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Abstract

Repeated cross-sectional cluster randomization trials are cluster randomization trials in which
the response variable is measured on a sample of subjects from each cluster at baseline and on a
different sample of subjects from each cluster at follow-up. One can estimate the effect of the
intervention on the follow-up response alone, on the follow-up responses after adjusting for
baseline responses, or on the change in the follow-up response from the baseline response. We
used Monte Carlo simulations to determine the relative statistical power of different methods of
analysis. We examined methods of analysis based on generalized estimating equations (GEE) and
a random effects model to account for within-cluster homogeneity. We also examined cluster-level
analyses that treated the cluster as the unit of analysis. We found that the use of random effects
models to estimate the effect of the intervention on the change in the follow-up response from the
baseline response had lower statistical power compared to the other competing methods across a
wide range of scenarios. The other methods tended to have similar statistical power in many
settings. However, in some scenarios, those analyses that adjusted for the baseline response tended
to have marginally greater power than did methods that did not account for the baseline response.
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1. Introduction 
 
Cluster randomization trials are randomized controlled trials in which intact 
clusters of subjects are randomized to either the intervention or to the control 
arms (Klar and Donner, 2005; Donner and Klar, 2000).  Examples of clusters 
include families, physicians’ practices, schools, communities, and hospitals.  
Cluster randomization trials are particularly suited for the evaluation of 
educational interventions, lifestyle modifications, and non-therapeutic 
interventions (Klar and Donner, 2005; Donner and Klar, 2000).  In cluster 
randomization trials the cluster is the unit of randomization.  However, the 
responses are measured at the subject level.  Responses from subjects within the 
same cluster can exhibit a greater degree of homogeneity compared to responses 
from subjects in different clusters.  Due to the possible existence of within-cluster 
homogeneity, traditional statistical methods for randomized controlled trials 
(RCTs) cannot be directly applied to cluster randomization trials. 

The simplest design for cluster randomization trials is the completely 
randomized cross-sectional trial with two treatment arms.  Using this design, the 
response is measured on a sample of subjects from each cluster following the 
treatment intervention.  Several authors have described statistical methods for the 
analysis of these trials (Donner and Klar, 2000; Donner and Klar, 1994; Donner 
and Donald, 1988; Klar et al., 1995; Bellamy et al., 2000; Klar and Donner, 2001; 
Donner, 1999; Feng et al., 2001; Omar and Thompson, 2000).  A recent study 
compared the relative statistical power of different methods for the analysis of 
completely randomized cross-sectional cluster randomization trials with binary 
outcomes (Austin, 2007).  Alternative designs for cluster randomization trials 
include the cohort and repeated cross-sectional design (Feldman and McKinlay, 
1994).  In both these designs, measurement of the outcome is made on subjects in 
each cluster both prior to the intervention (baseline responses) as well as after the 
intervention (follow-up responses).  Furthermore, in both of these designs, the 
same clusters are included at both time periods.  However, in the cohort design, 
each cluster contains the same subjects both prior to and subsequent to the 
intervention, while in the repeated cross-sectional design, each cluster contains 
different subjects prior to the intervention compared to after the intervention.  
Examples of the first may include community intervention trials, in which 
communities are randomized to an intervention.  Examples of the latter include 
trials of obstetrical practices, in which women giving birth are only in the pre-
intervention time period or the post-intervention time period, but not both 
(Ukoumunne and Thompson, 2001). 

Ukoumunne and Thompson (2001) describe different statistical methods 
for the analysis of cluster randomization trials with repeated cross-sectional 
binary measurements.  In an empirical comparison of these methods, they applied 
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these methods to the analysis of a cluster randomization trial in which the clusters 
were hospital obstetric units.  They obtained qualitatively different conclusions 
depending on the method of analysis employed.  While the relative statistical 
power of different methods for the analysis of cross-sectional completely 
randomized cluster randomization trials with binary outcomes has been examined 
(Austin, 2007), there is no comparable information on the relative statistical 
power of different statistical methods for the analysis of repeated cross-sectional 
cluster randomization trials with binary outcomes.  Donner and Klar (1994) have 
suggested that more research is needed on the relative statistical efficiencies of 
different analytic methods for cluster randomization trials. 

Accordingly, the objective of the current study was to compare the relative 
statistical power of different statistical methods for the analysis of repeated cross-
sectional cluster randomization trials.  This will permit researchers employing 
repeated cross-sectional cluster randomization trials to optimize statistical power 
within the given design.  The paper is organized as follows:  In Section 2, we 
review statistical methods for the analysis of these trials.  In Section 3, we briefly 
describe a conceptual model for repeated cross-sectional cluster randomization 
trials that has been proposed in the literature.  This conceptual model is then used 
as the basis for a data-generating process used in Monte Carlo simulations that 
were conducted to examine the relative statistical power of different statistical 
methods.  In Section 4, we report the results of our Monte Carlo simulations.  
Finally, in Section 5, we summarize our findings and place them in the context of 
the existing literature. 
 
