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Background: Protein complexes play an important role in cellular mechanisms. Recently, several methods have
been presented to predict protein complexes in a protein interaction network. In these methods, a protein
complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a
protein complex does not have to be a complete or dense subgraph.

Results: We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity
number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes
in two benchmark data sets (MIPS and Aloy), containing 1142 and 61 known complexes respectively. We compare
CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC) in terms of recall and
precision. We show that CFA predicts more complexes correctly at a competitive level of precision.

Conclusions: Many real complexes with different connectivity level in protein interaction network can be
predicted based on connectivity number. Our CFA program and results are freely available from http://www bioinf.

Background

Several groups have produced a large amount of data on
protein interactions [1-9]. It is desirable to use this
wealth of data to predict protein complexes. Several
methods have been applied to protein inter-actome
graphs to detect highly connected subgraphs and predict
them as protein complexes [10-25]. The main criterion
used for protein complex prediction is cliques or dense
subgraphs. Spirin and Mirny proposed the clique-finding
and super-paramagnetic clustering with Monte Carlo
optimization approach to find clusters of proteins [10].
Another method is Molecular Complex Detection
(MCODE) [11], which starts with vertex weighting and
finds dense regions according to given parameters. On
the other hand, the Markov CLuster algorithm (MCL)
[26,27] simulates a flow on the network by using prop-
erties of the adjacency matrix. MCL partitions the graph
by discriminating strong and weak flows in the graph.
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The next algorithm is RNSC (Restricted Neighborhood
Search Clustering) [13]. It is a cost-based local search
algorithm that explores the solution space to minimize a
cost function, which is calculated based on the numbers
of intra-cluster and inter-cluster edges.

However, many biological data sources contain noise
and do not contain complete information due to limita-
tions of experiments. Recently, some computational
methods have estimated the reliability of individual
interaction based on the topology of the protein interac-
tion network (PPI network) [23,28,29]. The Protein
Complex Prediction method (PCP) [30] uses indirect
interactions and topological weight to augment protein-
protein interactions, as well as to remove interactions
with weights below a threshold. PCP employs clique
finding on the modified PPI network, retaining the ben-
efits of clique-based approaches. Liu et al. [31] proposed
an iterative score method to assess the reliability of pro-
tein interactions and to predict new interactions. They
then developed the Clustering based on Maximal Clique
algorithm (CMC) that uses maximal cliques to discover
complexes from weighted PPI networks.
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Following these past works, we model the PPI network
with a graph, where vertices represent proteins and
edges represent interactions between proteins. We pre-
sent a new algorithm CFA-short for k-Connected Find-
ing Algorithm—to find protein complexes from this
graph. Our algorithm is based on finding maximal
k-connected subgraphs. The union of all maximal
k-connected subgraphs (k > 1) forms the set of candi-
date protein clusters. These candidate clusters are then
filtered to remove (i) clusters having less than four pro-
teins and (ii) clusters having a large diameter. We com-
pare the results of our algorithm with the results of
MCL, RNSC, PCP and CMC. Our algorithm produces
results that are comparable or better than these existing
algorithms on real complexes of [32,33].

Preliminaries

Generally, a complete or a dense subgraph of a protein
interaction network is proposed to be a protein com-
plex. But there are many complexes which have different
topology and density (see Figure 1). So we need to
define a criterion to predict protein complexes with dif-
ferent topology.

Interaction Graphs

A PPI network is considered as an undirected graph G =
(V, E), where each vertex v € V represents a protein in
the network and each edge uv € E represents an
observed interaction between proteins u and v. Two
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vertices u# and v of G are adjacent or neighbors if and
only if uv is an edge of G. The degree d(v) of a vertex v
is defined as the number of neighbors that the protein v
has.

The density of a graph G = (V, E) is defined by

_ 2
c=——

VI(IVI=1)

If all the vertices of G are pairwise adjacent, then G is
a complete graph and Dg = 1. A complete graph on n
vertices is denoted by K,,. The cluster score of G is
defined as Dg x |V].
K-Connectivity
A path in a non-empty graph G = (V, E) between two
vertices u and v is a sequence of distinct vertices u = v,
Vi o Ve =vsuchthatviv;,; € E,0<i< k-1.Gis
called connected if every two vertices of G are linked by
a path in G. G is called k-connected (for k € RX) if |V] >
k and the graph G = (V - X, E - (X x X)) is connected
for every set X € V with |X| < k. The distance d(u, v) is
the shortest path in G between two vertices & and v.
The greatest distance between any two vertices in G is
the diameter of G denoted by diamG. A non-empty 1-
connected subgraph with the minimum number of
edges is called a tree. It is well known that a connected
graph is a tree if and only if the number of edges of the
graph is one less than the number of its vertices. It is a

network in Part (A).

Figure 1 Connectivity of two known complexes. Part (A) contains two known complexes reported by MIPS (MIPS ID: 510.40.10 and 550.1.213).
In complex 1, except for one vertex, there are at least two independent paths between every two proteins. In complex 2, except for two
vertices, there are at least two independent paths between every two proteins. Part (B) are two 2-connected subgraphs obtained from the
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classic result of graph theory— the global version of
Menger’s theorem [34]-that a graph is k-connected if
any two of its vertices can be joined by k independent
paths (two paths are independent if they only intersect
in their ends).

