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Abstract

Propensity-score matching is frequently used in the medical literature to reduce or elimi-
nate the effect of treatment selection bias when estimating the effect of treatments or exposures
on outcomes using observational data. In propensity-score matching, pairs of treated and un-
treated subjects with similar propensity scores are formed. Recent systematic reviews of the use
of propensity-score matching found that the large majority of researchers ignore the matched na-
ture of the propensity-score matched sample when estimating the statistical significance of the
treatment effect. We conducted a series of Monte Carlo simulations to examine the impact of ig-
noring the matched nature of the propensity-score matched sample on Type I error rates, coverage
of confidence intervals, and variance estimation of the treatment effect. We examined estimat-
ing differences in means, relative risks, odds ratios, rate ratios from Poisson models, and hazard
ratios from Cox regression models. We demonstrated that accounting for the matched nature of
the propensity-score matched sample tended to result in type I error rates that were closer to the
advertised level compared to when matching was not incorporated into the analyses. Similarly,
accounting for the matched nature of the sample tended to result in confidence intervals with cov-
erage rates that were closer to the nominal level, compared to when matching was not taken into
account. Finally, accounting for the matched nature of the sample resulted in estimates of standard
error that more closely reflected the sampling variability of the treatment effect compared to when
matching was not taken into account.
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1. Introduction 
 

The propensity score is defined as a subject’s probability of exposure to a specific 
treatment conditional on observed baseline covariates (Rosenbaum and Rubin 
1983; Rosenbaum and Rubin 1984; Austin et al. 2005).  Rosenbaum and Rubin 
(1983) demonstrated that conditional on the propensity score, the distribution of 
measured independent baseline covariates is independent of treatment assignment.  
Therefore, treated and untreated subjects with the same propensity score will have 
a similar distribution of baseline covariates.  Rosenbaum and Rubin (1983) further 
demonstrated that conditioning on the propensity score allows for unbiased 
estimation of linear treatment effects.  Similar results have been shown for 
estimating rate ratios (Austin et al. 2007b) and relative risks when subject-specific 
relative risks are uniform (Austin 2008a).   Rosenbaum and Rubin’s initial article 
on the propensity score described three methods  to estimate effects of treatments 
or exposures: stratification (subclassification), matching, and covariate adjustment 
(1983).  In propensity-score matching, matched sets of treated and untreated 
subjects with similar propensity scores are formed.  The most common 
implementation of propensity-score matching is pair matching, in which pairs of 
treated and untreated subjects are formed.  In subsequent articles, Rosenbaum and 
Rubin examined methods that incorporate the propensity score when matching 
treated and untreated subjects (1985a) and the bias that can arise from incomplete 
or inexact matching (1985b). 

Propensity-score matching is frequently used in the medical literature to 
reduce or eliminate the effect of treatment-selection bias, when estimating the 
effects of treatments and exposures on outcomes using non-randomized data.  A 
recent systematic review of propensity-score matching in the medical literature 
between 1996 and 2003 found that the majority of studies did not account for the 
matched nature of the propensity-score matched sample when estimating the 
significance of the treatment effect (Austin 2008b).  Similar findings were 
observed in a comparable systematic review of propensity score matching in both 
the cardiovascular surgery literature and the general cardiology literature of a 
more recent era (Austin 2007a; Austin 2008c).  However, matched treated and 
untreated subjects have similar propensity scores, and thus have baseline 
covariates that come from the same multivariate distribution.  Consequently, 
matched subjects are, on average, more similar in baseline covariates than are two 
randomly selected treated and untreated subjects; therefore, by construction, the 
propensity-score matched sample does not consist of independent observations.  
Furthermore, in the presence of confounding, baseline covariates are associated 
with both treatment selection and outcomes; therefore, matched treated and 
untreated subjects are more likely to have similar outcomes than are randomly 
selected treated and untreated subjects. 
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The objective of the current study was to examine the impact on Type I 
error rates, coverage of confidence intervals, and variance estimation when the 
matched nature of the propensity-score matched sample was not taken into 
account.  We examined estimation of difference in means, odds ratios, hazard 
ratios, rate ratios, and relative risks.   Monte Carlo simulations were used to 
determine the impact on statistical inference.  In Section 2, we examine the 
impact on Type I error rates when the matched nature of the sample was not taken 
into account.  In Section 3, we examine coverage of confidence intervals and 
variance estimation in the presence of a non-null treatment effect when the 
matched nature of the sample was not taken into account.  In Section 4, we 
consider an empirical case study, in which we illustrate that differing inferences 
can be obtained depending on whether one accounts for the matched nature of the 
sample.  In Section 5, we summarize our findings. 
 
2. Type I error rates 
 
2.1. Monte Carlo simulations - Methods 
 
In this section, we describe the Monte Carlo simulations used to examine the 
impact on type I error rates when the matched nature of the propensity-score 
matched sample was not accounted for in the statistical analyses.  We conducted 
separate Monte Carlo simulations for examining inferences on differences in 
means, odds ratios, hazard ratios, rate ratios, and relative risks.  These are 
described separately in the following sub-sections. 
 