2. Statistical methods for repeated cross-sectional cluster randomization 

trials with binary outcomes 
 
In this section, we describe different statistical methods for the analysis of 
repeated cross-sectional cluster randomization trials with binary outcomes.  These 
methods have been described in greater detail by Ukoumunne and Thompson 
(2001).  The reader is referred to their article for further detail and discussion of 
these methods.  Ukoumunne and Thompson empirically compared the inferences 
obtained using these methods when analyzing a repeated cross-sectional cluster 
randomization trial in which the clusters were hospital obstetrical units.  In the 
current study we focus on repeated cross-sectional cluster randomization trials 
with binary outcomes in which there are two arms: an intervention arm and a 
control arm.  We further restrict our attention to trials employing a completely 
randomized design.  Within each method, Okoumunne and Thompson describe 
three different ways of evaluating the effect of the intervention: the effect of the 
intervention on the follow-up binary response alone, the effect of the intervention 
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on the follow-up binary response after adjusting for the baseline log-odds of the 
response, and the effect of the intervention on the change from baseline. 
 
2.1. Notation 
 
We use the notation proposed by Ukoumunne and Thompson (2001) throughout 
this section.  Let )1,(~ jktijkt Biny π  denote the response for the ith subject in the jth 
cluster, in the kth treatment arm, and at the tth time point, where jktπ  denotes the 
probability of success for this patient.  Let denote the treatment arm (this 
denotes the arm of the trial to which the cluster was randomized: control = 0, 
intervention = 1) and let denote time (baseline = 0, follow-up = 1).  

 denotes the interaction between group and time.  Let 
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2.2 Statistical methods for individual-level analyses 
 
In this section, we describe two methods of analysis that use the subject as the 
unit of analysis.  Both of these methods are based on logistic regression models.  
Two different families of models are used.  The first consists of marginal models 
estimated using Generalized Estimating Equation (GEE) methods, while the 
second consists of conditional models that incorporate cluster-specific random 
effects.  We will refer to the second family of models as random effect models 
(they have also been described as multilevel models, hierarchical models, or 
mixed effects models in the literature). 
 
2.2.1 Generalized estimating equation methods 
 
A model-based method for the analysis of repeated cross-sectional cluster 
randomization trials with binary outcomes is the use of a logistic regression model 
estimated using generalized estimating equations (GEE) methods developed by 
Liang and Zeger (1986).   For estimating the effect of the intervention on the 
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follow-up binary response alone, the following logistic regression model can be 
used: 
 

logit kjk Gαμπ +=)( 1       (1) 
 
The intervention effect is the exponential of the group coefficient (α).  When 
estimating the effect of the intervention on the follow-up binary response after 
adjusting for the baseline log-odds of the response, the following model can be 
used: 

 
logit 01)( jkkjk CG βαμπ ++=      (2) 

 
The intervention effect is the exponential of the treatment-arm coefficient (α).  
Finally, when estimating the effect of the intervention on the change in the 
follow-up response from the baseline response, the following model can be used: 
 

logit kttkjkt GTTG )()( δγαμπ +++=      (3) 
 
The intervention effect is the group-time interaction term (δ).  Each of the above 
models assumes an exchangeable (or compound-symmetry) correlation structure 
for the correlations of outcomes within a cluster.  Robust estimates of standard 
errors can be obtained to account for the clustering of subjects within clusters. 

In the current setting, the regression model only included a term for the 
treatment exposure.  However, in practice, one could also include subject 
characteristics in the regression model to account for residual differences in 
subject characteristics between the arms of the trial. 
 
2.2.2   Random effects regression methods 
 
Random effects logistic regression models may be used for the analysis of 
repeated cross-sectional cluster randomization trials with binary outcomes.  For 
estimating the effect of the intervention on the follow-up binary response, the 
following logistic regression model can be used: 
 

logit     (4) ),0(~,)( 2
1 ujkjkkjk NuuG σαμπ ++=

 
The intervention effect is the exponential of the treatment arm coefficient (α).  
When estimating the effect of the intervention on the follow-up binary response 
after adjusting for the baseline log-odds of the response, the following model can  
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be used: 
 

logit    (5) ),0(~,)( 2
01 ujkjkjkkjk NuuCG σβαμπ +++=

 
The intervention effect is the exponential of the treatment arm coefficient (α).  
Finally, when estimating the effect of the intervention on the change in the 
follow-up response from the baseline response, the following model can be used: 
 

logit    (6) ),0(~,)()( 2
ujkjkkttkjkt NuuGTTG σδγαμπ ++++=

 
The intervention effect is the treatment arm-time interaction term (δ).  In the 
current setting, the regression model only included a term for the treatment 
exposure.  However, in practice, one could also include subject characteristics in 
the regression model to account for residual differences in subject characteristics 
between the arms of the trial. 

The above methods were proposed by Ukoumunne and Thompson (2001).  
They also proposed extensions of the above methods, in which the variance of the 
random effects was allowed to differ between the two arms of the trial.  However, 
due to the computationally intensive nature of our simulations, we restricted our 
attention to the three methods described above. 
 
2.3 Statistical methods for cluster-level analyses 
 
Cluster-level analyses treat the cluster as both the unit of randomization and the 
unit of analysis.  An aggregated response is computed at the cluster level at each 
time point.  When estimating the effect of the intervention on the follow-up 
response, a two-sample t-test can be used to compare the difference in the follow-
up probability of success, 1jkπ , between the two treatment arms of the trial.  This 
is equivalent to fitting the following regression model: 
 

kjk Gαμπ +=1      (7) 
 

1jkπ is replaced by its sample estimate, which, since the outcome is binary, is the 
observed proportion of successes in the given cluster.  Therefore, this method is 
testing whether the mean cluster-specific proportion of successes is different 
between the two arms of the trial.  The effect of the intervention on the follow-up 
probability of success, after adjusting for the baseline probability of success can  
be estimated using the following regression model: 

