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Approximately one-quarter of the world’s population is 
affected by hypertension – a disease that causes approxi-

mately 7.1 million deaths per year, or 13% of total deaths 
worldwide (1,2). The prevalence of hypertension is considered 
to be a major public health concern of epidemic proportions, 
especially because hypertension leads to an increased risk of 
both cardiovascular and renal diseases (2-4). Essential hyper-
tension is caused by a combination of acquired and genetic 
metabolic defects involved in blood pressure regulation that 
interact with environmental factors such as diet and lifestyle 
(5). There are several metabolic alterations and downstream 
effects that increase blood pressure including insulin resistance, 
increased oxidative stress, increased formation of advanced 
glycation end products (AGEs), decreased nitric oxide (NO) 
bioavailability, altered renin angiotensin system (RAS) func-
tion and reduced renal sodium excretion (Figure 1). These 
alterations can lead to endothelial dysfunction, increased vas-
cular cytosolic free calcium, peripheral vascular resistance and 
the development of hypertension.

Diet is the lifestyle factor under the most scrutiny for its role 
in hypertension. To prevent hypertension, modifying various 
components of the diet, such as lowering salt and sugar intake, 
may be a key step in lowering high blood pressure (6). The 
Dietary Approaches to Stop Hypertension (DASH) study com-
pared the DASH diet with a typical North American diet (7). 
The DASH diet is high in fruits, vegetables, whole cereal prod-
ucts and low-fat dairy products; low in salt and saturated fat; 
moderately high in protein; and includes whole grains, poultry, 
fish and nuts (7). It was found that the DASH diet lowered 
blood pressure more than the North American diet, even after 
modifications had been made so that both diets had lower and 

similar sodium contents. The DASH diet contains more protein 
than a typical North American diet (18% versus 15%, respect-
ively) (8). The higher protein content may account for the effect 
of the DASH diet (7). Other studies such as the International 
Study of Salt and Blood Pressure (INTERSALT) (9), Multiple 
Risk Factor Intervention Trial (MRFIT) (10), Caerphilly Heart 
Study (11), Cardiovascular Diseases and Alimentary Comparison 
(CARDIAC) Study (12), Optimal Macronutrient Intake Trial 
to Prevent Heart Disease (OmniHeart) (13), and the 
International Study of Macro- and Micro-Nutrients and Blood 
Pressure (INTERMAP) (14) have demonstrated an inverse rela-
tionship between protein intake and blood pressure.

Studies have shown that vegetarians who consume more 
plant protein tend to have lower blood pressure than those 
who consume an omnivorous diet (15). As well, differences in 
dietary patterns among different cultures have identified rela-
tionships between protein intake and the prevalence of hyper-
tension. Asian cultures, which receive the majority of their 
protein intake from plant (47%) and seafood (23%) sources, 
with only 18% of protein intake from red meat and poultry, 
tend to have lower blood pressure than cultures that receive 
the bulk of their protein intake from red meat and poultry 
(16). The United States population, which has relatively high 
blood pressure, consumes 36% of their protein intake from red 
meat and poultry, with only 6% from seafood and 33% from 
plants (17).

The present article reviews the antihypertensive effects of 
dietary protein, examines the evidence of its antihypertensive 
effects in animal and human studies, and discusses the poten-
tial mechanisms by which protein exerts its antihypertensive 
effects.
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Hypertension is a leading cause of morbidity and mortality world-
wide. Individuals with hypertension are at increased risk of stroke, 
heart disease and kidney failure. Both genetic and lifestyle factors, 
particularly diet, have been attributed an important role in the 
development of hypertension. Reducing dietary sugar and salt intake 
can help lower blood pressure; similarly, adequate protein intake may 
also attenuate hypertension. Observational, cross-sectional and lon-
gitudinal epidemiological studies, and controlled clinical trials, have 
documented significant inverse associations between protein intake 
and blood pressure. Human and animal studies have shown that 
specific amino acids within proteins may have antihypertensive 
effects. Cysteine, glutathione (a tripeptide), glutamate and arginine 
attenuate and prevent alterations that cause hypertension including 
insulin resistance, decreased nitric oxide bioavailability, altered 

renin angiotensin system function, increased oxidative stress and 
formation of advanced glycation end products. Leucine increases 
protein synthesis in skeletal muscle and improves insulin resistance 
by modulating hepatic gluconeogenesis. Taurine and tryptophan 
attenuate sympathetic nervous system activity. Soy protein helps 
lower blood pressure through its high arginine content and antioxi-
dant activity exhibited by isoflavones. A diet containing an ample 
amount of protein may be a beneficial lifestyle choice for individuals 
with hypertension; one example is the Dietary Approaches to Stop 
Hypertension (DASH) diet, which is low in salt and saturated fat; 
includes whole grains, lean meat, poultry, fish and nuts; and is rich in 
vegetables, fruits and low-fat dairy products, which are good sources 
of antioxidant vitamins, minerals and fibre. Including an adequate 
supply of soy in the diet should also be encouraged.
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PROTEIN
In humans, proteins serve many functions including structural, 
kinetic, catalytic and signalling roles. They also act as carriers 
of vitamins, oxygen and carbon dioxide. Proteins also help 
maintain fluid balance, acid-base balance and form antibodies 
to help protect the body against disease (18,19).

The elemental composition of proteins is quite similar to 
those of lipids and carbohydrates because they all contain car-
bon, oxygen and hydrogen atoms. But unlike lipids and carbo-
hydrates, proteins contain nitrogen, which creates the amino 
groups found in amino acids, nucleotides and hormones (19). 
There are 20 different amino acids, which are classified as non-
essential or essential. Essential amino acids cannot be synthe-
sized by the human body and must be obtained from dietary 
sources, whereas nonessential amino acids are synthesized by 
the body or may be obtained from food (19). Therefore, to 
achieve optimal body function, humans must consume a diet 
that contains an adequate amount of protein from a variety of 

sources to ensure that all amino acids required to perform nor-
mal body functions are acquired. Proteins can be obtained from 
a variety of food sources such as meat, fish, poultry, milk, eggs, 
legumes, grains, nuts and vegetables (19). According to the 
WHO, the safe acceptable intake for protein for adults is 
0.83 g/kg/day, which is equivalent to 58.1 g/day for a 70 kg 
human (20).

ANTIHYPERTENSIVE EFFECT OF  
DIETARY PROTEIN

Protein studies
To date, the majority of studies conducted on hypertensive 
patients to determine whether dietary protein intake has an 
effect on blood pressure have suggested that a moderate 
increase in protein intake will indeed lower blood pressure 
(Table 1). For instance, a study conducted using the 10,020 
participants from the INTERSALT study investigated the rela-
tionship of blood pressure to dietary protein. The results of this 
study showed an inverse relationship between blood pressure 
and dietary protein intake (9). Similar results were found dur-
ing other population-based studies such as MRFIT (10), 
OmniHeart randomized trial (13), Caerphilly Heart Study (11) 
and the CARDIAC Study (12). Typically, human studies use 
data from 24 h dietary recall, food frequency questionnaires 
and common methods of blood pressure measurement to deter-
mine whether an inverse relationship between protein intake 
and blood pressure exists. However, human studies that used 
data from biochemical methods such as urinary markers of pro-
tein intake have also confirmed the existence of an inverse 
relationship between blood pressure and protein intake 
(21,22).