2.1.1. Differences in means 
 
We randomly generated 9 baseline covariates for each of 10,000 subjects.  We 
used a design similar to those used in prior studies (Austin et al. 2007b; Austin 
2008a; Austin 2007b; Austin et al. 2007a).  We assumed that there were 9 
covariates: 6 related to treatment selection and 6 related to outcome, as described 
in the following grid: 

 
 Strongly 

associated with 
treatment 
selection 

Moderately 
associated with 
treatment 
selection 

Independent of 
treatment 
selection 

Strongly 
associated with 
outcome 

x1 x2 x3 
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Moderately 
associated with 
outcome 

x4 x5 x6 

Independent of 
outcome 

x7 x8 x9 

 
Each covariate was randomly generated from independent standard normal 
distributions.  We assumed the following model: 

 
logit iiiiiiitreat xxxxxxp ,88,77,55,44,22,110, )( βββββββ ++++++=  (1) 

 
where the logit of the probability of treatment selection for the ith subjects, itreatp , , 
is linearly related to the six covariates associated with treatment selection.  In the 
data-generating process, we assumed )2log(741 === βββ  and 

)5.1log(852 === βββ .  We set 0β =0, so that approximately 50% of subjects 
would be exposed to the treatment.  We then generated a treatment status for each 
subject (Ti) from a Bernoulli distribution with subject-specific parameter itreatp , .  
For each subject, we then generated an outcome from the following model: 
 

iiiiiiiiTi xxxxxxTy εαααααααα ++++++++= ,66,55,44,33,22,110  (2) 
 

where ).,0(~ 2σε Ni   We set 00 =α , 2321 === ααα  and 1654 === ααα .  
Since we are examining the Type I error rate, we generated data under the null 
hypothesis of no treatment effect ( Tα = 0).  Therefore, data were generated such 
that, on average, treatment exposure did not have an independent effect on the 
outcome variable.  The variance of the subject-specific error term )( 2σ  was 
chosen so that the 6 variables related to the outcome ( 61 xx − ) explained a 
specified proportion of the variation in the outcome.  We examined 5 different 
values of R2: 0.02, 0.05, 0.10, 0.25, and 0.50.  Thus, variation in the 6 covariates 
explained 2%, 5%, 10%, 25%, and 50% of the variation in the continuous 
response variable. 

Once data had been randomly generated for each of 10,000 subjects, we 
estimated the propensity score model using a logistic regression model containing 
the six variables associated with treatment selection ),,,,,( 875421 xxxxxx .  Treated 
and untreated subjects were then matched on the logit of the propensity-score 
using calipers of width 0.2 standard deviations of the logit of the propensity score 
(Austin et al. 2007a; Austin and Mamdani 2006).  The difference in mean 
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outcome between matched treated and untreated subjects was compared in two 
methods.  First, a paired t-test was used; this method accounted for the matched-
pairs design.  Second, a standard t-test was used; this method did not account for 
the matched nature of the design.  The standard t-test did not assume equal 
variances in the two treatment groups.  The statistical significance of each test 
was noted.  The treatment effect was classified as statistically different from zero 
if the p-value of the associated test was less than 0.05. 

The above process was repeated 7,300 times.  The proportion of 
simulations in which the null hypothesis of no treatment effect was rejected was 
determined across the 7,300 simulated datasets.  The use of 7,300 simulated 
datasets allowed us to detect a type I error of greater than 0.055 or less than 0.045 
as significantly different than 0.05, using a standard test based on the normal 
approximation to the binomial distribution (Rosner 1995).  The above process was 
repeated for R2 of 0.02, 0.05, 0.10, 0.25, and 0.50. 

 
2.1.2.  Odds ratios 
 
A prior systematic review found that propensity score methods were most 
frequently used in the medical literature to estimate odds ratios and hazard ratios 
(Sturmer et al. 2006).  We modified the data-generating process described in 2.1.1 
to generate dichotomous outcomes.  We modified formula (2) as follows: 
 

logit iiiiiiiTioutcome xxxxxxTp ,66,55,44,33,22,110, )( αααααααα +++++++=  (3) 
 

where ioutcomep ,  is the probability of the outcome for the ith subject.  We then 
generated dichotomous outcomes for each subject from a Bernoulli distribution 
with subject-specific parameter ioutcomep , .  In the data-generating process, we set 

0986.10 −=α , )2log(321 === ααα  and )5.1log(654 === ααα .  We randomly 
generated data from 10,000 subjects.  Propensity-score matching was 
implemented as described in Section 2.1.1.  We then estimated the treatment 
effect in the propensity-score matched sample on the odds ratio scale.  This was 
done in two different ways.  First, we used a conventional logistic regression 
model estimated using maximum likelihood estimation.  This model regressed the 
binary outcome on a dichotomous variable indicating treatment status.  Model-
based standard errors were used to determine the statistical significance of the 
treatment effect.  Second, we used a logistic regression model estimated using 
Generalized Estimating Equation (GEE) methods (Diggle et al. 1994).  This 
model accounted for the matched-nature of the sample.  As above, 7,300 
randomly generated datasets were constructed. 
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2.1.3.  Hazard ratios 
 
