which are removed during splicing.
Transcriptome maps have been generated in this manner for S. cerevisiae18. For complex
transcriptomes it is more difficult to map reads that span splice junctions, owing to the presence
of extensive alternative splicing and trans-splicing. One partial solution is to compile a junction
library that contains all the known and predicted junction sequences and map reads to this
library19,20. A challenge for the future is to develop computationally simple methods to identify
novel splicing events that take place between two distant sequences or between exons from
two different genes.

For large transcriptomes, alignment is also complicated by the fact that a significant portion
of sequence reads match multiple locations in the genome. One solution is to assign these multi-
matched reads by proportionally assigning them based on the number of reads mapped to their
neighbouring unique sequences20,22. This method has been successful for low-copy repetitive
sequences20. Short reads that have high copy numbers (>100) and long stretches of repetitive
regions present a greater challenge. Obtaining longer sequence reads, for example using 454
technology, should help alleviate the multi-matching problem. Alternatively, a paired-end
sequencing strategy, in which short sequences are determined from both ends of a DNA
fragment25,34,35, extends the mapped fragment length to 200–500 bp and is expected to be
useful in the future. Sequencing errors and polymorphisms can present mapping problems for
all genomes, not just for repetitive DNA. Generally, single base differences are not problematic,
because most mapping algorithms accommodate one or two base differences. However,
resolving larger differences will require better reference genome annotation for polymorphisms
and deeper sequencing coverage.

Coverage versus cost
Another important issue is sequence coverage, or the percentage of transcripts surveyed, which
has implications for cost. Greater coverage requires more sequencing depth. To detect a rare
transcript or variant, considerable depth is needed. In simple transcriptomes, such as yeast (both
S. pombe and S. cerevisiae) for which there is no evidence of alternative splicing, 30 million
35-nucleotide reads from poly(A) mRNA libraries are sufficient to observe transcription from
most (>90%) genes for cells grown under a single condition (that is, in nutrient-rich medium)
18. This depth is probably more than sufficient for most purposes, as the number of expressed
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genes detected by RNA-Seq reaches 80% coverage at 4 million uniquely mapped reads, after
which doubling the depth merely increases the coverage by 10% (FIG. 5). The remaining genes
are presumably either not expressed under this condition (for example, sporulation genes18)
or do not have poly(A) tails. Analyzing many different conditions can further increase the
coverage; in S. pombe 122 million reads from six different growth conditions detected
transcription from >99% of annotated genes19.

In general, the larger the genome, the more complex the transcriptome, the more sequencing
depth is required for adequate coverage. Unlike genome-sequencing coverage, it is less
straightforward to calculate the coverage of the transcriptome; this is because the true number
and level of different transcript isoforms is not usually known and because transcription activity
varies greatly across the genome. One study used the number of unique transcription start sites
as a measure of coverage in mouse embryonic cells, and demonstrated that at 80 million reads,
the number of start sites reached a plateau22 (FIG. 5b). However, this approach does not address
transcriptome complexity in alternative splicing and transcription termination sites;
presumably further sequencing can reveal additional variants.

New transcriptomic insights
Despite the challenges described above, the advantages of RNA-Seq have enabled us to
generate an unprecedented global view of the transcriptome and its organization for a number
of species and cell types. Before the advent of RNA-Seq, it was known that a much greater
than expected fraction of the yeast, Drosophila melanogaster and human genomes are
transcribed2,4,36, and for yeast and humans a number of distinct isoforms have been found for
many genes2,4. However, the starts and ends of most transcripts and exons had not been
precisely resolved and the extent of spliced heterogeneity remained poorly understood. RNA-
Seq, with its high resolution and sensitivity has revealed many novel transcribed regions and
splicing isoforms of known genes, and has mapped 5′ and 3′ boundaries for many genes.