Results and Discussion

Data Sets

Protein-Protein Interaction Network Data

In this work, we use two high-throughput protein-pro-
tein interaction (PPI) data collections. The first data col-
lection, GRID, contains six protein interaction networks
from the Saccharomyces cerevisiae (bakers’ yeast) gen-
ome. These include two-hybrid interactions from Uetz
et al. [2] and Ito et al. [3], as well as interactions charac-
terized by mass spectrometry technique from Ho, Gavin,
Krogan and their colleagues [6-9]. We refer to these
data sets as PPl,;,, PPIl},, PPly,, PPIlc, in2 PPlcayine,
and PPl ogan-

The other data collection is obtained from BioGRID
[35]. This data collection includes interactions obtained
by several techniques. We only consider interactions
derived from mass spectrometry and two-hybrid experi-
ments as these represent physical interactions and co-
complexed proteins. We refer to this data set as PPIg,,.
Grip- Some descriptive statistics of each protein interac-
tion network are presented in Table 1.

Protein Complex Data

Two reference sets of protein complexes are used in our
work. The first data set was gathered by Aloy et al. [32]
and the other was released in the Munich Information
Center for Protein Sequences (MIPS) [33] at the time of
this work (September 2009). We refer to the two protein
complex data sets as APC (Aloy Protein Complex) and
MPC (MIPS Protein Complex), respectively. Details of
these data sets are described in Table 2. During valida-
tion, those proteins which cannot be found in the input
interaction network are removed from the complex data.
Cellular Component Annotation

The level of noise in protein interaction data—especially
those obtained by two-hybrid experiments—has been
estimated to be as high as 50% [36-38]. Liu et al. [31]
have shown that using a de-noised protein interaction

Table 1 Summary statistics of each data set

Data set Proteins Interactions Min. Deg Avg.Deg Max. Deg
PPlgiocrip 5040 27557 0 1093 318
PPlavins 1563 6531 0 8.36 81
PPlgayina 1373 3200 0 4.66 52
PPlogan 2672 7073 0 529 140

PPl 1563 3596 1 4.60 62

PPlyo 775 732 0 1.8 54

PPlyer 823 823 0 1.7 21
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Table 2 Summary statistics of each protein complex data
sets for each PPl network

PPl MPC APC

No. of  Avg. Max No. of  Avg. Max

Complex Size size Complex Size size
Biogrid 651 11.94 88 62 9.29 34
Gavin6 443 11.31 80 53 8.84 27
Gavin2 439 1135 88 54 872 26
Krogan 531 10.89 75 56 894 31
Ho 543 10.55 70 30 6.60 18
Ito 119 5.85 20 15 4.86 8
Uetz 355 9.15 56 12 641 14

network as input leads to better quality of protein com-
plex predictions by existing methods. A protein complex
can only be formed if its proteins are localized within
the same component of the cell. So we use localization
coherence of proteins to clean up the input protein
interaction network. We use cellular component terms
from Gene Ontology (GO) [39] to evaluate localization
coherence. We find that among the 5040 yeast proteins,
only 4345 or 86% of them are annotated. To avoid arriv-
ing at misleading conclusions caused by biases in the
annotations, we use the concept of informative cellular
component. We define a cellular component annotation
as informative if it has at least k proteins annotated with
it and each of its descendent GO terms has less than k
proteins annotated with it. In this work, we set k as 10.
This yields 150 informative cellular component GO
terms on the BioGRID data set.

Performance Evaluation Measures

There are many studies that predict protein complexes.
To evaluate the performance of various protein complex
prediction methods, we compare the predicted protein
complexes with real protein complex data sets, APC
and MPC.

To compare the clusters—i.e., predicted protein com-
plexes—found by different algorithms to real protein
complexes, we use a measure based on the fraction of
proteins in the predicted cluster that overlaps with the
known complex. Let S be a predicted cluster and C be a
reference complex, with size |S| and |C| respectively.
The matching score between S and C is defined by

2
SNC]
Overlap(S,C) = el
ISlic]

If Overlap(S,C) meets or exceeds a threshold 6, then
we say S and C match. Following Liu et al. [31], we use
an overlap threshold of 0.5 to determine a match.

Given a set of reference complexes C = {Cy, Cs, ....,
C,}and a set of predicted complexes S = {S1,Ss, ..., S,,.},
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precision and recall at the whole-complex level are
defined as follows:

_ {S;eS|3C jeC, Overlap(S;,C j)=6}|
N
[{CieC|3SjeS, Overlap(S j,C;)=6}|
Cl

Prec

Recall =

The precision and recall are two numbers between 0
and 1. They are the commonly used measures to evalu-
ate the performance of protein complex prediction
methods [30,31]. In particular, precision corresponds to
the fraction of predicted clusters that matches real pro-
tein complexes; and recall corresponds to the fraction of
real protein complexes that are matched by predicted
clusters.

Another measure which can be used to evaluate the
performance of a method is F-measure. According to
[40], this measure was first introduced by Rijsbergen
[41]. They defined F-measure as the harmonic mean of
precision and recall:

_ 2*Prec*Recall
Prec+Recall

Observations

To justify using the connectivity definition and cellular
component annotation, we analyze the connectivity
number and localization coherence of reference com-
plexes of MPC on PPI networks obtained by [6-9] as
well as [35].

Co-Localization Score of Known Complexes

A protein complex is a set of proteins that interact with
each other at the same time and place, forming a single
multimolecular machine [10]. This biological definition
of a protein complex helps us predict protein com-
plexes. Using the information of cellular component
annotation existing in GO, Liu et al. [31] define a locali-
zation group as the set of proteins annotated with a
common informative cellular component GO annota-
tion. They then define the co-localization score of the
complex, ¢, as the maximum number of proteins in the
complex that are in the same localization group, max{c
NL;|i=1,..5k}, divided by the number of those pro-
teins in ¢ with localization annotations, [{p € ¢|3L; € L,
p € Lj}|, where L = {Ly, ..., Ly }is a set of localization
groups. More formally, the co-localization score of a set
of complexes C is the weighted average score over all
complexes:

Y cecmax{cnLili=1,...,k}
SeeclpecPLieLpeli}

locscore(C) =
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The locscore for MPC and APC are 0.74 and 0.86
respectively. The relatively large values of these numbers
suggest that cleaning the input PPI network by cellular
component information should help us improve preci-
sion and recall of existing algorithms.