We modified the data-generating process described in 2.1.1 to generate time-to-
event outcomes.  We used a data-generating process described elsewhere (Bender 
et al. 2005), and that we have used in a prior study (Austin et al. 2007b).  We 
modified formula (2) as follows: 
 

iiiiiiiT xxxxxxT ,66,55,44,33,22,11 αααααααλ ++++++=  (4) 
 

We set )2log(321 === ααα  and )5.1log(654 === ααα .  We then randomly 
generated time-to-event outcomes from the following formula: 
 

2/1

000001.0
)log(
⎟
⎠
⎞

⎜
⎝
⎛ −

λe
U     (5) 

 
where U is a random variable from a standard uniform distribution.  We designed 
the data-generating process so that there was no censoring.  Propensity-score 
matching was done as described in Section 2.1.1.  We then estimated the 
treatment effect and its statistical significance in the propensity-score matched 
sample using two different methods.  First, we fit a univariate Cox proportional 
hazards regression model (Cox and Oakes 1984), which regressed survival time 
on a dichotomous variable denoting exposure status.  This method did not take 
into account the matched nature of the propensity-score matched sample.  Model-
based standard errors were obtained.  Second, we fit a Cox proportional hazards 
model that stratified on matched pairs (Therneau and Grambsch 2000).  This 
method accounted for the matched nature of the propensity-score matched 
sample. 

 
2.1.4.  Rate ratios 
 
We modified the data-generating process described in 2.1.1 to generate count 
outcomes.  We modified formula (2) as follows: 
 

log iiiiiiiTi xxxxxxT ,66,55,44,33,22,110)( ααααααααη +++++++=  (6) 

 

where iη  is the mean outcome for the ith subject.  We then generated a count 
outcome for each subject from a Poisson distribution with subject-specific 
parameter iη .  In the data-generating process, we set 00 =α , 
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)2log(321 === ααα  and )5.1log(654 === ααα .  We randomly generated data 
for 10,000 subjects.  Propensity-score matching was done as described in Section 
2.1.1.  We then estimated the treatment effect in the propensity-score matched 
sample on the log-rate ratio scale.  This was done in two different ways.  First, we 
used a conventional Poisson regression model estimated using maximum 
likelihood estimation.  This model regressed the count outcome on a dichotomous 
variable indicating treatment status.  Model-based standard errors were used to 
determine the statistical significance of the treatment effect.  Second, we used a 
logistic regression model estimated using Generalized Estimating Equation (GEE) 
methods (Diggle et al. 1994).  This model accounted for the matched-nature of the 
sample.  As above, 7,300 randomly generated datasets were constructed. 

 
2.1.5.  Relative risks 
 
We modified the data-generating process described in 2.1.1 to generate 
dichotomous outcomes.  However, unlike in Section 2.1.2, we estimated the 
treatment effect on the relative risk scale, rather than the odds ratio scale.  In this 
section, the 9 covariates ( )91 xx −  were generated from independent Bernoulli 
distributions, each with a parameter of 0.5.  We then randomly generated an 
exposure status for each subject, as described in Section 2.1.1.  However, we set 

5.30 −=β , as this resulted in approximately 50% of the subjects being exposed to 
the treatment when the covariates were binary.  We modified formula (2) as 
follows: 
 

log iiiiiiiTioutcome xxxxxxTp ,66,55,44,33,22,110, )( αααααααα +++++++=  (7) 
 

where ioutcomep ,  is the subject-specific probability of the binary outcome.  We then 
generated a dichotomous outcome for each subject from a Bernoulli distribution 
with subject-specific parameter ioutcomep , .  In the data-generating process, we set 

5.30 −=α , )2log(321 === ααα  and )5.1log(654 === ααα .  Due to the use of 
the logarithmic link function, the linear predictor in formula (7) was constrained 
to be less than zero (so that the probability of the outcome lies between 0 and 1).  
Therefore, we could not use covariates from a distribution with support over the 
real line, as the linear predictor could have exceeded 0 for some subjects.  For this 
reason, baseline covariates were generated from Bernoulli distributions rather 
than from normal distributions.  We then randomly generated data for 10,000 
subjects.  Propensity-score matching was done as described in Section 2.1.1. 