Many human studies have found that the antihypertensive 
effect of protein is related not only to the amount of protein in 
the diet, but also to the source of protein. Some researchers 
have investigated how the source of protein and its amino acid 
content play a role in lowering blood pressure. In doing so, 
many studies have compared omnivorous and vegetarian diets. 
For instance, the INTERMAP study (14) was conducted using 
4680 subjects whose nutrient intake was determined using 24 h 
dietary recall and blood pressure measured at four different 
meetings. It was found that protein intake from vegetable 
sources was inversely related to blood pressure, with no signifi-
cant blood pressure-lowering effect found for animal protein, 
suggesting that the amino acids found in plant proteins may 
have a greater impact on blood pressure than the amino acids 
found in animal proteins. However, studies conducted in both 
Japan and China have found an inverse relationship between 
animal protein intake and blood pressure after analyzing the 
nutrient intake and blood pressure measurements of over 
19,000 Asian inhabitants (23-27). Based on the results of these 
studies, it appears that specific amino acids within the protein, 
and increased amount of protein, are important for attenuating 
high blood pressure.

Soy protein has been linked to the differences in blood pres-
sure observed among those living in western versus Asian cul-
tures. Soy protein is a representative vegetable protein with a 
higher arginine, cysteine and glycine content than other pro-
teins (28). Studies that supplemented 20 g to 40 g of soy pro-
tein in the diet of normotensive human subjects found that soy 
protein caused a greater decrease in blood pressure than nonsoy 
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Figure 1) Mechanism of hypertension. Hypertension develops from 
a combination of genetic and lifestyle factors, such as diet. Diets high 
in salt and sugar, and low in antioxidants and protein, have been 
implicated in hypertension. Insulin resistance, altered glucose 
metabolism with an increase in advanced glycation end products 
(AGEs), increased oxidative stress, decreased bioavailability of 
nitric oxide (NO), alteration of renin-angiotensin system (RAS) 
function, altered renal function and endothelial dysfunction are all 
mechanisms that contribute to the development of hypertension



Dietary protein lowers blood pressure

Int J Angiol Vol 19 No 1 Spring 2010 e9

Table 1
The effect of dietary protein on blood pressure (bP) in humans
Reference Human subjects Dose and length of study effect on bP
Kihara et al, 

1984 (24)
Japanese men and women Protein intake assessed by measuring urinary markers of 

protein
Inverse relationship between animal protein intake 

and BP
Sacks et al, 

1984 (129)
Vegetarian men and women Subjects consumed either low- (63 g) or high- (119 g) 

protein diet for 6 weeks
No effect on mean SBP and DBP

Reed et al, 
1985 (26)

Japanese men Protein intake determined through 24 h recall; BP was 
measured

Inverse relationship between animal protein intake 
and BP

Margetts et al, 
1986 (130)

Untreated, mildly 
hypertensive men  
and women

Subjects consumed omnivorous or ovolactovegetarian diet 
for 1 of 2 six-week periods

Vegetarian diet decreased SBP

Elliott et al, 
1987 (11)

Normotensive men BP measured at clinic, and weighed inventory conducted  
of all food and drink consumed over 7 days

Inverse relationship between protein intake and DBP

Prescott et al, 
1987 (131)

Normotensive men and 
women

Subjects given meat or vegetable protein diet for 12 weeks; 
BP was measured

Neither meat nor vegetable protein diets had an  
effect on BP

Kestin et al, 
1989 (132)

Normotensive men Subjects assigned to high-fat, fat-modified lactovegetarian  
or lactovegetarian diet supplemented (15.2% to 16.9%  
total protein in diet)

Lactovegetarian diet lowered SBP; replacing plant with 
animal protein had no effect on lowering SBP

Havlik et al, 
1990 (133)

Normotensive, male 
monozygotic twins

BP was measured and dietary intake determined using a 
food frequency questionnaire

Positive correlation between protein intake and DBP

Nara et al, 
1990 (25)

Chinese normotensive men 
and women

Urinary markers of protein were measured Inverse relationship between animal protein intake 
and BP

Zhou et al, 
1994 (27)

Chinese normotensive men 
and women

24 h recall of food intake and urinary amino acids  
measured

Inverse relationship between animal protein intake 
and BP

He et al, 1995 
(134)

Chinese normotensive men BP and dietary nutrient intake measured Inverse relationship between protein intake and BP

Stamler et al, 
1996 (9)

Men and women from 
INTERSALT study

Dietary protein intake assessed by urinary markers Inverse relationship between protein intake and BP

Stamler et al, 
1996 (10)

Men from MRFIT study 24 h dietary recall Inverse relationship between protein intake and BP

Appel et al, 
1997 (135)

Normotensive men and 
women

Subjects fed control, fruit/vegetable or combination  
(high protein) diet for 8 weeks

Inverse relationship between protein intake and BP

Washburn et al, 
1999 (30)

Normotensive women 20 g complex carbohydrate or 20 g soy protein supplement 
once daily, or 10 g twice daily for 6 weeks

10 g soy protein twice daily lowered DBP

Burke et al, 
2001 (128)

Treated hypertensive men 
and women

Low- or high-protein (12.5% or 25%) diet and fibre  
(15 g/day or 27 g/day); 24 h ambulatory BP was 
measured

Protein and fibre have an additive effect in lowering BP

Hajjar et al, 
2001 (136)

Men and women from 
NHANES III study

24 h dietary recall Positive correlation between protein intake and SBP

Teede et al, 
2001 (32)

Normotensive men and 
postmenopausal women

Subjects received soy protein isolate (40 g soy protein, 
118 mg isoflavone) or casein placebo for 3 months

Soy protein improved SBP, DBP and MBP

Cirillo et al, 
2002 (21)

Normotensive men and 
women

Protein intake measured by urinary markers Inverse relationship between BP and protein intake

Jenkins et al, 
2002 (137)

Hyperlipidemic men and 
postmenopausal women

Fed soy protein diet (50 g to 52 g) with isoflavones Decrease in SBP in men only

Liu et al, 2002 
(12)

Normotensive men and 
women

Animal protein intake measured by urinary markers Inverse relationship between animal protein intake  
and BP

Rivas et al, 
2002 (123)

Mildly to moderately 
hypertensive men and 
women

Consumed 500 mL soy milk (18 g/L protein) twice daily for 
3 months

Decrease in SBP, DBP and MBP

Stamler et al, 
2002 (138)