01 jkkjk G βπαμπ ++=     (8) 
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Once the random variables in (8) are replaced by their sample quantities, one is 
testing whether the mean cluster-specific probability of success is different 
between the two arms of the trial, after adjusting for potential between-cluster 
differences in the baseline probability of success.  Finally, the effect of the 
intervention on the change from baseline can be estimated using the following 
regression model: 
 

kjkjk Gαμππ +=− 01     (9) 
 
which is equivalent to using a two-sample t-test to compare the change in the 
probability of success between the two treatment arms of the trial.  It should be 
noted that the methods described in formulas (7) – (9) involve fitting a linear 
regression model.  This in contrast to the methods described in Sections 2.1 and 
2.2, which involve fitting logistic regression models.  In each of the above three 
methods, the probability of success could be replaced by the log-odds of success, 
as was done by Ukoumunne and Thompson (2001).  This was done by 
Ukoumunne and Thompson since they were comparing estimated effect sizes 
across different methods, and wanted all estimates to be on the odds ratio scale.  
In the current study, we have elected to conduct the analyses on the probability 
scale, since, in practice it allows for a more natural metric in which to interpret 
the results.  Furthermore, our focus was on statistical power, rather than on the 
comparability of estimated treatment effects.  Thus, it was less important for the 
estimated treatment effect to be on the odds ratio scale. 
 
3. Monte Carlo simulations: Methods 
 
In this section, we describe the Monte Carlo simulations that were used to 
compare the relative statistical power of different statistical methods for the 
analysis of repeated cross-sectional cluster randomization trials with binary 
outcomes.  First, we present a conceptual model for repeated cross-section cluster 
randomization trials.  This conceptual model will be used as the basis for the data-
generating process in the subsequent Monte Carlo simulations. 
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3.1 Conceptual model for repeated cross-sectional cluster randomization 
trials 
 
In designing the Monte Carlo simulations that will be used for examining the 
relative power of different statistical methods we used a conceptual framework 
for repeated cross-sectional cluster randomization trials that was proposed by 
Feldman and McKinlay (1994).  In this section, we use the notation of Feldman 
and McKinlay.  We assume that a dichotomous response variable has been 
measured on each subject.  Let  denote the response of the iijkty th subject, in the jth 
cluster, in the kth treatment arm, and at the tth time point (t= 0 for baseline and t = 
1 for follow-up), with  denoting a success and 1=ijkty 0=ijkty  denoting a failure.  
Let jktπ denote the probability of success for a subject in the jth cluster, in the kth 
treatment arm, at the tth time point.  Then, we assume the following model: 
 

logit jktjkkttkjkt CTCGTSTETAE )()()( +++++= μπ   (10) 
 
In (10), there are four fixed effects:μ , which denotes the grand mean (on the log-
odds scale),  which denotes the treatment-arm effect (this denotes the 
systematic baseline difference in outcomes between the intervention arm and the 
control arm of the trial),  which denotes the secular time effect, and 
which denotes the time × treatment-arm interaction, with 

kTAE

tSTE ktGT )(  
0)( =ktGT  for both t = 0 

and for the control arm of the trial.  This final effect denotes the effect of the 
intervention on outcomes after adjusting for baseline differences in the outcome 
between treatment arms – it denotes the different in the log-odds of the outcome 
between the two groups that is due to treatment.  One can exponentiate this effect 
to obtain a treatment odds ratio - the relative change in the odds of the outcome 
between the two groups that is due to treatment.  The treatment arm effect, , 
allows one to account for systematic baseline difference in outcomes between the 
intervention arm and the control arm of the trial.  On average, across all 
randomizations, this effect will be zero.  Randomization will ensure that, in 
expectation, there are no systematic differences in baseline characteristics 
between the arms of the trial.  However, in a given trial, there may be systematic 
differences in the baseline value of the response variable between treatment 
groups.  The inclusion of the treatment-arm effect (TAE) allows one to account 
for this possibility.  In (10), the random effects are  

and .   denotes the cluster effect, nested in 
treatment group, while   denotes the cluster × time interaction. Therefore, 

kTAE

,1),,0(~ 2 JjNC CCjk ≤≤σρ

))1(,0(~)( 2
CCjkt NCT σρ− jkC

jktCT )(
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cluster-to-cluster variation is modelled as the sum of two independent random 
effects, the first time-invariant ( ) and the second time-varying   
Feldman and McKinlay refer to 

jkC jktCT )( .

Cρ  as the cluster autocorrelation, as it refers to 
correlation between the log-odds of success for the same cluster at different points 
in time.  Similarly, we refer to Cσ  and as the cluster standard deviation and 
the cluster variance, respectively.  The above model is derived from a broader, 
unifying model for cluster randomization trials comprising both cohort designs 
and repeated cross-sectional designs.  We have presented the component that is 
applicable to repeated cross-sectional trials and have not presented the 
components of the model that incorporate cohort designs (repeated measurements 
on the same individuals). 