Impact of Localization Information

In this work, the cleaning of PPI networks using infor-
mative cellular component GO terms is an important
preprocessing step. So we analyze here the impact of
using informative GO cellular component annotation on
the performance of four existing algorithms—-CMC,
MCL, PCP, and RNSC- on their standard parameters.
(The CMC package comes with its own PPI-cleaning
method. However, in order to observe the effect of
cleaning based on cellular component GO terms on
CMC, this method is not used in this work.)

Let G; = G[L;] be the induced subgraph of G gener-
ated by the vertex set L;, where {Ly, Ly, ..., L} is the set
of localization groups. Thus each L; contains a set of
proteins localized to the same cellular component-i.e.,
they are annotated by the same informative GO term.
Let C; be the set of all clusters predicted by an algo-
rithm on G;-C, = U:e_l C; denotes the set of all clus-

ters predicted by the algorithm on G.

To evaluate the impact of localization information, we
compare the precision and recall of C; and clusters gen-
erated on the original PPI network G. Table 3 sum-
marizes some general features of clusters predicted by
the algorithms mentioned. We observe that, by using
protein cellular component annotations, the number of
predicted clusters generally increases, while the average
cluster size decreases. We further observe that the aver-
age size of clusters predicted by MCL and CMC algo-
rithms are larger than those predicted by others. We
also compare the precision and recall of the clusters
predicted by the four algorithms. We find that generally
the precision and recall values have significant improve-
ments in Cj.

The precision and recall values obtained at the match-
ing threshold @ = 0.5 are given in Table 3. RNSC per-
forms best on PPlg;,4;4, while MCL performs best on
PPIlG,yines PPIGayina, and PPIy,. In the orginal network of
PPIli44an, PCP shows better precision against recall com-
pared to other methods, while after cleaning by using
localization information almost all methods have similar
performance. This table shows that none of these algo-
rithms has the best precision vs recall in all networks.

We present two illustrative examples in Figure 2. The
first example (Figure 2(A)) is the unmatched cluster pre-
dicted by CMC on the original network of PPIg,,;,>.
This cluster contains a four-member protein complex
with specific GO cellular component annotation
(GO.0005956; protein kinase CK2 complex). The other
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Table 3 Features of clusters predicted by different algorithms on the both the original and C; networks

cmcC MCL

Avg Avg Avg Avg

PPI Setting Cluster Size Prec Recall Den. Cluster Size Prec Recall Den.
BioGRID (M 295 9.58 0210 0.124 0.78 376 1041 0.098 0.072 040
@) 296 9.36 0.361 0.155 0.75 647 943 0.2411 0.173 049

Gavin6 m 155 10.51 0.367 0.203 0.66 160 11.72 0471 0.194 0.50
#) 299 9.55 0.401 0.239 0.62 327 940 0.486 0.261 0.57

Gavin2 m 110 115 0.390 0.118 044 115 9.81 0.652 0.252 0.39
) 213 9.69 0.417 0.159 049 373 9.63 0479 0.266 040

Krogan (M 215 893 0.251 0.124 0.60 246 8.07 0.146 0.094 043
®) 166 8.15 0.494 0.163 0.64 247 7.77 0.477 0.184 0.54

Ho m 121 817 0.206 0.057 0.32 146 8.19 0486 0.145 0.34
#) 149 7.89 0.335 0.103 045 96 7.28 0.500 0.110 0.36

PCP RNSC

Avg Avg Avg Avg

PPI Setting Cluster Size Prec Recall Den. Cluster Size Prec Recall Den.
BioGRID M 174 873 0.253 0.109 051 174 6.31 0367 0.119 0.78
@) 341 9.27 0.343 0.158 0.60 301 7.36 0.425 0.156 081

Gavin6 (M 95 961 0463 0.185 063 105 641 0381 0.126 0.74
) 228 9.14 0.482 0.243 0.62 295 733 0.410 0.234 0.72
Gavin2 m 54 940 0.537 0.125 0.50 89 5.98 0.370 0.074 061
) 121 9.17 0446 0.141 045 158 6.81 0.487 0.132 0.59

Krogan (1 100 790 0.380 0.109 061 92 6.25 0423 0.081 0.72
@) 205 7.66 0.458 0.158 068 200 6.77 0.510 0.165 0.69
Ho m 42 559 0.285 0.040 0.29 15 6.85 0.333 0.046 041
#) 51 5.00 0.372 0.060 0.37 26 6.84 0.370 0.073 0.38

In the setting column, (1) refers to the original network and (2) refers the network obtained by seggregation according to informative cellular component GO
term annotations.
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Figure 2 Examples of the clusters predicted on the original and the C;. networks. Part (A) illustrates the impact of using informative
cellular component GO term annotations on the performance of CMC. CMC predicts the unmatched cluster on the original network. This cluster
is refined in C; to matched well with the real complex in MPC. Part (B) shows a seven-member cluster predicted by PCP after the input PPI
network is cleansed using informative cellular component GO term annotations.
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seven proteins in the CMC cluster belong to other loca-
lization groups. This cluster is refined in C; to match
well with the same real complex. In Figure 2(B), PCP
predicts a sevenmember cluster matched to a complex
of MPC using the localization annotation on PPl g4
In contrast, only four proteins in this complex are
matched to the corresponding PCP cluster predicted on
the original network.

Density of Known Complexes

We consider the density of known complexes with size
at least three for each PPI network. Figure 3 shows that
algorithms based on graph density cannot predict a
large number of known complexes, and recall values of
these algorithms are destined to be limited. For example,
there are 11 complexes among 827 known complexes
with Dg = 0 and 41 complexes with density value less
than 0.1 in PPlp;,grp- Similarly, there exist 200 com-
plexes among 551 known complexes with density value
less than 0.1 in PPl ;0.