Normotensive men Dietary intake assessed by interviews Inverse relationship between vegetable protein intake 
and SBP and DBP

Iseki et al, 
2003 (22)

Normotensive men and 
women

Examined relationship of BP and dietary protein using daily 
urinary excretion of urea nitrogen

Inverse relationship between higher daily protein 
intake (≥1.0 g/kg/day) and BP in men only

Sagara et al, 
2004 (126)

Middle-aged Scottish men ≥20 g of soy protein diet with 80 mg of isoflavones for 
5 weeks

Decrease in SBP and DBP

Appel et al, 
2005 (13)

Prehypertensive or stage 1 
hypertensive men and 
women

Subjects fed carbohydrate, protein or unsaturated fat diet 
for 6 weeks

Inverse relationship between SBP and protein intake

He et al, 2005 
(29)

Chinese normotensive men 
and women

40 g soybean protein supplements per day or complex 
carbohydrates for 12 weeks

Inverse relationship between soybean protein intake 
and SBP and DBP

Yang et al, 
2005 (125)

Normotensive women from 
Shanghai Women’s Health 
Study

Soy protein intake was assessed by food frequency 
questionnaire

Inverse relationship between soy protein intake  
and BP

Continued on next page



Vasdev and Stuckless

Int J Angiol Vol 19 No 1 Spring 2010e10

proteins (29-31). The findings of these studies suggested that 
the amino acid content of soy-based products may account for 
the differences in the observed blood pressure. In addition, the 
isoflavones associated with soy protein may help account for 
the difference observed in blood pressure in these studies. 
Isoflavones tend to act as phytoestrogens in mammals and, 
therefore, may influence endothelial function of blood vessels 
through biological estrogenic mechanisms (30-32).

There are few studies that focus solely on the antihyperten-
sive effects of dietary protein in animal models of hypertension 
(Table 2). Studies (33,34) conducted using spontaneously 
hypertensive rats (SHRs) have shown that fish protein was 
more effective in lowering blood pressure than casein after the 
rats were fed a 20% casein (milk protein) or highly purified fish 
protein diet for two months. Another study (35) using SHRs 
showed that soy protein also had a greater blood pressure-
lowering effect than casein after rats were fed 20 g of soy pro-
tein or casein for five weeks. The substitution of soybean 
protein hydrolysate in the diet (0.5% or 1.0%) has also been 
shown to be effective in lowering blood pressure in SHRs 
(36).

In summary, an extensive and generally consistent body of 
evidence from observational studies, and cross-sectional and 
longitudinal epidemiological studies, as well as controlled clin-
ical trials, has documented significant inverse associations 
between protein intake and blood pressure. Studies have also 
suggested that the source of protein and its amino acid compos-
ition are also important for its antihypertensive effects (37).

Amino acid studies
Rather than investigating the effects of whole dietary protein 
on hypertension, most animal studies investigated the effects of 
a specific amino acid such as cysteine, glutamate, arginine, 
taurine or tryptophan (Table 3). Most animal studies that 
investigated the effect of cysteine on blood pressure used 
N-acetylcysteine (NAC), a cysteine analogue. Cysteine is 
rapidly oxidized in the air, so it cannot be added in its natural 
form to the diet or drinking water. Therefore, NAC is most 
often used as a dietary supplement. In the human body, NAC 
is deacylated, mostly in the kidneys, to form cysteine. In previ-
ous studies conducted at our laboratory (38), it was found that 
a 760 mg/kg body weight/day oral dose of NAC given to SHRs 
lowered systolic blood pressure (SBP). It was also found that 
the inclusion of 664 mg NAC/kg body weight/day (or 1.5% 
NAC) for 11 weeks in the chow diet of fructose-induced hyper-
tensive Wistar-Kyoto rats (4% fructose in drinking water) pre-
vented an increase in SBP (39). Studies (40,41) that gave 
1.5 g/kg/day of NAC to both SHRs and Sprague-Dawley (SD) 
rats found increased insulin sensitivity and lower blood pres-
sure in these animals. These results have also been replicated in 
studies (42,43) in which Dahl salt-sensitive (DSS) rats and 
SHRs were fed diets supplemented with 4 g/kg/day of NAC, 
and a decrease in mean arterial pressure was observed.

Arginine supplementation in the diet has also been shown 
to have an antihypertensive effect when given to animal 
models of hypertension (Table 3). When L-arginine supple-
mentation (20 g/L in drinking water for four weeks) was given 

Table 1 – continued
The effect of dietary protein on blood pressure (bP) in humans
Reference Human subjects Dose and length of study effect on bP
Elliott et al, 2006 (14) Normotensive men and 

women
24 h dietary recall conducted and BP measured at  

4 visits
Inverse relationship between vegetable protein 

intake and BP
Hodgson et al, 2006 

(139)
Hypertensive men and 

women
Regular diet (18.6% protein) or lean red meat diet  

(23.8% protein) for 8 weeks
Inverse relationship between protein intake and 

SBP
Teede et al, 2006 

(124)
Hypertensive men and 

women
Received soy cereal (40 g soy protein, 118 mg 

isoflavones) for 3 months
Increased soy protein intake had no effect on BP

Muzio et al, 2007 
(140)

Obese men and women  
with metabolic syndrome

13% or 19% protein diet for 5 months High-protein diet lowered SBP

Welty et al, 2007 (31) Normotensive, 
postmenopausal women

25 g soy protein from soy nuts for 8 weeks Soy protein diet lowered SBP and DBP

Umesawa et al, 2009 
(23)

Japanese men and women Protein intake measured by 24 h dietary recall Inverse relationship between protein intake and 
SBP and DBP

DBP Diastolic BP; INTERSALT International Study of Salt and Blood Pressure; MBP Mean BP; MRFIT Multiple Risk Factor Intervention Trial; NHANES III National 
Health and Nutrition Examination Survey III; SBP Systolic BP

Table 2
The effect of dietary protein on blood pressure (bP) in animal models of hypertension
Reference animal model Dose and length of study effect on bP
Nevala et al, 

2000 (35)
SHRs 20 g of casein or soy protein in rat chow for 5 weeks Only soy protein lowered BP

Ait-Yahia et al, 
2003 (34)

SHRs 20% casein or 20% fish protein for 2 months Fish protein had a significant BP lowering effect

Yang et al,  
2004 (36)

SHRs Received 0%, 0.5% or 1% soybean protein hydrolysate in diet for 
12 weeks

Soybean protein hydrolysate lowered SBP and mean BP

Ait Yahia et al, 
2005 (33)

SHRs 20% casein or highly purified fish protein in diet for 2 months Fish protein diet lowered BP

Mattson et al, 
2005 (141)

DSS rats Casein or gluten protein (18% to 20%) diet Gluten protein reduces BP in both low- and high-salt diets

DSS Dahl salt-sensitive; SBP Systolic BP; SHRs Spontaneously hypertensive rats
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to DSS rats on an 8% NaCl diet, arginine reduced blood pres-
sure and prevented hypertension in these animals (44). 
Arginine also decreased SBP in DSS rats and fructose-fed 
hypertensive SD rats when given in drinking water (45,46).