2
Cσ

 
3.2 Data-generating process 
 
We randomly generated data using the theoretical model proposed by Feldman 
and McKinlay (1994) which was described in the previous section.  This allowed 
us to generate data from simulated repeated cross-sectional cluster randomization 
trials with specific designs.  We assumed a completely randomized design with 
two arms: an intervention arm and a control arm.  Furthermore, we simulated 
cluster randomization trials that had a balanced design: there were an equal 
number of subjects per cluster and there were an equal number of clusters in each 
of the two arms of the trial.  In the Monte Carlo simulations we allowed the 
following factors (using the terminology of Section 3.1) to vary: the cluster 
standard deviation ( , the cluster autocorrelation ()cσ )cρ , the secular time effect 
(STE), and the treatment effect (GT).  The treatment-arm effect (TAE) (the 
systematic difference in outcomes between the treatment arms at baseline) was 
fixed at zero.  The reason for this is that in RCTs, randomization will result in the 
treatment groups being, on average, similar at baseline.  While systematic 
differences in baseline responses may exist in individual trials, one would not 
expect differences between arms to occur to occur systematically across trials. 

We chose some of the parameters for our Monte Carlo simulations to be 
similar to cluster randomization trials of interventions to change professional 
practice, as has been done in an earlier study of the power of different methods for 
the analysis of simple cross-sectional cluster randomization trials (Austin, 2007).  
From an existing database of such trials, we examined 146 binary outcomes for 
which the average number of clusters and the average number of subjects per 
cluster were reported (http://www.abdn.ac.uk/hsru/epp/iccs-web.xls - site 
accessed February 15, 2006).  We computed the quartiles of each of these two 
factors.  Across the 146 binary outcomes, the 25th percentile, median, and 75th 
percentile of the average number of subjects per cluster were 6, 7, and 39, 
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respectively (thus, in a typical cluster randomized trial, the average number of 
subjects per clusters was 7).  The 25th percentile, median, and 75th percentile of 
the number of clusters were 25, 54, and 60, respectively.  Since we are basing our 
design upon a two-armed trial, this would result in 12, 27, and 30 clusters per 
arm.  Accordingly, we chose to simulate cluster randomization trials with either 7 
or 39 subjects per cluster and with either 12 or 27 clusters per arm.  Therefore, 
depending on the scenario, each randomly generated datasets would consist of 
336, 756, 1872, or 4212 subjects (2 time periods x 2 treatment arms x Number of 
clusters/treatment arm x Number of subjects/cluster).  The grand mean (μ) was 
allowed to take on the value -1 (thus, at baseline, the probability of success for an 
average cluster in the control arm is 0.27).  The treatment-arm effect (TAE) was 
fixed at zero (0 indicating no systematic difference in outcomes between 
treatment arms prior to the exposure), while the secular time effect (STE) was 
also allowed to take on the values 0 and 0.1.  The intervention effect, (GT), was 
allowed to take on the values from -0.50 to 0.50, in increments of 0.05.  We chose 
two values for the cluster standard deviation ( : 0.10 and 0.50, two values for 
the cluster autocorrelation (

)cσ
)cρ : 0.5 and 0.8.  The values for the cluster variance 

and cluster autocorrelation were a subset of values that Feldman and McKinlay 
(1994) used in a series of Monte Carlo simulations that they conducted.  Having 

10.0=cσ  implies that the cluster-specific probability of success at baseline will 
range between 0.23 and 0.31 for 95% of clusters in the control arm.  Similarly, 
having 50.0=cσ  implies that the cluster-specific probability of success at 
baseline will range between 0.12 and 0.50 for 95% of clusters in the control arm.  
We thus examined 672 scenarios (2 cluster sizes × 2 number of clusters per 
treatment arm × 2 cluster variances × 2 cluster autocorrelations × 1 treatment-
group effect × 2 secular time effects × 21 treatment effects).  Computational 
considerations restricted the number of levels of the different factors that could be 
examined in the current study.  Within a given scenario, the values of the above 
parameters were fixed.  For each of the clusters, cluster specific random effects 
were drawn from normal distributions as described above.  This allowed the logit 
of the probability of success ( jktπ ) (see formula (10)) to be determined for each of 
the subjects.  Using this time-period and cluster-specific probability of success, 
dichotomous outcomes were randomly generated from a Bernoulli distribution 
with parameter jktπ . 
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3.3. Monte Carlo simulations 
 
We used a full factorial design for the Monte Carlo simulations.  In each of the 
672 scenarios, we generated 1,000 random datasets each consisting of the 
appropriate number of subjects (336, 756, 1872, or 4212 subjects per simulated 
dataset), using the data-generating process described in Section 3.2 (the use of 
1,000 replicates for each scenario is justified in the paragraph below).  Each 
statistical method described in Section 2 was used to assess the statistical 
significance of the intervention in each of the 1,000 random datasets.  A 
significance level of 0.05 was used to determine statistical significance of the 
intervention effect.  We examined 640 scenarios in which the treatment effect was 
non-zero.  Within each of these 640 scenarios, statistical power was defined as the 
proportion of the 1,000 simulated trials in which the intervention effect was 
determined to be significantly different than zero. 

In 32 of our 672 scenarios the treatment effect was null.  In each of these 
scenarios we determined the Type I error rate of each of the different statistical 
methods.  The empirical Type I error rate was estimated as the proportion of 
simulated trials in which the intervention effect was determined to be significantly 
different than zero, when in fact the null hypothesis of a null intervention effect 
was true.  Given our use of 1,000 iterations per scenario, a Type I error rate 
smaller than 0.0365 or greater than 0.0635 is significantly different than 0.05, 
using a 5% significance level (based on the normal-theory method for a test of a 
binomial proportion). 