Furthermore, almost all complexes which are complete
or have high density are of the form Kj, while there are
a large number of cliques of size 3 which are not com-
plex. For example, in PPIg;,grip, there exist 176 known
complexes of size three, while the number of cliques of
size 3 in PPlg;,grip is 37230. It means that only about
0.47% of them are known real complexes. So, those
clusters and complexes with size atmost three are
removed in our work, to avoid an excessive number of
false positive predictions.

We have also studied the number of known com-
plexes of size four in PPIg;,grp- We find that there
exist 138 real complexes of size four, while only 54 of
them have high density.

The discussions above suggest that the density criter-
ion alone cannot answer the question of finding
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complexes. We need to introduce another criterion to
overcome this problem.
Connectivity of Known Complexes
We show in this section that connectivity is a reasonable
alternative criterion for identifying protein complexes.
Although this criterion is simple, it may directly
describe the general understanding of the protein com-
plex concept. This criterion is better than density
because, while there are a lot of known complexes that
are not complete or dense, there are many k-connected
subgraphs with low density. For example, Figure 1(A)
shows two real complexes of MPC with low density
(0.34). Both of them have a large 2-connected subgraph.
Similar to the definition of locscore, we define kscore
of a set of complexes, C, as follows;

Y ce ¢ max{ |slk(c)| li=1,...,n}
YcecKpeclFgec,pge E}|

where s¥(c),s%(c), ..., s¥(c) are maximal k- connected
subgraphs of complex c.

In Table 4, the kscore and average density of different
PPI networks on MPC are shown. The average density
of the set of real complexes are usually low. On the
other hand, on average, 99.5% of proteins of each real
complex are located in 1-connected subgraphs. Also
78.4%, 53.7% and 37.4% of proteins of each real complex
are located in 2-connected, 3- connected, and 4-con-
nected subgraphs respectively. By increasing the connec-
tivity number, this average decreases but there exist
some proteins which are located in a subset of a real
complex with high k- connectivity.

This suggests that using connectivity number as a cri-
terion of protein complex prediction may be a good
approach. Therefore, our algorithm is based on finding

kscore(C) =
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Density

Figure 3 The frequency distribution of known protein complexes having various density of protein interactions within them.
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Table 4 The kscore and average density of different PPl
networks on MPC

Data Set PPlgiogrip  PPlGavine  PPlavin2 ~ PPlkrogan ~ PPluo
Avg Density 041 0.29 0.21 0.20 0.25

1score 0.995 0.929 0.970 0.870 0.983
2score 0.784 0.868 0.758 0.678 0.748
3score 0537 0.521 0494 0351 0446
4score 0.374 0318 0.397 0.254 0.232

maximal k-connected subgraphs in PPI networks by
keep increasing k until k cannot be increased any more.
In other words, the algorithm continues until some inte-
ger ko such that there is no k-connected subgraph with
k > ko.

Evaluation

Testing for Accuracy

To check the validity of CFA, we compare clusters pre-
dicted by CFA with the clusters obtained by CMC,
MCL, PCP and RNSC, on the seven protein interaction
networks of GRID and BioGRID. The networks are first
segregated by informative cellular component GO terms
before these algorithms are run. MPC and APC are
used as benchmark real protein complexes.

In PPI;,, none of the algorithms could produce any
cluster matched by real complexes in MPC and APC.
PPI}; o, is a difficult example because, as can be seen in
Table 1, it is a much sparser and much more incom-
plete network compared to the other PPI networks. So
in Table 5, we present the number of matched clusters
and matched complexes predicted by the clustering
methods on the other six PPI networks.

Table 5 shows that CFA performs better on PPl ogan
PPI,, PPlg,,io and PPlg,,;.¢ compared to other meth-
ods. In fact, both precision and recall values of CFA are
greater than all of the other algorithms in these net-
works. In PPI;,, RNSC has the greatest precision. How-
ever, RNSC predicts merely 26 clusters and, among
these predictions, 13 clusters are matched to 5 real
complexes in APC and 19 clusters are matched to 21
real complexes in MPC. Thus the recall value of RNSC
is very low (0.166 on APC and 0.038 on MPC). In con-
trast, CFA correctly predicts 13 real complexes of APC
and 62 of MPC. The clusters of CFA give the precision
value 0.416 (0.166) and the recall value 0.114 (0.433) on
MPC (APC), which are generally better than that
obtained by RNSC and other methods on PPIy,.

We also study the number of matched clusters and
matched complexes of predictions on PPlg;ygq. We find
that almost all algorithms predict the same number of
real complexes in APC. However, CFA matches a lot
more complexes in MPC than CMC (18% more), MCL
(5% more), PCP (15% more) and RNSC (17% more).
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Furthermore, this significant superiority of CFA in recall
comes with the highest precision value in MPC. The
overall precision of CFA on the combined APC and
MPC complexes, as can be computed from Table 6, is
0.492, which is comparable to CMC (0.422), PCP
(0.411), and RNSC (0.502), and is superior to MCL
(0.274).

We find that all complexes predicted by CMC and
RNSC are identified by at least one of the other three
algorithms. To compare real complexes predicted by
CFA, MCL and PCP, Figure 4 shows a Venn diagram of
complexes predicted by these algorithms on the com-
bined set of APC and MPC complexes. It shows that
CFA predicts maximum number of real complexes that
MCL and PCP cannot predict. So CFA is finding a dif-
ferent group of complexes from other methods.