A study conducted by Fujita and Sato (47) found that taur-
ine supplementation prevented increases in blood pressure 
when a 1% taurine supplement was added to the drinking water 
of deoxycorticosterone acetate (DOCA) salt-sensitive rats. 
Finally, tryptophan has been shown to have a blood pressure-
lowering effect in animal models of hypertension. Lark et al 
(48) found that including 2.5% tryptophan in the diet of DSS 
rats for five weeks prevented the development of hypertension. 
Similar results were also found in DOCA salt-sensitive hyper-
tensive rats (49). Fregly et al (50) also found that feeding tryp-
tophan 2.5% and 5.0% by weight to SHRs for 15 weeks 
decreased SBP.

There are only limited studies that investigated the effect of 
dietary amino acids in humans (Table 4). NAC and arginine 
have been shown to lower blood pressure when administered at 
doses of 1200 mg/day each for six months to hypertensive men 

with type 2 diabetes (51). Taurine has also been shown to have a 
blood pressure-lowering effect when 6 g/day of taurine was given 
to borderline hypertensive men for seven days (52). Finally, it 
was also shown that an inverse relationship between glutamic 
acid intake and blood pressure exists, based on dietary intake 
data obtained from normotensive men and women (53).

POTENTIAL ANTIHYPERTENSIVE MECHANISM 
OF DIETARY PROTEIN

It is suggested that the antihypertensive effect of dietary pro-
tein is due to various amino acids in the protein. More specific-
ally, cysteine, glutamate, glutathione (GSH) (a tripeptide), 
arginine, leucine, taurine and tryptophan have been suggested 
to have a blood pressure-lowering effect. In the following sec-
tion, the potential mechanisms by which protein and amino 
acids exhibit antihypertensive effects will be discussed.

Cysteine, glutamate and GSH
Cysteine, a nonessential amino acid, is found in foods such as 
meats, fish, whole grains, soybeans and legumes, and can be 

Table 3
The effect of dietary amino acids on blood pressure (bP) in animal models of hypertension
Reference animal model Intervention effect on bP
Chen et al, 1993 (142) Dahl/Rapp salt-sensitive rats 1.25 g/L L-arginine in drinking water for 4 weeks Arginine prevented increase in BP
He et al, 1997 (143) Dahl-Iwai salt-sensitive rats 1.5% L-arginine in drinking water Arginine prevented increase in mean BP
Ono et al, 1999 (144) SHRs 2 g/L L-arginine in drinking water for 3 weeks Arginine had no effect on MAP
Artigues et al, 2000 (145) DSS rats 1.25 g/L L-arginine in drinking water for 4 weeks Arginine decreased SBP
Özçelikay et al, 2000 (146) Streptozotocin-diabetic Wistar rats 1.25 mg/mL L-arginine in drinking water for 

4 weeks
Arginine decreased SBP

Zhou et al, 2001 (44) DSS rats 20 g/L L-arginine in drinking water for 4 weeks Arginine decreased SBP
Tay et al, 2002 (45) Fructose-fed SD rats 1 g/L L-arginine in drinking water for 8 weeks Arginine decreased SBP
Fujii et al, 2003 (46) DSS rats 20 mg/mL L-arginine in drinking water for 4 weeks Arginine lowered SAP
Vasdev et al, 1996 (38) SHRs 760 mg/kg body weight/day oral dose of NAC NAC lowered SBP
Vasdev et al, 1998 (147) Methylglyoxal-treated hypertensive 

WKY rats
1.5% NAC in diet and methylglyoxal in drinking 

water for 18 weeks
NAC prevented increase in SBP

Girouard et al, 2003 (42) SHRs 4 g NAC/kg body weight/day in drinking water for 
4 weeks

NAC decreased MAP

Song et al, 2005 (41) Normotensive SD rats 1.5 g/kg/day NAC in drinking water for 12 weeks NAC decreased BP
Pechánová et al, 2006 (40) SHRs 1.5 g NAC/kg body weight/day in drinking water  

for 8 weeks
NAC prevented rise in MAP, SBP and 

DBP in young SHRs; no effect in adult 
SHRs

Tian et al, 2006 (43) DSS rats 4 g/kg/day NAC in diet for 5 weeks NAC prevented increase in MAP
Vasdev et al, 2010 (148) Fructose-treated WKY rats 1.5% NAC and 1.5% L-arginine in drinking water 

for 6 weeks
NAC and arginine prevented increase in 

SBP
Fujita and Sato, 1986 (117) DOCA salt-sensitive SD rats 1% or 3% taurine solution for 28 days Taurine prevented increase in SBP
Fujita and Sato, 1988 (47) DOCA salt-sensitive SD rats 1% taurine in drinking water for 4 weeks Taurine prevented increase in SBP
Inoue et al, 1988 (116) DOCA salt-sensitive SD rats 2% taurine in drinking water for 4 weeks Taurine prevented increase in SBP
Trachtman et al, 1989 (118) SHRs 1% taurine in drinking water for 16 weeks Taurine attenuated increase in SBP
Ideishi et al, 1994 (149) DSS rats 4% NaCl in diet and 3% taurine in drinking water 

for 4 weeks
Taurine prevented increase in SBP

Anuradha and Balakrishnan, 
1999 (120)

Fructose-treated Wistar rats 2% taurine in drinking water for 6 weeks Taurine prevented increase in SBP

Harada et al, 2004 (150) Fructose-treated SD rats 1% taurine in drinking water for 4 weeks Taurine prevented increase in SBP
Fregly et al, 1987 (49) DOCA salt-sensitive rats Fed diet containing 25 g/kg or 50 g/kg tryptophan 

in food for 7 weeks
Tryptophan prevented increase in SBP

Fregly et al, 1989 (50) SHRs Fed 2.5% and 5.0% tryptophan by weight for 
15 weeks

Tryptophan reduced SBP

Lark et al, 1990 (48) DSS rats 2.5% tryptophan in diet for 5 weeks Tryptophan prevented the development of 
hypertension

DBP Diastolic BP; DOCA Deoxycorticosterone acetate; DSS Dahl salt-sensitive; MAP Mean arterial pressure; NAC N-acetylcysteine; SAP Systolic arterial pressure; 
SBP Systolic BP; SD Sprague-Dawley; SHRs Spontaneously hypertensive rats; WKY Wistar-Kyoto
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formed endogenously via metabolism of its precursor, the 
essential amino acid methionine (6,54). GSH is found in mod-
erate to high amounts in fruits, vegetables and meats (55). The 
antihypertensive effects of cysteine, glutamate and GSH are 
interrelated in the processes by which they regulate blood pres-
sure (Figure 2). GSH is a tripeptide that consists of glycine, 
cysteine and glutamate (54). The free sulfhydryl (SH) group of 
the cysteine molecule within GSH accounts for many of its 
functional capabilities because the SH group of cysteine allows 
GSH to form disulphide linkages with other molecules. 
Cysteine is also able to form disulphide bonds with other cyst-
eine molecules to form cystine, which maintains the integrity 
of the vascular structure (6). The redox pairs cysteine/cystine 
and GSH/oxidized GSH are powerful antioxidants found in 
cells of the body, and are directly involved in neutralizing 
reactive oxygen species (ROS) and increasing antioxidant cap-
acity (56-58).