We estimated the relative risk and its statistical significance using two 
different methods; first, in a manner that did not account for the matched nature of 
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the sample (Rosner 1995); second, we used methods appropriate for a matched-
pairs design as described by Agresti and Min (2004).   In the analyses that did not 
account for matching, assume that: a  treated subjects experienced the outcome, 
b  treated subjects did not experience the outcome, c untreated subjects 
experienced the outcome, and d untreated subjects did not experience the 
outcome.  Then, the standard error of the log-relative risk was estimated as:  

 

01

)][ln(
cn
d

an
bRRse +≅  

 
where 1n  and 0n  are the number of treated and untreated subjects, respectively (in 
this setting we have 01 nn =  by design).  95% confidence intervals were 
constructed for the log-relative risk using normal-theory methods.  In the analyses 
that accounted for the matched-pairs design assume that there were: a matched 
pairs in which both the treated and untreated subjects experienced the event, b 
matched pairs in which the treated subject did not experience the outcome event 
while the untreated subject experienced the outcome event, c matched pairs in 
which the treated subject experienced the outcome event while the untreated 
subject did not experience the outcome event, and d matched pairs in which both 
the treated and untreated subjects did not experience the outcome event.  Then 

)/()( baca ++ is the maximum likelihood estimator of the relative risk.  The 
estimated asymptotic standard error of the log-relative risk is given by 

)})(/{()( cabacb +++ .  95% confidence intervals for the log-relative risk were 
estimated using normal-theory approximations. 

 
2.2. Monte Carlo simulations - Results 
 
In this section, we summarize the findings of the Monte Carlo simulations 
conducted to examine the impact on Type I error rates when the matched nature 
of the propensity-score matched samples were not taken into account when 
estimating the variance of the treatment effect.  Results are reported in Table 1.   

In Table 1, we report the empirical type I error rate for each measure of 
effect, when both matched and unmatched analyses were performed.  Due to our 
use of 7,300 iterations of the Monte Carlo simulations, empirical type I error rates 
that exceed 0.055 or that are less than 0.045, are statistically significantly 
different than 0.05.  We also report the significance levels associated with the use 
of McNemar’s test to test the null hypothesis that the matched and unmatched 
tests had equal type I error rates. 
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When estimating the statistical significance of differences in means, both 
methods resulted in type I error rates that were not significantly different from 
0.05 when the 6 predictor variables explained 2%, 5%, and 10% of the variation 
in the response variable.  However, when the 6 predictor variables explained 25% 
of the variation in the response variable, then using an unmatched analysis 
resulted in an empirical type I error rate of 0.0421, which was significantly 
different from 0.05.  In contrast to this, the use of a matched analysis resulted in 
an empirical type I error rate of 0.0470, which was not significantly different from 
0.05.  These two type I error rates were different from each other (P < 0.0001).  
When the 6 predictor variables explained 50% of the variation in the response 
variable, then both matched and unmatched analyses resulted in type I error rates 
that were less than 0.05 (0.0430 and 0.0308).  Furthermore, these two type I error 
rates were significantly different from one another (P < 0.0001).  The use of an 
unmatched test tended to result in more conservative tests than did the use of a 
matched test.  The matched test had an empirical type I error rate that was closer 
to the advertised level. 

When estimating an odds ratio, the use of a matched test resulted in an 
empirical type I error rate of 0.0466, whereas the use of an unmatched test 
resulted in an empirical type I error rate of 0.0422.  The type I error rate for the 
matched test was not significantly different from 0.05, while that of the 
unmatched test was significantly different from 0.05.  The two type I error rates 
were significantly different from one another (P < 0.0001).  Similar results were 
obtained when estimating relative risks. 

When estimating hazard ratios, both methods resulted in overly 
conservative tests, with type I error rates that were significantly different than 
0.05.  The two type I error rates were significantly different from one another (P < 
0.0001): the matched analysis had an empirical type I error rate of 0.0403, 
whereas the unmatched analysis had an empirical type I error rate of 0.0277.  The 
type I error rate of the matched test was closer to the advertised nominal level. 

When estimating rate ratios, the matched test had an empirical type I error 
rate of 0.0514, whereas the unmatched analysis resulted in a type I error rate of 
0.4771.  The type I error rate of the matched test was not significantly different 
from 0.05, while the type I error rate of the unmatched test was significantly 
different from 0.05.  These two type I error rates were significantly different from 
another (P < 0.0001). 

 
3. Coverage of confidence intervals and variance estimation 

 
In Section 2 we examined the impact on the Type I error rate when the matched 
nature of the propensity-score matched sample was not taken into account in 
estimating the significance of the treatment effect.  Data were generated such that 
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the null hypothesis was true: the treatment had no independent effect on 
outcomes.  In the current section, we examine the coverage of confidence 
intervals and variance estimation when the null hypothesis is false: in the presence 
of a non-null treatment effect.  In this section, we restrict our attention to three 
measures of treatment effect: differences in means, rate ratios, and relative risks.  
We do not consider odds ratios and hazard ratios, since prior research has 
demonstrated that propensity score methods result in biased estimation of odds 
ratios and hazard ratios and that confidence intervals do not have desired coverage 
rates (Austin et al. 2007b; Austin 2007b).  Reasons for this are described 
elsewhere (Austin et al. 2007b; Austin 2007b). 

 
3.1. Monte Carlo simulations – Methods 
 
In this section, we describe the Monte Carlo simulations that were conducted to 
examine coverage of confidence intervals and variance estimation in propensity-
score matched samples.  These Monte Carlo simulations are variations of those 
described in Section 2.  As above, using each data-generating process, we 
randomly generated 7,300 datasets.  This will allow us to classify any confidence 
interval whose empirical coverage rate is greater than 0.955 or less than 0.945 as 
having a coverage rate that is significantly different than 0.95. 