Some interactions in PPl g4 are derived from two-
hybrid technique. Due to the level of noise in two-
hybrid experiments, we expect those predicted clusters
having the form of a tree structure to have lower relia-
bility compared to other 1-connected subgraphs. Hence,
in order to improve the results of CFA, we only use
1-connected subgraphs that are not trees. A tree with »
vertices has 7 - 1 edges; so a connected cluster is a tree
if and only if its cluster score is 2. Thus, we consider
1-connected subgraphs with cluster scores greater than
2. Similarly, we can do additional filtering for each
k-connected subgraphs by considering the clusters with
cluster score greater that k+1. The precision and recall
values of the resulting further refined clusters are 0.465
and 0.178 in MPC and 0.347 and 0.838 in APC. So the
precision vs recall of CFA, using cluster score filtering,
shows significant improvement compared to other
methods in PPlg;sq on APC too.

On the other hand, we observe that some predicted
clusters have large overlap with each other. That is, we
have some clusters S; and S; such that Overlap(S;, S))
> a. To get a more concise understanding of CFA and
the other prediction methods, we also clean up the set
of predictions by removing redundant clusters. In the
other words, when two predicted clusters show an over-
lap score above the threshold value (of o = 0.5), we
keep the larger one. The precision and recall values
after this additional cleaning of the set of predictions
are given in Table 7. Table 7 shows that, generally, CFA
identifies the most number of complexes based on non-
redundant predicted clusters on each PPI network.
Examples of Predicted Clusters
In this section, we present five matched and unmatched
clusters predicted by CFA.

In Figure 1(A), two MIPS complexes, marked as 1 and
2, are depicted according to the protein interactions of
PPIG,,inn- Complex 1 is an eleven- member complex
(MIPS ID. 550.1.213; Probably transcription DNA
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Table 5 Precision and recall values of different algorithms on each PPl network
APC MPC

Method Data No. of Match Recall/Prec Match Match Recall/Prec Match

Set Cluster Complex Cluster Complex Cluster
CFA m 423 52 0.838 0.310 131 119 0.182 0.435 184
CMC Mm 296 51 0.822 0.293 87 101 0.155 0.361 107
MCL (M 647 51 0.822 0.179 116 13 0.173 0.241 156
pCP (1 341 50 0.806 0.290 99 103 0.158 0.343 17
RNSC (1 301 52 0.838 0.345 104 102 0.156 0425 128
CFA ) 324 51 0.962 0.456 148 122 0.275 0.543 176
CMC ®)] 299 50 0.943 0.347 104 106 0.239 0401 120
MCL ®) 327 50 0.943 0422 138 116 0.261 0486 159
pCP ) 228 48 0.905 0403 92 108 0.243 0482 110
RNSC ) 295 50 0.943 0362 107 104 0.234 0410 121
CFA 3) 235 49 0.907 0.497 117 119 0.271 0.595 140
CMC (3) 213 31 0574 0347 74 70 0.159 0417 89
MCL (3) 373 47 0.870 0332 124 17 0.266 0479 179
PCP 3) 121 28 0518 0.388 47 62 0.141 0446 54
RNSC 3) 158 25 0463 0392 62 58 0.132 0487 77
CFA @) 330 45 0.803 0.451 149 104 0.195 0.533 176
cMmC ) 166 40 0714 0379 63 87 0.163 0494 82
MCL ) 247 45 0.803 0368 91 98 0.184 0477 118
pPCP ) 205 40 0.714 0400 82 84 0.158 0458 94
RNSC @) 200 37 0,660 0430 86 88 0.165 0.510 102
CFA (5) 120 13 0.433 0.166 20 62 0.114 0416 50
CMC (5) 149 6 0.200 0.060 9 56 0.103 0.335 50
MCL (5) 96 12 0400 0.250 24 60 0.110 0.500 48
pCP (5) 51 4 0.133 0.098 5 33 0.060 0372 19
RNSC (5) 26 5 0.166 0.500 13 21 0.038 0.730 19
CFA ©) 45 3 0.200 0.088 4 15 0.126 0.226 12
CMC ©6) 9 0 0.000 0.000 0 1 0.008 0.111 1
MCL ) 65 3 0.200 0.076 5 15 0.126 0.230 15
pCP ©) 8 0 0.000 0.000 0 1 0.008 0.125 1
RNSC 6) 11 0 0.000 0.000 0 1 0.008 0.545 6

The “data sets” column refers to networks, where (1) denotes PPlgiog,iqs (2) denotes PPlgayins, (3) denotes PPlgayiny, (4) denotes PPliogans (5) denotes PPly,, and (6)
denotes PPly,. The best precision and recall value for each PPl network are highlighted in bold font.

Table 6 Detailed breakdown of predicted clusters by
different algorithms with respect to APC and MPC
reference protein complexes

Method |A| |B] |[AuB| |A-B| |B-A| No.of Precision
Cluster

CFA 184 131 208 77 24 423 0492

CMC 107 87 125 38 18 296 0422

MCL 156 116 177 61 21 647 0.274

PCP 117 99 140 41 23 341 0411

RNSC 128 104 151 47 23 301 0.502

Here A is the set of matched clusters on MPC and B is the set of matched
clusters on APC. The number of matched clusters on MPC or APC, exclusively
MPC and exclusively APC are shown.

Maintanace Chromatin Structure) that contains a pro-
tein, Y NL113W, whose interactions with other proteins
are missing from PPIg,,;,». Complex 2 contains 12 pro-
teins (MIPS ID. 510.40.10; RNA polymerase II ) and
there exists a protein, ¥ LR418C, in this complex whose
interactions with other proteins are missing in PPIg,,»-
There are four common proteins in these two com-
plexes. Without considering localization annotations,
CFA predicts all vertices of this graph (except for Y
LR418C and Y NL113W) as a 2-connected subgraph.
After segregating the network using GO terms, CFA
predicts two clusters (Figure 1(B)) which are matched to
the real complexes in Figure 1(A).
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PCP

Figure 4 The Venn diagram of matched complexes. A Venn
diagram of the combined set of complexes in APC and MPC that
are correctly predicted by CFA, CMC and RNSC based on PPlgog,ig
network.