Oxidative stress has been shown to reduce the bioavailabil-
ity of the vasodilator NO and alters the activity of enzymes 
involved in blood pressure regulation (59). The membrane 
enzyme NADPH oxidase, found in vascular tissue, is a major 
source of superoxide (O2

–), which can give rise to hydrogen 
peroxide and hydroxyl radicals. These reactive compounds are 
controlled by participating in a reaction with superoxide dis-
mutase, GSH peroxidase and GSH reductase to yield less react-
ive molecules (6,54,60). GSH is an essential participant in 
these enzymatic reactions.

Cysteine is found at the active site of several enzymes 
including the vascular enzyme endothelial NO synthase 
(eNOS) and it regulates catalytic activity (6). It has been 
shown that oxidative stress can limit NO formation by uncoup-
ling eNOS to form O2

–. Because eNOS has a free cysteine SH 
group at its catalytic site, it is more susceptible to inactivation 
by aldehydes and ROS (61-63). NO is a reactive molecule that 
can form reactive nitrogen species such as peroxynitrite and 
peroxynitrous acid, which are unstable molecules that can 
result in the production of hydroxyl radicals, thus decreasing 
NO bioavailability (6). It has been suggested that cysteine and 
GSH help preserve NO synthesis and bioavailability by pre-
venting the degradation of NO, as well as protecting NO 
synthase activity and signalling pathways from oxidative stress, 
thus preventing hypertension (6).

In essential hypertension, altered glucose metabolism due to 
insulin resistance results in increased formation of the aldehyde 
methylglyoxal (64,65). Also, there is increased formation of 
other aldehydes due to increased oxidative stress in hyperten-
sion (64). These aldehydes react with free amino and SH 
groups of proteins to form AGEs. This results in altered struc-
ture and function of these proteins (6,64). Cysteine has been 
shown to help increase insulin sensitivity through neutralizing 
the actions of ROS in hypertension. When SHRs were fed a 
diet supplemented with NAC, the progression of insulin resist-
ance was attenuated. NAC also reduces oxidative stress by 
suppressing alpha-1 adrenoceptor-mediated vasoconstriction, 
increasing insulin sensitivity and preventing an increase in 
blood pressure (41).

When NAC was administered with water at a dose of 
10 mg/kg/day, insulin resistance and increased methylglyoxal 
levels were reversed due to the methylglyoxal scavenger activ-
ity of NAC (66). An additional experiment conducted during 
this study showed that by treating 3T3-L1 adipocytes with 
NAC (600 µM), a methylglyoxal impairment in insulin signal-
ling was relieved, as shown by decreased insulin-induced insu-
lin receptor substrate-1 tyrosine phosphorylation and decreased 
activity of phosphatidylinositol 3-kinase (66). These results 
show the ability of cysteine, or NAC, to reverse and prevent 
the effects caused by methylglyoxal in the development of 
insulin resistance and hypertension (66).

The GSH-dependent glyoxalase system normally catabol-
izes methylglyoxal and glyoxal to maintain a low level of these 
aldehydes. Increased consumption of cysteine in the diet would 

Table 4
The effect of dietary amino acids on blood pressure (bP) in humans
Reference Human subjects Dose and length of study effect on bP
Fujita et al, 

1987 (52)
Borderline hypertensive men Oral administration of 6 g of taurine for 7 days Taurine intake decreased BP

Suárez et al, 
1995 (151)

Hypertensive subjects receiving ACE inhibitor 
lisinopril

1.2 g/day oral NAC for 1 week Decreased SBP and DBP

Pezza et al, 
1998 (152)

Hypertensive men and women receiving 
enalapril and hydrochlorothiazide

6 g/day oral L-arginine for 6 weeks Decreased SBP and DBP

Barrios et al, 
2002 (153)

Hypertensive subjects who smoked and were 
receiving ACE inhibitors captopril or enalapril

1.8 g/day oral NAC for 3 weeks Decreased 24 h ambulatory and 
daytime SBP and DBP

Martina et al, 
2008 (51)

Hypertensive male subjects with type 2  
diabetes

Received 600 mg of NAC twice daily, and 1200 mg of  
arginine once daily for 6 months

NAC and arginine lowered SBP, 
DBP and mean BP

Stamler et al, 
2009 (53)

Normotensive men and women Dietary data obtained from multipass 24 h dietary recall 
and 24 h urine collections. BP measured at examinations

Dietary glutamic acid was inversely 
related to BP

ACE Angiotensin-converting enzyme; DBP Diastolic BP; NAC N-acetylcysteine; SBP Systolic BP

Dietary Cysteine, 
Glutamate, 

Arginine & GSH 

Lowers 
oxidative 

stress

Improves 
renal 

function 

Improves  
insulin  

resistance

Improves NO 
bioavailability 

Decreases 
AGEs 

Modulates 
the RAS

Figure 2) Antihypertensive mechanism of cysteine, arginine, gluta-
mate and glutathione (GSH). These amino acids from dietary 
sources help to lower blood pressure by improving insulin resistance, 
decreasing oxidative stress, decreasing advanced glycation end prod-
uct (AGE) formation, improving nitric oxide (NO) bioavailability 
and modulating the renin-angiotensin system (RAS)
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help alleviate the effects of aldehydes and AGEs because cyst-
eine binds these molecules so they are excreted in the bile and 
urine (67). Cysteine may also help boost the activity of the 
GSH-dependent catabolism and excretion of reactive alde-
hydes, which would prevent the formation of AGEs and their 
detrimental effects (6). A study (68) conducted using 3T3-L1 
adipocytes showed that decreased glucose uptake results from 
increased oxidative stress caused by the interaction between 
AGEs and their receptors. This effect was reversed by treating 
cells with NAC. Increases in oxidative stress and angiotensin II 
production caused by AGEs binding have also been shown to 
be prevented in rat mesangial cells by the addition of NAC 
(69).