The data were randomly generated using the R statistical programming 
language (version 2.2.0) and the statistical analyses were conducted using SAS 
version 9.1.3 (SAS Institute Inc, Cary NC).  The logistic regression models 
estimated using GEE methods were fit using PROC GENMOD.  Each model 
assumed an exchangeable (or compound-symmetry) correlation structure for the 
working correlation matrices, and robust estimates of standard errors were 
obtained to account for the clustering of subjects within clusters.  The cluster-
specific analyses were conducted using PROC GLM.  The logistic regression 
models incorporating random effects were fit using the glmer function in the lme4 
package for R. The glmer function fits generalized linear mixed models using the 
adaptive Gauss-Hermite approximation to the likelihood.  The default number of 
points per axis for evaluating this approximation is one, in which case the 
approximation corresponds to the Laplacian approximation. 

Two of the statistical methods that we considered adjusted for the log-
odds of the cluster-specific baseline success rate.  When the observed cluster-
specific probability of success is 0 or 1, then the log-odds of this probability is not 
defined.  In our simulations, if the observed cluster-specific probability of success 
was equal to either 0 or 1, then this quantity was replaced by 0.01 or 0.99, 
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respectively.  This allowed all clusters to be included in all nine statistical 
analyses. 
 
4. Monte Carlo simulations: Results 
 
4.1 Type I error rate of the different statistical methods 
 
The type I error rate for each analytic method and for each scenario is reported in 
Table 1.  For each statistical method, the empirical type I error rate was reported 
for 32 different scenarios.  Given a type I error rate of 5%, one would expect that, 
on average, 1.6 of the 32 scenarios would have an empirical type I error rate that 
was statistically significantly different from 0.05 for each statistical method.  
Instead, the number of scenarios in which the empirical type I error rate was 
significantly different from 0.05 (lower than 0.0365 or higher than 0.0635) ranged 
from a low of 10 to a high of 18.  The median type I error rate across the 32 
scenarios for the random effects approach was 0.034, 0.0385, 0.0395 when the 
follow-up response was analyzed alone, when the model adjusted for the baseline 
response rate, and when analyzing the change from baseline method was used, 
respectively.  The median type I error rate for the 32 scenarios when the GEE 
approach was used were 0.0435, 0.0515, and 0.057 for the three different 
approaches, respectively.  The median type I error rate for the 32 scenarios when 
the cluster-level analyses were used were 0.034, 0.0365, and 0.0445 when the 
response rate was analyzed, when adjustment was made for the baseline response 
rate, and when the change from baseline method was used, respectively.  Overall, 
131 of the 288 (45.5%) different empirical type I error rates were significantly 
different from 0.05.  For the random effects approaches and the cluster-level 
analyses, in those settings in which the empirical type I error rate was statistically 
significantly different than 0.05, the empirical type I error rate was always low (P 
< 0.0365), as opposed to high (P > 0.0636).  The Wilcoxon signed rank test was 
used to compare empirical type I error rates between the random effects approach 
and the two other statistical methods of analysis.  The median empirical type I 
error rates were significantly different between the GEE analyses and the random 
effects analyses (P < 0.0001 for follow-up response analyzed alone; P < 0.0001 
when adjusting for the baseline response rate; P < 0.0001 when analyzing the 
change from baseline).  The median empirical type I error rates were significantly 
different between the random effects approach and the cluster-level analyses for 
two sets of analyses (P = 0.0487 when the adjusting for the baseline response rate; 
P < 0.0001 when analyzing the change from baseline).  However, the empirical 
type I error rates were not significantly different between the two approaches 
when analyzing the follow-up response alone (P = 0.4301). 
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Table 1.  Type I error rates of different statistical methods for the analysis of repeated cross-sectional cluster 
randomization trials. 
 

Random effects model GEE model Cluster-level analysis Number 
of 
clusters/ 
arm 

Number 
of 
subjects/ 
cluster 

Cρ
 

Cσ  

Follow-up 
response 

Adjust for 
baseline 

Change from 
baseline 

Follow-up 
response 

Adjust for 
baseline 

Change 
from 
baseline 

Follow-
up 
response 

Adjust 
for 
baseline 

Change 
from 
baseline 

STE = 0 
12 7 0.5 0.1 0.038 0.039 0.040 0.064 0.065 0.059 0.050 0.054 0.044 
12 7 0.5 0.5 0.029 0.042 0.029 0.042 0.051 0.056 0.025 0.030 0.031 
12 7 0.8 0.1 0.039 0.041 0.045 0.067 0.071 0.062 0.048 0.051 0.047 
12 7 0.8 0.5 0.029 0.033 0.035 0.042 0.051 0.057 0.028 0.030 0.040 
12 39 0.5 0.1 0.041 0.038 0.048 0.060 0.074 0.079 0.041 0.041 0.052 
12 39 0.5 0.5 0.005 0.018 0.004 0.004 0.019 0.021 0.003 0.008 0.009 
12 39 0.8 0.1 0.038 0.038 0.053 0.066 0.072 0.086 0.040 0.040 0.057 
12 39 0.8 0.5 0.007 0.039 0.007 0.005 0.042 0.047 0.003 0.017 0.031 
27 7 0.5 0.1 0.054 0.057 0.048 0.061 0.061 0.058 0.051 0.052 0.055 
27 7 0.5 0.5 0.031 0.033 0.041 0.031 0.037 0.055 0.025 0.030 0.046 
27 7 0.8 0.1 0.048 0.051 0.042 0.057 0.060 0.057 0.050 0.051 0.052 
27 7 0.8 0.5 0.035 0.045 0.028 0.035 0.049 0.048 0.025 0.036 0.043 
27 39 0.5 0.1 0.040 0.046 0.044 0.050 0.052 0.053 0.038 0.039 0.044 
27 39 0.5 0.5 0.002 0.006 0.000 0.001 0.005 0.008 0.001 0.004 0.006 
27 39 0.8 0.1 0.045 0.047 0.041 0.048 0.052 0.058 0.044 0.042 0.047 
27 39 0.8 0.5 0.006 0.018 0.003 0.004 0.015 0.028 0.004 0.010 0.019 