Mapping gene and exon boundaries
The single-base resolution of RNA-Seq has the potential to revise many aspects of the existing
gene annotation, including gene boundaries and introns for known genes as well as the
identification of novel transcribed regions. 5′ and 3′ boundaries can be mapped to within 10–
50 bases by a precipitous drop in signal. 3′ boundaries can be precisely mapped by searching
for poly(A) tags, and introns can be mapped by searching for tags that span GT–AG splicing
consensus sites. Using these methods the 5′ and 3′ boundaries of 80% and 85% of all annotated
genes, respectively, were mapped in S. cerevisiae18. Similarly, in S. pombe many boundaries
were defined by RNA-Seq data in combination with tiling array data19.

These two studies led to the discovery of many 5′ and 3′ UTRs that had not been analysed
previously. In S. cerevisiae, extensive 3′-end heterogeneity was discovered at two levels: first,
local heterogeneity exists in which a cluster of sites are involved, typically within a 10 bp
window; second, there are distinct regions of poly(A) addition for 540 genes (FIG. 4). It is
plausible that these different 3′ ends confer distinct properties to the different mRNA isoforms,
such as mRNA localization or degradation signals, which in turn might be responsible for
unique biological functions18,19. In addition to 3′ heterogeneity, the list of upstream ORFs
within the 5′ UTRs of mRNAs (uORFs) was also greatly expanded from 17 to 340 (6% of yeast
genes)18; uORFs regulate mRNA translation37 or stability38, so these sequences might make
a previously underappreciated contribution to the regulatory sophistication of eukaryotic
genomes. Interestingly, many mRNAs with uORFs are transcription factors, suggesting that
these regulators are themselves heavily regulated.
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The mapping of transcript boundaries revealed several novel features of eukaryotic gene
organization. Many yeast genes were found to overlap at their 3′ ends18. Using relaxed criteria
similar to those employed in a recent study18 we found that 808 pairs, approximately 25% of
all yeast ORFs, overlap at their 3′ ends18. Likewise, antisense expression is enriched in the 3′
exons of mouse transcripts22. These features might confer interesting regulatory properties on
the affected genes. For multicellular organisms, antisense transcription could modulate gene
expression through the production of siRNAs or through dsRNA editing39,40. For yeast, which
seems to lack siRNA and dsRNA-editing functions, transcription from one gene might interfere
with that from an overlapping gene, or coordinate gene expression through other mechanisms.

Extensive transcript complexity
RNA-Seq can be used to quantitatively examine splicing diversity by searching for reads that
span known splice junctions as well as potential new ones. In humans, 31,618 known splicing
events were confirmed (11% of all known splicing events) and 379 novel splicing events were
discovered24. Another study of human cells found 94,241 junctions, among which 4,096 were
novel, and further demonstrated that the prevalent form of alternative splicing is exon
skipping41. In mice, extensive alternative splicing was observed for 3,462 genes20. In addition,
42 splicing events that join exons from multiple mouse genes were detected22.

Novel transcription
Previous studies using transposon tagging and tiling microarrays have suggested that in the
genomes of yeast, D. melanogaster and humans, there are many novel transcribed regions
represented in poly(A)+ RNA2,36,42,43. However, the accuracy of the tiling array results is
uncertain owing to concerns about cross-hybridization (see below). RNA-Seq, which does not
suffer from problems with background noise, has confirmed that at least 75% and perhaps
greater than 90% of the S. cerevisiae and S. pombe genomes are expressed18,19. In addition,
results from RNA-Seq suggest the existence of a large number of novel transcribed regions in
every genome surveyed, including the A. thaliana21, mouse20,22, human24, S. cerevisiae18 and
S. pombe19 genomes. 487 and 453 novel transcripts have been discovered in S. cerevisiae and
S. pombe, respectively18,19; for S. cerevisiae half of these were not identified using
microarrays. Many of these novel transcribed regions in yeast do not seem to encode any
protein, and their functions remain to be determined. The current sequencing depth is not
sufficient to define the boundaries of novel transcript units in mammals; however, 30–40% of
reads map to unannotated regions20,22,24. These novel transcribed regions, combined with
many undiscovered novel splicing variants, suggest that there is considerably more transcript
complexity than previously appreciated.