Because the RAS regulates vasoconstriction, alterations in 
this system may contribute to hypertension, and amino acids 
may have a potential antihypertensive role. Studies have shown 
that when the kidney, heart and brain tissues are subjected to 
oxidizing agents in vitro, there is an increase in angiotensin-
converting enzyme (ACE) activity. However, this activity is 
inhibited when NAC is applied to the kidney cortex (70,71). 
NAC also prevented the actions of angiotensin II due to the 
interaction between AGEs and their receptors in mesangial 
cells when treated in vitro (69). Angiotensin II may also influ-
ence insulin resistance because angiotensin II has been shown 
to inhibit insulin signalling in aortic vascular smooth muscle 
cells by decreasing insulin receptor substrate-1 protein levels. 
However, this decrease was prevented by treating the cells 
with NAC (72,73). Cysteine and GSH may exert control over 
the RAS through their antioxidant properties by modulating 
vasoconstriction caused by ROS-stimulated ACE activity and 
the ROS that act as secondary messengers in many of the  
angiotensin II-mediated pathways (70,74). These effects may 
be due to a direct reaction of NAC with the disulphide bonds 
of the angiotensin II type I receptor.

Glutamate – or glutamic acid – is the most common dietary 
amino acid, especially in vegetable protein (53). Several mech-
anisms have been suggested for the antihypertensive effect of 
glutamate. Glutamate is a part of the GSH molecule, and is 
also a substrate for arginine synthesis (53). Glutamate also 
enhances kidney function (53). A study conducted using 4680 
normotensive subjects from the INTERMAP study found an 
inverse relationship between dietary glutamic acid and blood 
pressure (53).

Together, cysteine, glutamate and GSH may attenuate 
hypertension by improving insulin resistance, reducing oxida-
tive stress, preventing and reducing AGE formation, improving 
NO bioavailability and modulating the activity of the RAS.

Arginine
Arginine is a semiessential amino acid found in dietary sources 
such as meat, fish, soy, beans, lentils, nuts and whole grains 
(75). Arginine can also be produced in the kidney, or by the 
urea cycle in the liver (76,77). Dietary arginine can affect 
blood pressure control in a number of ways (Figure 2). First, 
arginine acts as a substrate for the formation of NO. Second, 
arginine can promote the release of insulin from the pancreas 
(78,79). Insulin can then stimulate cellular uptake of arginine 
by decreasing the plasma concentration of asymmetrical dim-
ethyl arginine (ADMA), an arginine analogue (80-84). Similar 
to cysteine and GSH, arginine can also modulate the RAS by 

inhibiting ACE activity, causing a decrease in angiotensin II 
and its harmful effects (85). Finally, arginine may help to regu-
late redox-sensitive proteins and lower blood pressure by acting 
as an antioxidant (86,87).

There are few studies available that demonstrate the effects  
of dietary arginine supplementation on insulin resistance. A 
study in which SD rats with fructose-induced hypertension 
were given 1 g/L arginine in their drinking water for eight weeks 
found that arginine supplementation prevented a decrease in 
insulin sensitivity, as well as increases in glucose and insulin 
concentrations in response to fructose-induced hypertension 
(45). Oral arginine (9 g/day for one month) supplementation 
has been shown to improve hepatic and peripheral insulin 
sensitivity in type 2 diabetes (88). It has been suggested that 
arginine improves insulin resistance by increasing NO synthe-
sis, and improves endothelial function as demonstrated in one 
study (88) that showed that oral arginine supplementation 
normalized plasma cyclic guanosine monophosphate and 
increased blood flow in the forearm. In normotensive subjects, 
arginine supplementation has been shown to increase the ratio 
of arginine to ADMA, which helps improve insulin-mediated 
glucose utilization (89).

Arginine may both directly and indirectly affect the produc-
tion of AGEs and their subsequent effects on blood pressure. 
Indirectly, arginine may act to limit the formation of AGEs by 
improving insulin resistance and reducing oxidative stress, 
which helps to decrease the production of methylglyoxal and 
other aldehydes (90). In a more direct manner, arginine binds 
to aldehydes to form free glycation adducts, which are excreted 
in urine (90-92). In diabetic mice, 50 mg/kg body weight/day 
oral doses of arginine reduced AGE formation in glomerular 
basement membrane collagen (93).

NO is synthesized in the vascular endothelium from 
L-arginine by eNOS, and influences blood pressure through its 
impact on vascular tone (94). eNOS requires the cofactor 
tetrahydrobiopterin (BH4) to maintain its stability (95). In the 
periphery, nonadrenergic and noncholinergic nerves operate 
using a NO-mediated mechanism to cause vasodilation of the 
blood vessels (94). When the concentration of L-arginine or 
BH4 is low, or BH4 becomes oxidized under conditions of oxi-
dative stress, there is increased endothelial dysfunction because 
vasoconstriction increases and vasodilation decreases, contrib-
uting to increased pressure within the vessels (91). Increased 
arginine will prevent these alterations by acting as both an 
antioxidant and a substrate for NO. Studies have shown that in 
humans, intravenous injections of arginine (30 g per 30 min) 
can cause a 72-fold increase in the plasma levels of arginine 
(100 µmol/L to 7200 µmol/L), accompanied by a 15% decrease 
in blood pressure (28).

The activity of ACE has been shown to be inhibited by 
arginine supplementation, which decreases the production of 
angiotensin II and its cascade of effects (85). Insulin may also 
mediate the effect of arginine on the RAS because insulin has 
been shown to lower angiotensinogen and angiotensin II type I 
receptor expression in endothelial cells (96,97). In hyperten-
sion, the increased effects of angiotensin II may be the result of 
a functional imbalance due to a decrease in the effects of both 
insulin and NO. Vascular homeostasis may be restored if argin-
ine can improve the balance between NO production and 
insulin resistance (98).
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Similar to cysteine and GSH, arginine may also have anti-
oxidant properties (87). Arginine may help to minimize the 
damage caused by radicals by helping to restore normal func-
tioning of the NO pathway and the RAS. As well, arginine 
may react with hydrogen peroxide nonenzymatically to form 
NO in vitro (99). This action has two benefits – it increases 
the amount of vasodilator present, and also decreases ROS. 
Arginine has been shown to protect NO from degradation by 
diminishing O2

– generation in vascular endothelial cells in 
vitro (87).

Arginine may also help to regulate redox-sensitive proteins. 
For instance, by preventing the oxidation of dimethylarginine 
dimethylaminohydrolase by ROS, ADMA breakdown can be 
increased, which reduces the competitive inhibition of argin-
ine uptake (100). As well, it has been suggested that normal 
kidney function may be regulated by the balance of O2

– and 
NO (101). If poor NO bioavailability in the kidney results from 
an O2

–-favoured imbalance, the antioxidant properties of 
arginine may partly be the cause of its antihypertensive effects. 
Arginine has been shown to decrease glomerulosclerosis and 
improve renal hemodynamics and morphology in a rat hyper-
tension model (102).