STE = 0.1 
12 7 0.5 0.1 0.034 0.035 0.041 0.062 0.067 0.059 0.042 0.040 0.039 
12 7 0.5 0.5 0.023 0.030 0.034 0.043 0.049 0.051 0.032 0.029 0.033 
12 7 0.8 0.1 0.038 0.037 0.039 0.067 0.067 0.060 0.046 0.043 0.045 
12 7 0.8 0.5 0.028 0.034 0.038 0.038 0.052 0.057 0.024 0.032 0.041 
12 39 0.5 0.1 0.032 0.035 0.047 0.059 0.069 0.066 0.042 0.045 0.047 
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12 39 0.5 0.5 0.006 0.017 0.004 0.004 0.015 0.020 0.002 0.006 0.012 
12 39 0.8 0.1 0.040 0.039 0.051 0.062 0.068 0.080 0.042 0.042 0.058 
12 39 0.8 0.5 0.006 0.038 0.006 0.006 0.040 0.051 0.003 0.022 0.027 
27 7 0.5 0.1 0.051 0.055 0.048 0.063 0.068 0.060 0.052 0.059 0.051 
27 7 0.5 0.5 0.034 0.039 0.032 0.033 0.036 0.058 0.025 0.031 0.046 
27 7 0.8 0.1 0.051 0.059 0.040 0.065 0.068 0.057 0.055 0.059 0.049 
27 7 0.8 0.5 0.034 0.041 0.026 0.035 0.039 0.060 0.028 0.034 0.046 
27 39 0.5 0.1 0.040 0.040 0.043 0.044 0.050 0.058 0.039 0.037 0.047 
27 39 0.5 0.5 0.004 0.005 0.001 0.001 0.003 0.007 0.001 0.003 0.005 
27 39 0.8 0.1 0.041 0.045 0.042 0.045 0.053 0.054 0.036 0.042 0.047 
27 39 0.8 0.5 0.005 0.013 0.000 0.002 0.011 0.022 0.002 0.010 0.018 

 
Note: Each cell reports the empirical Type I error over the 1,000 simulated datasets for the given scenario. 
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Thus, it appears that when analyzing change from baseline, the random effects 
analysis had lower type I error rates than the GEE approach or the cluster-level 
analysis. 
 
4.2 Statistical power of different statistical methods for cluster randomization 
trials 
 
The relative statistical power of different methods of analysis for repeated cross-
sectional cluster randomization trials with binary outcomes are described in 
Figures 1 through 8.  Figures 1 through 4 describe results for scenarios in which 
there was a null secular time effect (STE = 0), while figures 5 through 8 describe 
results for scenarios in which there was a non-null secular time effect.  Each 
figure consists of four panels, each describing power curves for scenarios with 
different numbers of clusters per arm and different numbers of subjects per 
cluster. 
 
4.2.1 Null secular time effect 
 
In examining Figure 1, one observes several results.  First, the use of a random 
effects model that modeled change from baseline had the lowest statistical power 
in the four scenarios described in Figure 1.  Second, the difference in power 
between this method and the other approaches was amplified as the number of 
clusters per arm or the number of subjects per cluster increased.  Third, 
differences between the remaining eight methods were negligible.  Fourth, minor 
differences in statistical power between the remaining eight methods diminished 
as the number of clusters per arm or the subjects per cluster increased.  Fifth, for a 
given statistical method, power increased as the number of clusters per arm or the 
number of subjects per cluster increased.  Similar observations can be made in 
Figure 3.  Thus, these observations appear to hold when there was a null secular 
time effect and the cluster standard deviation was small (σc = 0.1). 

Figures 2 and 4 report the results when there was a null secular time effect 
and the cluster standard deviation was large (σc = 0.5).  As above, we observe that 
the use of a random effects model to model change from baseline resulted in 
lower statistical power compared to the other eight approaches.  Furthermore, as 
above, the difference in power between this method and the other eight 
approaches was amplified as the number of clusters per arm or the number of 
subjects per cluster increased.  The power of each method increased as the 
number of clusters per arm or the number of subjects per cluster increased.  
Finally, the three methods that did not account for baseline response tended to 
have marginally lower statistical power when the number of subjects per cluster 
was large.  This observation was more evident when the cluster autocorrelation  
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was high (ρc = 0.8) compared to when the cluster autocorrelation was low (ρc = 
0.5). 
 
4.2.2 Non-null secular time effect 
 
If one compares the results for a given scenario with a non-null secular time effect 
with the similar scenario with a null secular time effect, one observes that the 
results are essentially identical (a given figure in Figures 5 through 8 is essentially 
identical to the corresponding figure in Figure 1 through 4).  Therefore, the 
observations made above for the setting of a null secular time effect would hold in 
the presence of a non-null secular time effect. 
 