In Figure 5, we show three matched and unmatched
clusters. The first cluster contains 30 proteins from
PPIG,,ine- The cluster is perfectly matched to a com-
plex in MPC of size 30. The density in this complex is
0.2, so it can be considered as a non-dense real com-
plex. The second cluster is a nineteen-member cluster
from PPly;oeq,- This cluster contains a known complex
in MPC of size 18 proteins with specific GO annota-
tion (GO: 0006511; ubiquitin-dependent protein cata-
bolic process). The one additional protein (YDR363W-
A) predicted by CFA to be in this cluster turns out to
have the same biological process GO term annotation.
We think that with more accurate experimental data,
this 19th protein may also be a protein of this com-
plex. The smallest cluster in our samples contains six
proteins that are predicted by CFA in PPlg;,grip- The
cluster members have the same specific GO annotation
(GO: 0015031; protein transport), though this cluster is
not presented as a known complex in MPC and APC.

To gain further insights into the differences among
CFA’s clusters and clusters predicted by other algo-
rithms, we consider the first CFA cluster presented in
Figure 5. This cluster is matched perfectly to a 30-mem-
ber complex on MPC. In contrast, CMC'’s clusters only
overlap with at most 16 members of this complex. The
corresponding cluster predicted by PCP is a twenty five-
member cluster, and the other members of the real
complex do not belong to the PCP cluster. Similarly,
merely fifteen members of the corresponding RNSC
cluster overlap with the same complex. Among these
methods only MCL predicts a cluster which is matched
to the same complex perfectly.

The third cluster shown in Figure 5 is an unmatched
cluster which is obtained by CFA, CMC, PCP and
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RNSC algorithms. None of the proteins of this cluster
belongs to any real complex in MPC and APC. How-
ever, MCL predicts a cluster containing all members of
the above mentioned cluster with an extra protein with
a different GO term annotation.

Conclusions

In the first part of this work, we study the impact of
using informative cellular component GO term annota-
tions on the performance of several different protein
complex prediction algorithms. We have shown (Table
3) that existing algorithms predict protein complexes
with significantly higher precision and recall when the
input PPI network is cleansed using informative cellular
component GO term annotations. Therefore, we pro-
pose for protein complex prediction algorithms a pre-
processing step where the input PPI network is
segregated by informative cellular component GO terms.

In the second part of this work, we study the density
of protein interactions within protein complexes. We
have shown (Figure 3) that there are many real com-
plexes with different density. So density is not a good
criterion for prediction of protein complexes. Therefore,
we look at the connectivity number of complexes as a
possible alternative criterion. We observe (Table 4) that
87%-99% of real protein complexes are 1-connected,
68%-87% are 2-connected, 35%-54% are 3-connected,
and 23%-37% are 4-connected.

So in the third part of this work, we propose the CFA
algorithm to predict protein complexes based on finding
k-connected subgraphs on an input PPI network that
has been seggregated according to informative cellular
component GO term annotations on its proteins.
Table 8 shows the precision and recall of maximal k-
connected subgraphs on different PPI networks using
MPC complexes as reference protein complexes. It can
be seen that, by increasing the connectivity number of
subgraphs, precision values show significant improve-
ment compared to subgraphs with low connectivity
numbers. However, the recall values decrease, due to a
decrease in the number of predicted subgraphs. We
have found that combining the k-connected subgraphs
for various values of k as our set of predicted protein
complexes yields the best precision vs recall perfor-
mance. This combined set constitutes the predicted
clusters output by CFA.

Finally, we compare the performance of CFA to
several state-of-the-art protein complex prediction
methods. We have shown (Table 5) that CFA performs
better than other methods for most test cases. For
example, in the largest network in our test sets (PPlp,,.
grid), the number of complexes predicted by RNSC is
very low compared to CFA. In particular, CFA predicts
19 complexes which RNSC is unable to predict, while
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Table 7 Precision and recall values after removing highly overlapping clusters
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APC MPC

Method Data Set No. of Cluster Recall/Prec/F-measure Recall/Prec/F-measure

CFA ) 238 0.822 0.277 0.415 0.170 0.378 0.235
CMC (1) 208 0.741 0.235 0.358 0.145 0322 0.200
MCL Q) 467 0.790 0.113 0.199 0.147 0.164 0.155
PCP [ 230 0.758 0226 0.348 0.133 0.282 0.181
RNSC [ 186 0.809 0274 0.409 0.150 0.365 0213
CFA 2) 164 0.924 0.390 0.549 0.250 0.530 0.340
cMC 2) 197 0.924 0274 0423 0214 0.355 0.267
MCL ) 191 0.905 0.272 0419 0.221 0356 0.272
PCP () 144 0811 0319 0458 0214 0416 0.283
RNSC 2) 152 0.924 0.348 0.506 0.205 0.263 0.230
CFA 3) 124 0.907 0475 0.624 0.250 0.564 0.347
CcMC (3) 122 0.500 0237 0322 0.123 0.295 0173
MCL (3) 215 0.851 0237 0371 0.248 0.395 0.305
PCP (3) 82 0481 0.487 0485 0116 0.365 0.176
RNSC (3) 90 0425 0.255 0320 0.120 0.377 0.183
CFA (4) 169 0.767 0337 0469 0.180 0.455 0.258
cMC (4) 120 0.714 0.341 0462 0.158 0450 0.234
MCL (4) 150 0.767 0.293 0425 0.169 0.386 0235
PCP (4) 130 0.678 0.300 0416 0.133 0.369 0.196
RNSC (4) 108 0.660 0.370 0.475 0.160 0.500 0.242
CFA (5) 96 0.400 0.156 0.225 0.105 0.385 0.165
cMC (5) 109 0.166 0.045 0.072 0.073 0247 0113
MCL (5) 71 0.400 0.169 0.238 0.105 0.408 0.167
PCP 5) 43 0.133 0.093 0.110 0.055 0325 0.094
RNSC (5) 16 0.166 0.312 0217 0.023 0.562 0.045
CFA (6) 41 0.134 0.049 0.071 0.126 0.195 0.153
cMC (6) 8 0.000 0.000 0.000 0.008 0.125 0.015
MCL (6) 52 0.134 0.076 0.097 0117 0.192 0.145
PCP (6) 8 0.000 0.000 0.000 0.008 0.125 0.015
RNSC (6) 5 0.000 0.000 0.000 0.008 0.400 0.016