Leucine
Leucine is a branched-chain essential amino acid that, along 
with the other branched-chain amino acids, isoleucine and 
valine, accounts for 15% to 25% of the total protein intake 
(103,104). Branched-chain amino acids are particularly abun-
dant in dairy products (104). Unlike other amino acids, 
branched-chain amino acids are metabolized in the peripheral 
tissues, particularly muscle, rather than in the liver, which 
functions to regulate the amount of amino acids in circulation 
(105). The role of leucine in the human body is associated with 
the absence of the branched-chain aminotransferase enzyme in 
the liver, which results in the large supply of branched-chain 
amino acids appearing in the muscle (106).

Leucine has been suggested to have an indirect effect on 
lowering blood pressure through its influence on a number of 
metabolic processes, including modulating phosphatidylinosi-
tol 3-kinase in insulin signalling, regulating translation initia-
tion for protein synthesis, as well as a nitrogen donor for 
alanine and glutamine production in skeletal muscle (Figure 3) 
(106). The activation of signalling pathways is considered to 
be an important nonprotein function of amino acids. On a 
daily basis, after the need for leucine for protein synthesis has 

been met, leucine is available to contribute to alanine or gluta-
mine production, or to have an impact on the insulin signal-
ling pathway (104). The impact of leucine on these processes, 
and thus its effect on hypertension, is dependent on dietary 
intake of leucine and the increase in its concentration in skel-
etal muscle. It has been estimated that metabolic use of leucine 
ranges from 7 g to 12 g per day (104).

To help attenuate insulin resistance, leucine stimulates cel-
lular response to insulin by acting on mammalian target rapa-
mycin (mTOR), a kinase within the insulin signalling cascade 
(106). By increasing dietary protein, more leucine is available 
to contribute to the de novo synthesis of glucose through 
gluconeogenesis; it also increases the recycling of glucose car-
bon through the glucose-alanine cycle. It has been reported 
that 1 g of dietary protein can contribute 0.6 g to 0.7 g of glu-
cose through gluconeogenesis (106). The substitution of diet-
ary proteins for simple carbohydrates in the diet will help to 
control postprandial glucose levels because proteins take a 
longer route via gluconeogenesis to form glucose. In subjects 
with type 2 diabetes or obesity, diets high in protein have been 
reported to reduce postprandial glucose and insulin, and stabil-
ize blood glucose levels in these subjects. This may, in part, be 
due to the fact that amino acids are absorbed more slowly in 
the gut than carbohydrates, before being metabolized in the 
body via another slow process. As well, amino acids cause a 
lower insulin response than carbohydrates, which are usually 
absorbed within 2 h of consumption and require a greater 
increase in insulin to maintain blood glucose levels within a 
normal physiological range (107).

In addition, it has been reported that protein has a higher 
satiation effect on hunger than glucose (108). Therefore, if 
hypertensive subjects consume a diet that is adequate in pro-
tein and low in carbohydrates, the protein will be able to main-
tain normal blood glucose over a longer period of time than the 
carbohydrates; subjects would consume less food, contributing 
to a decrease in body fat because the body would break down 
glycogen stored in adipose tissue to obtain glucose and main-
tain muscle mass. As well, by consuming fewer carbohydrates, 
less insulin is released, which would otherwise inhibit gluco-
neogenesis and gluconeogenic enzymes. For example, human 
weight loss trials conducted using women who were given a 
diet that contained 3.5 g/kg per day carbohydrates and 1.5 g/kg 
per day protein, including a daily leucine intake of approxi-
mately 5 g (or 8% of dietary protein), showed that subjects fed 
a diet that contained an increased amount of protein, includ-
ing leucine, tended to lose more weight than those fed a diet 
that contained less protein. The results also suggest that diets 
that contain ample amounts of protein and reduced amounts of 
carbohydrates lead to weight loss due to the loss of body fat. 
Protein loss is spared (103,109-111).

To help suppress food intake, it has been suggested that 
leucine may act via mTOR in the hypothalamus in the central 
nervous system (105). mTOR acts as a cellular fuel sensor that 
regulates energy intake through its hypothalamic activity, 
rather than just through an amino acid sensor (112). A study 
by Cota et al (112) used antibodies to localize mTOR and 
showed that mTOR signalling plays a role in mechanisms in 
the brain that are associated with nutrient availability – the 
administration of leucine increased hypothalamic mTOR sig-
nalling and decreased food intake and body weight in the rats. 

Dietary 
Leucine 

Decreases 
body fat 

Attenuates 
insulin resistance 

Increases 
muscle mass

Regulates body 
weight by 

higher satiation

Figure 3) Antihypertensive mechanism of dietary leucine. Leucine 
lowers blood pressure by helping to decrease body fat, attenuating 
insulin resistance and maintaining muscle mass by increasing protein 
synthesis
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The results of this experiment also indicated that the mTOR 
pathway has the ability to modify the activity of hormones, 
such as leptin, which helps control body weight by regulating 
hunger and food consumption, as well as lipolysis, energy con-
sumption and body temperature (113). It was suggested that by 
increasing leucine intake, more leptin will be secreted, sup-
pressing food intake, which leads to weight loss, improved 
insulin sensitivity and decreases in blood pressure.

During periods of fasting, reduced energy intake or insulin 
resistance, protein from muscle is often used as a source of 
energy. Amino acids are converted to glucose through gluco-
neogenesis, causing a decrease in muscle mass and creating an 
imbalance favouring muscle breakdown over synthesis. By 
increasing protein intake, the additional amino acids in circu-
lation, including leucine, can stimulate muscle protein synthe-
sis by acting on translation mechanisms. More specifically, 
leucine is able to exert control over translation initiation fac-
tors, mainly eIF4, in the skeletal muscle (97). By stimulating 
protein synthesis, leucine contributes to the production of lean 
muscle tissue, which in turn increases the metabolic rate and 
energy requirement of muscle. This also helps to increase the 
loss of body fat, which may lower blood pressure (107).

Taurine
Taurine is the most abundant intracellular amino acid distrib-
uted in many human tissues, but it is not incorporated into 
proteins (114,115). In humans, taurine is a conditionally 
essential amino acid. It can be synthesized from methionine 
and cysteine in the presence of vitamin B6 in the brain and 
liver, in a reaction catalyzed by cysteine sulphinic acid decarb-
oxylase (114,115). On average, humans synthesize 0.4 mmol to 
1.0 mmol (50 mg to 125 mg) of taurine daily (115). However, 
for humans, diet is the main source of taurine. Taurine is found 
in high concentrations in foods from animal sources, and is 
undetectable in vegetables (115). Food sources of taurine 
include meats such as beef, pork and poultry; seafood such as 
tuna, mussels, white fish, oysters, cod and clams; and dairy 
products such as pasteurized milk, cheddar cheese, low-fat plain 
yogourt and vanilla ice cream (115).