 
3.1.1  Difference in means 
 
These Monte Carlo simulations were similar in design to those described in 
Section 2.1.1;  however, we considered two different non-null treatment effects: 

Tα = 1 and 2 (see formula (2)).  Propensity-score matching was done as in the 
simulations described in Section 2.1.1.  Within each propensity-score matched 
sample we first estimated the treatment effect as the difference in means between 
treated and untreated subjects.  Second, we estimated the standard deviation of the 
difference in means assuming two independent samples (i.e. ignoring the matched 
nature of the propensity-score matched sample).  The standard error of the 
treatment effect (the difference in means) was estimated by 0

2
01

2
1 // nsns + , 

where 2
1s  and 2

0s  denote the sample variance of the outcome in the treated and 
untreated subjects, respectively, in the propensity-score matched sample.  
Similarly, 1n  and 0n  denote the number of treated and untreated subjects, 
respectively, in the propensity-score matched sample (in this setting, we have 

01 nn =  by design).  We then estimated a 95% confidence interval using 
Satterthwaite’s Method to determine the approximate degrees of freedom for the 
t-distribution (Rosner 1995).  Third, we estimated the standard deviation of the 
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difference in means using methods that accounted for the matched nature of the 
propensity-score matched sample.  Let id  represent the observed difference in 
outcomes within the ith matched pair, while d  denotes the mean difference in 
outcomes.  Furthermore, let ds  denote the sample standard deviation of the id  in 

the propensity-score matched sample.  Then nsd /  is the standard error of the 
difference in means, where n denotes the number of matched pairs.  95% 
confidence intervals were constructed as )/,/( 975.0,1975.0,1 nstdnstd dndn −− +−  
(Rosner 1995). 

The above analyses were conducted in each of the 7,300 randomly 
generated datasets.  We then determined the empirical coverage rate of the 
estimated 95% confidence intervals.  This was estimated as the proportion of 
confidence intervals that contained the true treatment effect used in the data-
generating process.  We also computed the mean standard error of the estimated 
treatment effect across the 7,300 randomly generated datasets.  This was 
compared with the standard deviation of the estimated treatment effect across the 
7,300 randomly generated datasets. 

 
3.1.2.  Rate ratios 
 
These Monte Carlo simulations were similar in design to those described in 
Section 2.1.4;  however, we considered two different non-null treatment effects: 

Tα = log(1.5) and log(2).  The methods and analyses were similar to those 
described in 3.1.1.; however, the treatment effect was estimated using a Poisson 
generalized linear model.  For the unmatched analysis, the model was estimated 
using conventional maximum likelihood estimation.  Model-based standard errors 
were computed along with Wald 95% confidence intervals.  For the analysis that 
accounted for the matched nature of the propensity-score matched sample, the 
Poisson regression model was estimated using GEE methods.  Robust estimates of 
standard errors were obtained and were used to construct 95% confidence 
intervals. 

 
3.1.3.  Relative risks 
 
These Monte Carlo simulations were similar in design to those described in 
Section 2.1.5.;  however, we considered two different non-null treatment effects: 

Tα = log(1.5) and log(2).  treat,0β  was set to -4.1 to constrain the linear predictor to 
less than 0 for all subjects, regardless of the treatment effect and the covariate 
values.  Additionally, outcome,0α  was set to -4.  The methods and analyses were, 
with some modifications, similar to those described in 3.1.1. 
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The above analyses were conducted in each of the 7,300 randomly 
generated datasets.  We then determined the empirical coverage rate of the 
estimated 95% confidence intervals.  This was estimated as the proportion of 
confidence intervals that contained the true treatment effect used in the data-
generating process.  We also computed the mean standard error of the estimated 
log-relative risk across the 7,300 randomly generated datasets.  This was 
compared with the standard deviation of the estimated log-relative risk across the 
7,300 randomly generated datasets. 
 
3.2. Monte Carlo simulations – Results 
 
In this section, we summarize the findings of the Monte Carlo simulations 
conducted to examine the impact on coverage of confidence intervals and 
variance estimation when the matched nature of the propensity-score matched 
sample was not taken into account in estimating the variance of the treatment 
effect.  Results are reported in Tables 2 and 3. 

In Table 2, we report the empirical coverage rates of 95% confidence 
intervals for matched and unmatched analyses.  Due to our use of 7,300 iterations 
of the Monte Carlo simulations, confidence intervals whose empirical coverage 
rates either exceed 0.955 or are less than 0.945, have coverage rates were 
statistically significantly different from 0.95.  We also report the significance 
level of McNemar’s test used to test the null hypothesis that matched and 
unmatched analysis had confidence intervals with the same coverage rate.  In 
Table 3, we report the empirical standard deviation of the treatment effect across 
the 7,300 simulated datasets and the mean standard error of the estimated 
treatment effects across the 7,300 simulated datasets.  We also report the ratio of 
the mean standard error under a matched analysis to the empirical standard 
deviation of the treatment effect across the 7,300 simulated dataset, and the ratio 
of the mean standard error under an unmatched analysis to the empirical standard 
deviation of the treatment effect across the 7,300 simulated datasets. 