The “data sets” column refers to networks, where (1) denotes PPlgiogriq (2) denotes PPlgayine, (3) denotes PPlgayiny, (4) denotes PPlyyogan, (5) denotes PPly,, and (6)

denotes PPly,. The best precision and recall value for each PPl network are highlighted in bold font.

RNSC predicts 2 complexes which CFA is unable to
predict. Furthermore, by varying the threshold on the
matching score, we show in Figure 6 the F-measure
graphs based on protein clusters predicted for various
protein interaction networks. We observe that CFA con-
sistently shows the best performance compared to other
methods over the entire range.

Methods

In the Observations section we explained that cellular
component annotations can help us to improve predic-
tions. On the other hand, by studying the connectivity
number of real complexes as subgraphs of PPI network,
we showed that the connectivity number could be a rea-
sonable criterion to predict complexes. So we present a
new algorithm based on finding k-connected subgraphs

(1 < k) on PPI networks segregated by informative cellu-

lar component GO terms.

Algorithm
A new algorithm named CFA (k-Connected Finding
Algorithm) is presented here to predict complexes from
an input (cleansed) PPI network. The CFA algorithm
comprises two main steps. In the first step, maximal
k-connected subgraphs for various k are generated as
candidate complexes. In the second step, a number of fil-
tering rules are applied to eliminate unlikely candidates.
The heart of the first step of CFA contains two simple
procedures. The first procedure is REFINE, which
removes all vertices of degree less than k from the input
graph. This is an obvious optimization since, by the glo-
bal version of Menger’s theorem [34], such vertices
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Cluster 1

Cluster Size; 30
Density of Complex: 0.209

Complex: YBLO38W, YBR122C, YBR282W, YCRO46C, YCRO71C, YDR116C, YDR237W, YDR322W, YDOR405W, YDR462W,
YCRZ220C, YHR147C, YJLOS3C, YKL167C, YKROOBC, YKROSB5C, YLR312W-A, YLR439W, YMLOOSC, YMLO25C,
YMROZ24W, YMR193W, YMR225C, YNLOOSC, YNL177C, YNL252C, YNL284C, YOR150W, YPL183W-A, YPR100W

CFA: YBLO38W, YBR122C, YBR282W, YCRO46C, YCRO71C, YDR116C, YDR237W, YDR322W, YDR405W, YDR462W,
YGR220C, YHR147C, YJLO63C, YKL167C, YKRODGC, YKROB5C, YLR312W-A, YLR439W, YMLOOSC, YMLO25C,
YMRO24W, YMR193W, YMR225C, YNLOOSC, YNL177C, YNL252C, YNL284C, YOR150W, YPL1 83W-A, YPRT0OW,

CMC: YCRO46C, YBLO38W, YDR116C, YDR237W, YDR322W, YDR462W, YGR220C, YJLOB3C, YKLI67C, YKROD&C,
YKROB5C, YLR439W, YMLO25C, YMROZ24W, YNLOOSC, YNL252C, YNL284C

MCL:,  YBLO38W, YBR122C, YBR282W, YCRO46C, YCRO71C, YDR116C, YDR237W, YDR322W, YDR405W, YDR462W,
YGR220C, YHR147C, YJLOB3C, YKL167C, YKRDOGC, YKROB5C, YLR312W-A, YLR439W, YMLOO9C, YMLO25C,
YMRO24W, YMRT93W, YMR225C, YNLOOSC, YNL177C, YNL252C, YNL284C, YOR150W, YPL1 83W-A, YPR100W

FCF: YBR122C, YBLO38W, YBR282W, YCRO46C, YCRO71C, YDR116C, YDR237W, YDR322W, YDR405W, YDR462W,
YGR220C, YJLO63C, YKL167C, YKROO6C, YKROB5C, YLR439W, YMLO25C, YMROZ4W, YMR193W, YLR312W-A,
YNLOOSC, YNL252C, YNL284C, YOR1 50W, YPL1 83W-A

RNSC: YBLO38W, YCRO46C, YDR116C, YDR237W, YDR322W, YDR462W, YCR220C, YJLO63C, YKRO85C, YLR439W,
YMLO25C, YMRO24W, YMRT93W, YNLOOSC, YNL2B4C

Cluster 2

Cluster size: 31
biclogical process: GO: 0006511 ; ubiquitin-dependent protein catabolic process

Complex: YDLOO7W,YDLOG7C, YOL147W, YDR394W, YDR427W, YEROZ1W, YFROO4W, YFRO52W, YCLO48C, YGR232W,
YHRO27C, YHRZ00W, YILO75C, YKLT45W, YORT17W, YOR239C, YORZ61C, YPR108W

CFA: YDLOO7W, YDLOS7C, YDL147W, YDR383W-A, YDR394W, YDR427W, YERO21W, YFROD4W, YFRO52W, YGLO48C,
YGR232W, YHRO27C, YHR200W, YILO7SC, YKL145W, YOR117W, YOR259C, YOR261C, YPR108W