4.3 Supplemental analyses 
 
We conducted a series of supplemental analyses to further examine the relative 
performance of the two regression-based methods of analysis.  For each scenario, 
we computed the mean standard error of the estimated treatment effect (on the 
log-odds scale) for each of the two regression-based methods.  For each scenario, 
we then compared the ratio of the mean standard error from a given random 
effect-based method to that of the comparable GEE-based method.  In all 672 
scenarios, the ratio was positive (range of ratio: 1.02 to 1.52).  However, the range 
of the ratio of the standard errors depended on the particular regression-based 
method.  When no adjustment was made for the baseline response, the ratio 
ranged from 1.03 to 1.09; when adjustment was made for the baseline response, 
the ratio ranged from 1.02 to 1.11.  However, when the change from baseline was 
analyzed, the ratio ranged from 1.04 to 1.52.  Furthermore, when modeling the 
change from baseline, the ratio tended to be large when the cluster standard 
deviation was high (σc = 0.5) (range of ratio: 1.10 to 1.52).  Finally, when the 
cluster standard deviation was high, the ratio was larger when the number of 
subjects per cluster was high (range of ratio: 1.25 to 1.52, compared to when the 
number of subjects per cluster was low (range of ratio: 1.10 to 1.17). 

It is likely that the increased standard error when a random effects model 
was used to analyze change from baseline compared to the standard error when a 
GEE model was used when the cluster standard deviation was high explains, at 
least in part, the greater difference in statistical power between these two methods 
in certain scenarios.  As noted in Section 4.1, it appeared that when analyzing 
change from baseline, the random effects analysis had lower type I error rates 
than the GEE approach or the cluster-level analysis.  The observation that 
analyzing change from baseline using a random effects model had more 
conservative significance levels compared to the other two approaches may also 
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Figure legend

Random effects (no adjustment)
Random effects (adjust for baseline)
Random effects (change from baseline)
GEE method (no adjustment)
GEE method (adjust for baseline)
GEE method (change from baseline)
Cluster analysis (no adjustment)
Cluster analysis (adjust for baseline)
Cluster analysis (change from baseline)
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Figure 1. Null STE & ρC = 0.5 & σC = 0.1
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Figure 2. Null STE & ρC = 0.5 & σC = 0.5
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Figure 3. Null STE & ρC = 0.8 & σC = 0.1
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Figure 4. Null STE & ρC = 0.8 & σC = 0.5

20

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 11

http://www.bepress.com/ijb/vol6/iss1/11
DOI: 10.2202/1557-4679.1179



−0.4 0.0 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Treatment effect

S
ta

tis
tic

al
 p

ow
er

Clusters/arm = 12 & Subjects/per cluster

−0.4 0.0 0.4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Treatment effect

S
ta

tis
tic

al
 p

ow
er

Clusters/arm = 27 & Subjects/per cluster

−0.4 0.0 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Treatment effect

S
ta

tis
tic

al
 p

ow
er

Clusters/arm = 12 & Subjects/per cluster 

−0.4 0.0 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Treatment effect

S
ta

tis
tic

al
 p

ow
er

Clusters/arm = 27 & Subjects/per cluster 

Figure 5. Non−null STE & ρC = 0.5 & σC = 0.1
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Figure 6. Non−null STE & ρC = 0.5 & σC = 0.5
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Figure 7. Non−null STE & ρC = 0.8 & σC = 0.1
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Figure 8. Non−null STE & ρC = 0.8 & σC = 0.5
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contribute to the reduced statistical power of the random effects approach 
compared to that of the two competing methods. 
 
5. Discussion 
 
The objective of the current study was to compare the relative power of different 
statistical methods for the analysis of repeated cross-sectional cluster 
randomization trials with binary outcomes.  Our primary finding was that the use 
of random effects model to model change from baseline consistently had lower 
statistical power compared to the other statistical methods that were considered.  
The remaining eight statistical methods tended to have comparable statistical 
power; however, in certain scenarios, methods that did not account for the 
baseline response had marginally lower statistical power compared to methods 
that accounted for baseline responses. 

There is currently a paucity of research into the power of different 
statistical methods for the analysis of cluster randomization trials with binary 
outcomes.  To the best of our knowledge, only two studies have examined the 
relative statistical power of different methods for the analysis of simple cross-
sectional cluster randomization trials (no measurements of the outcome at 
baseline – only follow-up measurements) (Austin, 2007; Bellamy et al. 2000).  
Lewsey (2004) examined the relative power between a completely randomized 
and a stratified randomized design for cross-sectional cluster randomization trials, 
and described certain settings in which stratification resulted in superior power.  
Donner and Klar (1994) have suggested that more research is needed on the 
relative statistical efficiencies of different analytic methods for cluster 
randomization trials.  While a few studies have compared different methods of 
analysis for repeated cross-sectional cluster randomization trials with binary 
outcomes, none have examined the relative statistical power of these methods.  
Thus, the current study fills a void in the methodological literature for cluster 
randomization trials. 