When estimating differences in means, when the six covariates explained 
a low to moderate degree of the variation in the outcome, both matched and 
unmatched analyses tended to result in confidence intervals with approximately 
the advertised coverage rates.  When the six covariates explained 50% of the 
variation in the outcome, then both methods resulted in confidence intervals with 
coverage rates that exceeded 0.95.  However, the use of matched analyses resulted 
in coverage rates that were closer to the advertised level than did the use of 
unmatched analyses.   Standard error estimates from both matched and unmatched 
analyses tended to over-estimate the standard deviation of the empirical 
distribution of the true treatment effect.  However, in nine of the 10 scenarios, the 
over-estimation was greater when an unmatched analysis was employed 
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compared to when a matched analysis was employed.  For instance, when the true 
treatment effect was 1, and the six covariates explained 25% of the variation in 
the outcome, then the matched analysis over-estimated the standard deviation of 
the sampling distribution of the treatment effect by 2.77% whereas the unmatched 
analysis resulted in an over-estimation of 5.17%.  Similarly, when the true 
treatment effect was 2, and the six covariates explained 25% of the variation in 
the outcome, then the matched analysis resulted in an over-estimation by 2.39%, 
whereas the unmatched analysis resulted in an over-estimation by 4.78%. 

The use of an unmatched analysis in estimating rate ratios resulted in 
confidence intervals with substantially lower than advertised coverage rates.  
When the true rate ratios were 1.5 and 2, then, an unmatched analysis produced 
confidence intervals with empirical coverage rates of 0.4884 and 0.4656, 
respectively.  In comparison, the use of matched analyses resulted in empirical 
coverage rates of 0.9575 and 0.9534, respectively.  For both true rate ratios, 
coverage rates of confidence intervals were significantly different between the 
matched and unmatched analysis (P < 0.0001).  The use of unmatched analyses 
resulted in estimates of the standard error of the treatment effect that were 64.42% 
and 67.22% lower than the empirical sampling standard deviation of the treatment 
effect.  By contrast, the use of matched analyses resulted in estimates of the 
standard error of the treatment effect that were 5.42% and 4.56% greater than the 
empirical standard deviation of the treatment effect across the 7,300 simulated 
datasets. 

The use of an unmatched analysis when estimating relative risks resulted 
in confidence intervals with higher than advertised coverage rates (0.9560 and 
0.9608 for relative risks of 1.5 and 2, respectively).  However, the use of a 
matched analysis resulted in confidence intervals with the advertised coverage 
rates (0.9495 and 0.9518, respectively).  For both true relative risks, the coverage 
rate for confidence intervals derived from the matched analysis were different 
from those for the unmatched analysis (P < 0.0001).  The use of unmatched 
analyses resulted in estimates of the standard error of the log-relative risk that 
were 3.51% and 3.17% greater than the standard deviation of the empirical 
sampling distribution of the log-relative risk, when the relative risks were 1.5 and 
2, respectively.  In contrast, the use of matched analyses resulted in estimates of 
the standard error of the log-relative risk that were 0.32% higher and 0.45% lower 
than the standard deviation of the empirical sampling distribution of the log-
relative risk. 

 
4. Case study 
 
In this section, we present a brief case study to illustrate that differing inferences 
can be obtained depending on whether or not one accounts for the matched nature 
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of the propensity-score matched sample.  We used data on 9,081 patients who 
were discharged alive with an acute myocardial infarction (AMI or heart attack) 
from 102 hospitals in Ontario, Canada, between April 1, 1999 and March 31, 
2001 and who did not die on the day of discharge.  These data are similar to those 
reported elsewhere (Austin 2007c; Austin and Tu 2006; Austin and Mamdani 
2006; Austin et al. 2006) and were collected as part of the Enhanced Feedback for 
Effective Cardiac Treatment (EFFECT) Study, an initiative focused on improving 
the quality of care for cardiovascular disease patients in Ontario (Tu et al. 2004).  
Data on patient demographics, presenting signs and symptoms, classic cardiac 
risk factors, comorbid conditions and vascular history, vital signs on admission, 
and results of laboratory tests were abstracted directly from patients’ medical 
records.  The exposure of interest was whether the patient was prescribed a statin 
lipid-lowering agent at hospital discharge.  Statins have been shown in several 
large randomized controlled trials, to reduce the risk of major coronary events 
(LaRosa et al. 1999).   

We examined physician billing claims submitted to the Ontario Health 
Insurance Plan (OHIP), which provides universal insurance coverage to all 
residents of Ontario.  We examined claims submitted by general 
practitioners/family physicians for visits during which an intermediate assessment 
was performed (fee code A007), with an associated diagnosis of osteoarthritis 
and allied disorders (coded as 715 using the International Classification of 
Disease, 9th Revision: ICD-9 coding scheme).  The outcome of this case study 
was the number of primary care physician visits with this associated diagnosis 
within 3 years of hospital discharge.  Patients in the EFFECT study were linked to 
the OHIP database using encrypted patient health card numbers. 