Defining transcription level
As RNA-Seq is quantitative, it can be used to determine RNA expression levels more accurately
than microarrays. In principle, it is possible to determine the absolute quantity of every
molecule in a cell population, and directly compare results between experiments. Several
methods have been used for quantification. For RNA fragmentation followed by cDNA
synthesis, which gives more uniform coverage of each exon, gene expression levels can be
deduced from the total number of reads that fall into the exons of a gene, normalized by the
length of exons that can be uniquely mapped24; for 3′-biased methods, read counts from a
window near the 3′ end are used18. Gene expression levels determined by these methods closely
correlate with qPCR and RNA spike-in controls.

One particularly powerful advantage of RNA-Seq is that it can capture transcriptome dynamics
across different tissues or conditions without sophisticated normalization of data sets19,20,22.
RNA-Seq has been used to accurately monitor gene expression during yeast vegetative

Wang et al. Page 6

Nat Rev Genet. Author manuscript; available in PMC 2010 October 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



growth18, yeast meiosis19 and mouse embryonic stem-cell differentiation22, to track gene
expression changes during development, and to provide a ‘digital measurement’ of gene
expression difference between different tissues20. Because of these advantages, RNA-Seq will
undoubtedly be valuable for understanding transcriptomic dynamics during development and
normal physiological changes, and in the analysis of biomedical samples, where it will allow
robust comparison between diseased and normal tissues, as well as the subclassification of
disease states.

Future directions
Although RNA-Seq is still in the early stages of use, it has clear advantages over previously
developed transcriptomic methods. The next big challenge for RNA-Seq is to target more
complex transcriptomes to identify and track the expression changes of rare RNA isoforms
from all genes. Technologies that will advance achievement of this goal are pair-end
sequencing, strand-specific sequencing and the use of longer reads to increase coverage and
depth. As the cost of sequencing continues to fall, RNA-Seq is expected to replace microarrays
for many applications that involve determining the structure and dynamics of the transcriptome.
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Glossary

Cap analysis of
gene expression
(CAGE)

Similar to SAGE, except that 5′-end information of the transcript is
analysed instead of 3′-end information.

Contigs A group of sequences representing overlapping regions from a genome
or transcriptome.

dsRNA editing Site-specific modification of a pre-mRNA by dsRNA-specific
enzymes that leads to the production of variant mRNA from the same
gene.

Genomic tiling
microarray

A DNA microarray that uses a set of overlapping oligonucleotide
probes that represent a subset of or the whole genome at very high
resolution.

Massively parallel
signature
sequencing
(MPSS)

A gene expression quantification method that determines 17–20-bp
‘signatures’ from the ends of a cDNA molecule using multiple cycles
of enzymatic cleavage and ligation.

MicroRNA
(miRNA)

Small RNA molecules that are processed from small hairpin RNA
(shRNA) precursors that are produced from miRNA genes. miRNAs
are 21–23 nucleotides in length and through the RNA-induced
silencing complex they target and silence mRNAs containing
imperfectly complementary sequence.

Piwi-interacting
RNAs (piRNA)

Small RNA species that are processed from single-stranded precursor
RNAs. They are 25–35 nucleotides in length and form complexes with
the piwi protein. piRNAs are probably involved in transposon silencing
and stem-cell function.

Wang et al. Page 7

Nat Rev Genet. Author manuscript; available in PMC 2010 October 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Quantitative PCR
(qPCR)

An application of PCR to determine the quantity of DNA or RNA in
a sample. The measurements are often made in real time and the
method is also called real-time PCR.

Sequencing depth The total number of all the sequences reads or base pairs represented
in a single sequencing experiment or series of experiments.

Serial analysis of
gene expression
(SAGE)

A method that uses short ~14–20-bp sequence tags from the 3′ ends of
transcripts to measure gene expression levels.

Short interfering
RNA (siRNA)

RNA molecules that are 21–23 nucleotides long and that are processed
from long double-stranded RNAs; they are functional components of
the RNAi-induced silencing complex. siRNAs typically target and
silence mRNAs by binding perfectly complementary sequences in the
mRNA and causing their degradation and/or translation inhibition.