There is strong experimental data to support the efficacy of 
taurine in lowering blood pressure. Studies (116,117) in 
DOCA salt-sensitive rats who were given 1% to 3% taurine in 
their drinking water for four weeks showed that taurine pre-
vented an increase in SBP. In DSS hypertensive rats, 1% taur-
ine supplementation prevented increased sympathetic nervous 
system activity and blood pressure (47). As well, in SHRs, 
taurine supplementation led to decreases in blood pressure 
(118).

It has been suggested that orally administered taurine is 
absorbed from the gastrointestinal tract and, after passing 
through the blood-brain barrier, it accumulates in the brain 
and increases the taurine content of the hypothalamus (116). 
In the hypothalamus, taurine suppresses the activity of the 
sympathetic nervous system, which is elevated in hypertension. 
Taurine modulates the activity of the sympathetic nervous 
system by modulating the secretion of arginine-vasopressin, 
which results in a decrease in blood pressure (52,119). This is 
supported by the experiments in which taurine was infused into 
brain ventricles, which led to decreases in blood pressure and 
modulated the release of arginine-vasopressin in hypothalamic 

neurons (23). It has also been suggested that taurine supple-
mentation may attenuate the activity of the sympathetic nerv-
ous system using its natriuretic effects through osmoregulation 
in the kidney, and helping to improve renal ion handling 
(120). Taurine supplementation has also been shown to 
improve insulin sensitivity, with decreases in blood pressure in 
fructose-induced models of hypertension (120). In both in vivo 
and in vitro studies, taurine attenuated the formation of gly-
cated protein, glycated hemoglobin and fructosamine (121). It 
has been proposed that taurine may also act on the RAS in the 
brain to help reduce blood pressure (119).

Tryptophan
Tryptophan is a neutral, branched-chain amino acid. It is also 
an essential amino acid for humans. Food sources rich in tryp-
tophan include soybeans, salami, pork, mollusks, game meat, 
tofu, beef and pumpkin seeds (122). The mechanism by which 
tryptophan exerts its blood pressure-lowering effect is not cer-
tain. A study by Fregly et al (50) showed that treating SHRs 
with 5.0% tryptophan resulted in a significant reduction in the 
urinary output of adrenaline and noradrenaline, and an 
increase in dopamine. It is suggested that increased dietary 
intake of tryptophan would affect the enzymes dopamine-beta-
hydroxylase and phenylethanolamine N-methyltransferase in 
the adrenal medulla and the peripheral sympathetic nervous 
system (50). The inhibition of these enzymes would reduce the 
conversion of dopamine to adrenaline and noradrenaline, 
decreasing their effects on blood pressure (50).

Soy protein and isoflavones influence blood pressure
In recent years, soy and soy-based products have increased in 
popularity. Studies conducted in humans that investigated the 
effects of soy proteins on blood pressure have credited various 
components of soy protein as having antihypertensive effects. 
Some research credits the high arginine content of soy protein, 
whereas other studies suggest that the benefits of consuming 
soy protein are due to the antioxidant activity exhibited by 
isoflavones. Soy proteins are also considered to be a representa-
tive vegetable protein, with a higher content of arginine, cyst-
eine and glycine than other vegetable proteins (28).

Studies (29,31,123-125) have shown that humans who 
consume a large amount of soy protein in their diet have a 
lower risk of cardiovascular disease due to having lower 
blood pressure. For instance, the Shanghai Women’s Health 
Study (125) followed more than 45,000 Chinese women for 
a period of two to three years. It was found that women who 
consumed at least 25 g/day of soy protein in their diet had 
lower SBP and diastolic blood pressure (DBP). A study (29) 
conducted in 302 subjects from China investigated the effect 
of soybean protein supplementation on blood pressure. The 
subjects were given 40 g of isolated soybean protein supple-
ments per day or a complex carbohydrate control for 
12 weeks (29). The results of this study showed that soybean 
protein supplementation lowered both SBP and DBP, sug-
gesting that soy protein has potential as a treatment for high 
blood pressure (29).

In addition to containing higher amounts of important 
amino acids, soy proteins also contain isoflavones, which 
allow soy proteins to act as phytoestrogens. Phytoestrogens 
have been shown to reduce blood pressure by having a direct 
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effect on blood vessel walls through biological estrogenic 
mechanisms (32). Isoflavones also decrease oxidative stress 
(both in vivo and in vitro), stimulate NO production, 
improve systemic arterial compliance, and favourably affect 
salt and water balance, all of which contribute to a protective 
role against the development of hypertension (125). In par-
ticular, genistein, a soy isoflavone, has been shown to stimu-
late NO production (125). A study (123) that compared the 
effects of soy milk with cow’s milk in 40 mildly to moderately 

hypertensive men and women for three months found that 
soy milk caused a significant decrease in SBP, DBP and mean 
blood pressure. It was also found that urinary genistein levels 
were strongly correlated with decreases in blood pressure 
(123). A study by Sagara et al (126) investigated the effects 
of soy protein and isoflavones on blood pressure in 61 high-
risk (SBP of 130 mmHg or greater) middle-aged Scottish 
men. The men were given diets that contained at least 20 g of 
soy protein and 80 mg of isoflavones, or a placebo diet for 
five weeks. They found significant decreases in both SBP and 
DBP for men who consumed the experimental diet compared 
with those who were given the placebo diet (126). Soy pro-
tein also contains ACE inhibitory peptides, which have been 
shown to alter sodium and water balance and, therefore, 
reduce blood pressure (127). It is important to note, however, 
that it is unlikely that the isoflavone content of soy protein 
alone accounts for blood pressure reduction (128).

CONCLUSION
Essential hypertension develops due to an interaction of gen-
etic and lifestyle factors, such as diet. Increased dietary salt is 
one lifestyle factor that causes an increase in blood pressure. 
A moderate increase in protein intake, along with low salt 
and sugar intake, has been identified as a possible lifestyle 
change that can help lower high blood pressure. An extensive 
and generally consistent body of evidence has documented an 
inverse relationship between protein intake and blood pres-
sure. Several amino acids in dietary protein, including cyst-
eine, arginine, taurine and tryptophan, have been shown to 
have antihypertensive effects in humans and animals. These 
amino acids attenuate the metabolic reactions associated 
with hypertension including insulin resistance, increased 
AGEs, increased oxidative stress, altered renal function, 
decreased NO bioavailability and altered RAS (Figure 4). Soy 
proteins have high arginine and isoflavone contents, which 
contribute to their antihypertensive effects. To ensure that 
hypertensive patients receive an adequate protein intake, it is 
recommended that patients adopt a diet that contains ample 
amounts of protein, such as the DASH diet, which is rich in 
vegetables, fruit and low-fat dairy products; low in salt and 
saturated fat; and includes whole grains, lean meat, poultry, 
fish and nuts. In addition, hypertensive patients should 
include an adequate supply of soy in their diet. By imple-
menting these dietary habits, individuals with hypertension 
can obtain an appropriate and beneficial protein intake in a 
safe and realistic manner.
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