Overall, 3,046 (33.5%) patients received a prescription for a statin at 
discharge, while 6,035 (66.5%) did not receive a prescription at discharge.  A 
propensity score model derived in a previous study was used to predict receipt of 
a statin prescription at discharge (Austin and Mamdani, 2006).  Treated and 
untreated subjects were matched on the logit of the propensity score using calipers 
of width equal to 0.2 of the standard deviation of the logit of the propensity score.  
This resulted in the formation of 2,361 matched pairs of patients who did and did 
not receive a statin prescription at discharge. 

In the matched sample, the effect of a receipt of a statin prescription on the 
rate of primary care physician visits with an associated diagnosis of osteoarthritis 
and allied disorders was determined using Poisson regression.  The number of 
primary care physician visits with an associated diagnosis of osteoarthritis and 
allied disorders was regressed on exposure to a statin prescription at hospital 
discharge.  The logarithm of the number of days that the patient was at risk during 
the three years of follow-up was used as an offset variable.  A standard Poisson 
regression, estimated maximum likelihood estimation, was used when the 
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matched nature of the sample was not taken into account.  To account for the 
matched nature of the sample, the model was estimated using generalized 
estimating equation (GEE) methods. 

Among the 4,722 patients in the matched sample, the number of primary 
care visits with an associated diagnosis of osteoarthritis and allied disorders 
ranged from 0 to 33 during the three years of follow-up.  For patients who did not 
receive a statin prescription at hospital discharge, the rate of primary care 
physician visits for the given diagnosis was 0.105 per patient per year, while for 
the exposed patients it was 0.091 visits per patient per year.  Statin exposure at 
hospital discharge resulted in a 13.3% decrease in the rate of primary care 
physicians visits with an associated diagnosis of osteoarthritis and allied disorders 
(rate ratio: 0.867).  When the matched nature of the sample was not taken into 
account, one inferred that the treatment effect was statistically significant (P = 
0.0116).  However, when the matched nature of the sample was taken into 
account, one inferred that the treatment effect was not statistically significant (P = 
0.2112).  Thus, using a significance level of 0.05 to denote statistical significance, 
one would derive differing conclusions depending on whether one accounted for 
the matched nature of the sample. 

 
5. Discussion 

 
In this paper we have examined the impact of not accounting for the matched 
nature of a propensity-score matched sample versus accounting for the matched 
design on type I error rates, coverage rates of confidence intervals, and variance 
estimation.  We examined a wide range of measures of effect: difference in 
means, odds ratios, hazard ratios, rate ratios, and relative risks.  In an empirical 
case study, we demonstrated that differing inferences can be obtained depending 
on whether one accounts for the matched nature of the sample.   

When estimating a difference in means, we found that both matched and 
unmatched methods tended to have the appropriate type I error rate when the 
baseline covariates explained a low to moderate proportion of the variance in the 
outcome.  However, when the baseline covariates explained a larger proportion of 
the variance in the outcome, a matched test had the correct type I error rate, while 
an unmatched test was overly conservative with a type I error rate that was less 
than 0.05.  When estimating odds ratios, rate ratios, and relative risks, matched 
tests had the correct type I error rate, while unmatched tests had incorrect type I 
error rates.  Finally, when estimating hazard rates, unmatched tests had type I 
error rates that were more conservative than matched tests. 

When estimating non-null treatment effects, unmatched analyses tended to 
result in standard errors of the estimated treatment effect that overestimated the 
sampling variability of the treatment effect.  In contrast, matched analyses 
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resulted in estimates of the standard error of the treatment effect that were closer 
to the standard deviation of the sampling distribution of the treatment effect.  
Furthermore, for estimating rate ratios and relative risks, matched analyses 
resulted in confidence intervals that had coverage rates closer to the nominal level 
than did unmatched analyses. 

A systematic review of the use of propensity-score methods in the medical 
literature found that they were most frequently used to analyze the effect of 
treatments and exposures on dichotomous or time-to-event outcomes (Sturmer 
2006).  Our findings suggest that in these settings, applied researchers should 
apply statistical methods that account for the matched nature of the propensity-
score matched sample.  Accounting for the matched nature of the sample will 
result in tests with appropriate type I error rates and confidence intervals with 
coverage rates that are closer to the nominal level. 

In the medical literature, propensity-score methods are less frequently 
used to determine the effects of exposures or treatments on continuous outcomes 
(Sturmer 2006).  Our study demonstrates that there is no advantage to employing 
an unmatched analysis.  In contrast, a matched analysis resulted in estimates of 
the standard error of the treatment effect that better reflect the sampling variation 
of the treatment effect.  Furthermore, when the baseline covariates explained a 
moderate proportion of the variability in the outcome, a matched analysis resulted 
in type I error rates and coverage rates for confidence intervals that were closer to 
the advertised level. 