Spike-in RNA A few species of RNA with known sequence and quantity that are
added as internal controls in RNA-Seq experiments.
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Figure 1. A typical RNA-Seq experiment
Briefly, long RNAs are first converted into a library of cDNA fragments through either RNA
fragmentation or DNA fragmentation (see main text). Sequencing adaptors (blue) are
subsequently added to each cDNA fragment and a short sequence is obtained from each cDNA
using high-throughput sequencing technology. The resulting sequence reads are aligned with
the reference genome or transcriptome, and classified as three types: exonic reads, junction
reads and poly(A) end-reads. These three types are used to generate a base-resolution
expression profile for each gene, as illustrated at the bottom; a yeast ORF with one intron is
shown.
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Figure 2. Quantifying expression levels: RNA-Seq and microarray compared
Expression levels are shown, as measured by RNA-Seq and tiling arrays, for Saccharomyces
cerevisiae cells grown in nutrient-rich media. The two methods agree fairly well for genes with
medium levels of expression (middle), but correlation is very low for genes with either low or
high expression levels. The tiling array data used in this figure is taken from REF. 2, and the
RNA-Seq data is taken from REF. 18.
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Figure 3. DNA library preparation: RNA fragmentation and DNA fragmentation compared
a | Fragmentation of oligo-dT primed cDNA (blue line) is more biased towards the 3′ end of
the transcript. RNA fragmentation (red line) provides more even coverage along the gene body,
but is relatively depleted for both the 5′ and 3′ ends. Note that the ratio between the maximum
and minimum expression level (or the dynamic range) for microarrays is 44, for RNA-Seq it
is 9,560. The tag count is the average sequencing coverage for 5,000 yeast ORFs18. b | A
specific yeast gene, SES1 (seryl-tRNA synthetase), is shown.
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Figure 4. Poly(A) tags from RNA-Seq
A region containing two overlapping transcripts (ACT1, from the actin gene, and YFL040W,
an uncharacterized ORF) from the Saccharomyces cerevisiae genome is shown. Arrows point
to transcription direction. The poly(A) tags from RNA-Seq experiments are shown below these
transcripts, with arrows indicating transcription direction. The precise location of each locus
identified by poly(A) tags reveals the heterogeneity in poly(A) sites, for example, ACT1 has
two big clusters, both with a few bases of local heterogeneity. The transcription direction
revealed by poly(A) tags also helps to resolve 3′-end overlapping transcribed regions18.
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Figure 5. Coverage versus depth
a | 80% of yeast genes were detected at 4 million uniquely mapped RNA-Seq reads, and
coverage reaches a plateau afterwards despite the increasing sequencing depth. Expressed
genes are defined as having at least four independent reads from a 50-bp window at the 3′ end.
Data is taken from REF. 18. b | The number of unique start sites detected starts to reach a plateau
when the depth of sequencing reaches 80 million in two mouse transcriptomes. ES, embryonic
stem cells; EB, embryonic body. Figure is modified, with permission, from REF. 22 © (2008)
Macmillan Publishers Ltd. All rights reserved.
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Table 1

Advantages of RNA-Seq compared with other transcriptomics methods

Technology Tiling microarray cDNA or EST sequencing RNA-seq

Technology specifications

Principle Hybridization Sanger sequencing High-throughput sequencing

Resolution From several to 100 bp Single base Single base

Throughput High Low High

Reliance on genomic sequence Yes No In some cases

Background noise High Low Low

Application

Simultaneously map transcribed regions and gene
expression

Yes Limited for gene expression Yes

Dynamic range to quantify gene expression level Up to a few-hundredfold Not practical >8,000-fold

Ability to distinguish different isoforms Limited Yes Yes

Ability to distinguish allelic expression Limited Yes Yes

Practical issues

Required amount of RNA High High Low

cost for mapping transcriptomes of large genomes High High Relatively low
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