Cluster 3

Cluster Size: 6
biclogical process: GO: 0015031; protein transport

CFA: YJR102C, YLR119W, YMRO77C, YPLOD2C, YLR417W, YPLOGSW

CMC: YJR102C, YLR119W, YMRO77C, YPLOOZC, YLR417W, YPLOGSW

MCL: YJR102C, YLR119W, YMRO77C, YPLOD2C, YLR417W, YPLO&SW, YGR206W
PCP: YJR102C, YLR119W, YMRO77C, YPLOO2C, YLR41 7W, YPLOGSW

RNSC: YJR102C, YLRT19W, YMRO77C, YPLOO2C, YLR417W, YPLOGSW

Figure 5 Examples of matched and unmatched clusters. Examples of matched (cluster 1 and 2) predicted clusters by CFA with different
density. And an example of unmatched cluster predicted by CFA which contains proteins having the same specific GO annotation (GO:
0015031; protein transport).

Table 8 Precision and recall values of maximal k-connected (k = 1) subgraphs, C1, C2, ..., €9, and their union U

PPlgioGrip PPlGayine PPIGayinz PPlyrogan PPl

Data Prec/Recall Prec/Recall Prec/Recall Prec/Recall Prec/Recall

C1 0356 0.163 0.486 0.248 0.685 0.252 0.537 0.184 0423 0.112
(@] 0.380 0.149 0497 0.241 0.535 0.161 0462 0.184 0461 0.058
a 0516 0.150 0.597 0.187 0.523 0.102 0.549 0.150 0.555 0.023
4 0.631 0112 0.666 037 0520 0.045 0.709 0.090 0.000 0.000
5 0.615 0.094 0.666 0.070 0538 0.022 0.720 0.065 - -

6 0614 0.059 0.562 0.049 0.600 0013 0.645 0.045 - -

c7 0.561 0.043 0.800 0024 0.500 0.002 0.608 0.037 - -

8 0.680 0.0353 0.714 0018 1.000 0.002 0.666 0.033 - -

9 0.880 0.0276 0.000 0.000 - - - - - -

u 0435 0.182 0.543 0.275 0.595 0.271 0.533 0.195 0416 0.114
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(D)

Figure 6 F-measure graphs of CFA, CMC, MCL, PCP, and RNSC. The F-measure graphs of five mentioned methods by varying the threshold
on matching scores for (A) PPlgiogrics (B) PPlcayine, (C) PPlgayina and (D) PPlxrogan.
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Table 9 Pseudo codes of CFA

Step1// Find maximal k-connected subgraphs

Procedure REFINE

Input: Graph G = (V, E) and a parameter k.

Output: All vertices in G of degree less than k are removed.
The reduced graph is returned.

Procedure COMPONENT

Input: Connected graph H = (V, £) and a parameter k.
Output: Fragment the graph H into k-connected subgraphs.
If H does not have more than k vertices,

Then stop.

Find some u,
subgraph.

up (h < k) in H such that H - {u1,..,.us} is not a connected

If such a set u,.., u, is found,

Then for all connected component ¢ in H - {uy,...un},
call COMPONENT(c,k)

Else return H as a result.

Procedure k-CONNECTED
Input: Graph G = (V,£)
Output: COMPONENT(REFINE(G k) k).

Step2:// Filtering

Procedure CFA
Input: Graph G = (V, £)
Output: Maximal k-connected subgraphs in G of size at least 4.
Setkto 1
While Ck is not empty
Set Ck to the result of k-CONNECTED(G).
Increment k.
Set G1 to 1-connected subgraphs from C1 with the diameter <4.

Set Gk to k-connected subgraphs from Ck with the diameter < k (for k
> 2)

Set U to the union of GK's (k > 1)
Remove all subgraphs of size less than 4 in the set U.

cannot be part of any k-connected subgraphs. The sec-
ond procedure is COMPONENT, which takes the
refined graph and fragments it into k-connected sub-
graphs. This procedure finds a set of & < k vertices that
disconnects the input graph, producing several con-
nected components of the graph. The procedure is then
recursively called on each of these connected compo-
nents. The procedure terminates on a connected com-
ponent (and returns it as a maximal k-connected
subgraph) if it cannot be made disconnected by remov-
ing & < k vertices. The correctness of this procedure fol-
lows straightforwardly from the global version of
Menger’s theorem.
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Table 10 Optimal parameters for CMC, MCL, PCP and
RNSC algorithms

Algorithm Parameter Optimal value
MCL Inflation 1.8
CMC Min-deg-ratio 1
Overlap-threshold 0.5
Merge-threshold 0.25
Min-size 4
pCP FSWeight-threshold 04
Min clique size 4
Overlap-threshold 0.5
RNSC Diversification frequency 50
Tabu length 50
Number of experiments 3
Scaled stopping tolerance 15

Shuffling diversification length 9

In the second step of CFA, we call the procedures
defined in the first step on larger and larger values of k
until no more k-connected subgraphs are returned. This
way, we obtain maximal k-connected subgraphs for var-
ious values of k. These subgraphs are then filtered using
the following three simple rules: (1) 1-connected sub-
graphs having diameter greater than 4 are removed. (2)
k-connected subgraphs (k = 2) having diameter greater
than k are removed. (3) Subgraphs of size less than 4
are removed. The pseudo codes of the CFA algorithm
are given in Table 9.

Implementation

We choose fixed parameter values for each algorithm
(Table 10). The implementations for RNSC and MCL
are obtained from the main author of [42], Sylvian Bro-
hee. The implementations for PCP and CMC are
obtained from the one of their authors, Limsoon Wong.
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