There is a large literature that discusses adjusting for baseline covariates in 
conventional RCTs in which the subject is both the unit of randomization and the 
unit on which responses are measured (Senn, 1989; Senn, 1994; Rothman, 1977).  
In conventional RCTs, adjusting for baseline covariates can allow for more 
precise estimates of the treatment effect, and allows for adjusting for chance 
imbalance in baseline covariates between treatment arms.  Prior studies have 
examined conventional RCTs in which both baseline and follow-up responses are 
available for all subjects.  Vickers and Altman (2001) recommend adjusting for 
baseline responses over the use of analyzing change from baseline, as it generally 
has higher statistical power.  In the context of cohort cluster randomization trials 
(repeated measurements of the outcome variable made on the same subjects both 
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at baseline and at follow-up) with continuous outcomes, Klar and Darlington 
(2004) describe methods to model change when measurements of the response are 
made both at baseline and at follow-up.  Similarly, Nixon and Thompson (2003) 
discuss baseline adjustment for repeated cross-sectional cluster randomization 
trials with binary outcomes.  They found that adjusting for baseline responses 
resulted in improved precision only when both the number of subjects per cluster 
was large and there was substantial heterogeneity between clusters at baseline.  In 
the current study, we examined scenarios with a low number of subjects per 
cluster, as is typical in cluster randomization trials to change professional practice 
(http://www.abdn.ac.uk/hsru/epp/iccs-web.xls - site accessed February 15, 2006).  
In some scenarios when the number of subjects per cluster was equal to 39, we 
found that the methods that did not account for baseline response had modestly 
lower power compared to those methods that accounted for baseline (apart from 
the use of random effects model to model change from baseline).  Thus, some of 
our observations mirror the findings of Nixon and Thompson (2003). 

It may appear surprising that, in many scenarios, we did not observe an 
advantage to accounting for baseline responses.  One must remember that in the 
simulations the data were generated such that there were no systematic 
differences in outcomes between treatment groups at baseline.  This was done to 
reflect the fact that randomization will, on average, result in the two treatment 
groups being comparable at baseline.  In any particular randomization (as in any 
particular simulated dataset) it is possible that the groups may be imbalanced at 
baseline; however, on average, the treatment groups will be comparable at 
baseline.  Our findings suggest that in many settings, one will not, on average, 
observe substantial differences in power between cluster-level analyses and GEE-
based methods of analyses.  However, in specific cluster randomization trials, one 
may observe meaningful differences in baseline response between treatment 
groups.  For this reason, there are strong arguments for using statistical methods 
that account for baseline responses.  In several of the scenarios that we examined, 
the three methods that adjusted for baseline response had good statistical power 
relative to the competing methods. 

Apart from statistical power, there are other advantages and disadvantages 
to the different statistical methods for the analysis of repeated cross-sectional 
cluster randomization trials with binary outcomes which are more fully described 
elsewhere (Donner and Klar, 2000; Ukoumunne and Thompson, 2001).  However, 
we briefly highlight a few of these.  An advantage of the regression based 
approaches (GEE and random effects methods) is the ability to adjust for subject 
characteristics.  It is possible that the two treatment groups may be imbalanced on 
measured baseline characteristics during the second measurement period.  
Regression-based approaches allow one to adjust for residual differences between 
treatment groups.  A drawback to these methods is that measure of treatment 
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effect is the odds ratio.  The use of the odds ratio as a measure of treatment effect 
in RCTs has been criticized by clinical commentators (Sackett et al., 1996; 
Jaeschke et al., 1995).  Clinical commentators have suggested that the relative 
risks, the absolute risk reduction, and the number needed to treat are more 
informative for clinical decision making (Laupacis et al., 1988; Cook and Sackett, 
1995; Sinclair and Bracken, 1994).  An advantage to the use of cluster-level 
analyses is that one can report absolute measures of treatment effect.  In 
particular, one can report the absolute change in the probability of the outcome at 
the cluster level. 

There are certain limitations to the current study.  First, we only examined 
power in the setting of the completely randomized design.  Other designs such as 
the matched pairs design and the stratified randomized design are also used for 
cluster randomization trials (Donner and Klar, 2000; Donner, 1999).  However, 
the completely randomized design is both the simplest design as well as allowing 
for a wide number of different statistical methods of analysis.  Thus, it is 
important that the relative power of different statistical methods be examined for 
this design.  Second, we examined a limited number of scenarios defined by 
different values for the number of clusters per arm, the number of subjects per 
cluster, the cluster variance, the cluster auto-correlation, and the secular time 
effect.  The number of clusters and number of subjects per cluster were selected 
from an analysis of a database of cluster randomization trials that were designed 
to change professional practice in health care.  Thus, our data-generation 
processes resulted in simulated trials that were similar to cluster randomization 
trials that were designed to examine interventions to change professional practice 
in health care, an area in which cluster randomization is frequently employed.  
Furthermore, our findings were consistent across a large number of different 
scenarios within this framework.  The time intensive nature of the simulations 
restricted the number of different scenarios that could feasibly be examined.  A 
final limitation was that our study was limited to an examination of statistical 
power, and did not examine estimation issues such as bias and precision.  We did 
not examine bias, since the different methods used different metrics to estimate 
the treatment effect.  The cluster-level analyses used either the follow-up 
probability of a response or the change in the probability of a response as the 
metric, while the other methods used the odds ratio as the measure of treatment 
response.  Furthermore, the GEE approach estimates marginal (or population-
average) odds ratios, while the random effects approach estimates conditional (or 
subject-specific) odds ratios.  The current study focused on statistical power 
alone, since this aspect of the design of cross-sectional cluster randomization 
trials has not been well explored.  Furthermore, cluster randomization trials are 
often small, and therefore using the analytic method that will maximize statistical 
power will allow for an efficient use of resources. 
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In conclusion, the current study is the only study to date to examine the 
relative statistical power of different methods for the analysis of repeated cross-
sectional cluster randomization trials with binary outcomes.  The use of random 
effects models to estimate the effect of the intervention on the change from 
baseline had lower power compared to the other methods across a wide range of 
scenarios.  Apart from this, the remaining competing methods tended to have 
comparable statistical power. 
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