Two prior systematic reviews of propensity-score matching in the medical 
literature found that the large majority of published studies ignored the matched 
nature of the propensity-score matched sample when estimating the variance of 
the treatment effect (Austin 2007a 2008b).  In the current study, we found that 
ignoring the matched nature of the propensity-score matched sample can result in 
tests with incorrect type I error rates, confidence intervals that do not have the 
advertised coverage rates, and incorrect estimates of the sampling variability of 
the estimates of the treatment effect.  Applied researchers should employ matched 
analyses when estimating differences in means, odds ratios, hazard ratios, rate 
ratios, and relative risks. 
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Table 1.  Empirical Type I error rates for different measures of treatment effect. 
 
Measure of effect Type I error rate – 

matched analysis 
Type I error rate – 
unmatched analysis 

P-value 
(McNemar’s test) 

Difference in means (R2 = 
0.02) 

0.0485 0.0486 0.8084 

Difference in means (R2 = 
0.05) 

0.0486 0.0485 0.7630 

Difference in means (R2 = 
0.10) 

0.0485 0.0467 0.0003 

Difference in means (R2 = 
0.25) 

0.0470 0.0421 < 0.0001 

Difference in means (R2 = 
0.50) 

0.0430 0.0308 < 0.0001 

Odds ratio 0.0466 0.0422 < 0.0001 
Hazard ratio 0.0403 0.0277 < 0.0001 
Rate ratio 0.0514 0.4771 < 0.0001 
Relative risk 0.0485 0.0408 < 0.0001 
 
Note: McNemar’s test tests the null hypothesis that the Type I error rates for the 
two methods are equal to one another. 
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Table 2.  Coverage of 95% confidence intervals in propensity-score matched 
samples. 
Treatment 
effect 

Coverage of 95% 
confidence 
interval – matched 
analysis 

Coverage of 95% 
confidence interval – 
unmatched analysis 

P-value comparing 
coverage rates of 
confidence intervals 
(McNemar’s test) 

Difference in means 
1  
(R2 = 0.02) 

0.9512 0.9512 1.0000 

1  
(R2 = 0.05) 

0.9510 0.9511 0.7389 

1  
(R2 = 0.10) 

0.9432 0.9456 < 0.0001 

1  
(R2 = 0.25) 

0.9541 0.9585 < 0.0001 

1  
(R2 = 0.50) 

0.9582 0.9689 < 0.0001 

2  
(R2 = 0.02) 

0.9477 0.9480 0.6171 

2  
(R2 = 0.05) 

0.9508 0.9525 0.0047 

2  
(R2 = 0.10) 

0.9501 0.9527 0.0001 

2  
(R2 = 0.25) 

0.9490 0.9532 < 0.0001 

2  
(R2 = 0.50) 

0.9577 0.9669 < 0.0001 

Rate ratios 
1.5 0.9575 0.4884 < 0.0001 
2 0.9534 0.4656 < 0.0001 

Relative risks 
1.5 0.9495 0.9560 < 0.0001 
2 0.9518 0.9608 < 0.0001 
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Table 3.  Variance estimation in propensity-score matched samples. 
 

Treatment effect Empirical standard 
deviation for treatment 
effect across 7,300 
simulated datasets 

Mean standard error of 
estimated treatment effect 
(matched analysis) across 
7,300 datasets 

Mean standard error of 
estimated treatment effect 
(unmatched analysis) across 
7,300 datasets 

Ratio of mean SE to 
empirical SD of 
treatment effect 
(matched analysis)  

Ratio of mean SE to 
empirical SD of 
treatment effect 
(unmatched analysis)  

Difference in means 

1 (R2 = 0.02) 0.7203 0.7284 0.7297 1.0112 1.0131 

1 (R2 = 0.05) 0.4546 0.4581 0.4601 1.0077 1.0121 

1 (R2 = 0.10) 0.3212 0.3209 0.3237 0.9991 1.0078 

1 (R2 = 0.25) 0.1916 0.1969 0.2015 1.0277 1.0517 

1 (R2 = 0.50) 0.1242 0.1319 0.1386 1.0620 1.1159 

2 (R2 = 0.02) 0.7291 0.7283 0.7297 0.9989 1.0008 

2 (R2 = 0.05) 0.4508 0.4581 0.4601 1.0162 1.0206 

2 (R2 = 0.10) 0.3172 0.3208 0.3236 1.0113 1.0202 

2 (R2 = 0.25) 0.1923 0.1969 0.2015 1.0239 1.0478 

2 (R2 = 0.50) 0.1219 0.1318 0.1386 1.0812 1.1370 

Rate ratios 

1.5 0.048 0.0506 0.0166 1.0542 0.3458 

2 0.0482 0.0504 0.0158 1.0456 0.3278 

Relative risks 

1.5 0.0939 0.0942 0.0972 1.0032 1.0351 

2 0.0883 0.0879 0.0911 0.9955 1.0317 
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