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Abstract
Intrinsic and acquired cellular resistance factors limit the efficacy of most targeted cancer
therapeutics. Synthetic lethal screens in lower eukaryotes suggest that networks of genes closely
linked to therapeutic targets would be enriched for determinants of drug resistance. We developed
a protein network centered on the epidermal growth factor receptor (EGFR), which is a validated
cancer therapeutic target, and used siRNA screening to comparatively probe this network for
proteins that regulate the effectiveness of both EGFR-targeted agents and nonspecific cytotoxic
agents. We identified subnetworks of proteins influencing resistance, with putative resistance
determinants enriched among proteins that interacted with proteins at the core of the network. We
found that EGFR antagonists and clinically relevant drugs targeting proteins connected in the
EGFR network, such as the kinases protein kinase C or Aurora kinase A, or the transcriptional
regulator STAT3, synergized to reduce cell viability and tumor size, suggesting the potential for a
direct path to clinical exploitation. Such a focused approach can potentially improve the coherent
design of combination cancer therapies.

Introduction
A central premise driving the development of targeted cancer therapies has been that agents
directed against specific proteins that promote tumorigenesis or maintain the malignant
phenotype will have greater efficacy and less toxicity than untargeted cytotoxic agents.
Although small molecule and antibody drugs directed against well-validated cancer targets,
such as epidermal growth factor receptor (EGFR), the Philadelphia chromosome-associated
chimeric oncoprotein BCR-ABL, vascular endothelial growth factor (VEGF), mammalian
target of rapamycin (mTOR), and other proteins are clinically useful, many tumors fail to
respond because of intrinsic or acquired resistance. In some cases, a clear and unique
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determinant of resistance can be identified, for example when mutational activation of the
EGFR downstream effector K-RAS limits response to EGFR-targeting drugs (1,2).
However, for most tumors, heterogeneous resistance to oncogene-targeting therapies appears
to arise from partial contributions by multiple proteins.

This result is compatible with the paradigm of a robust signaling network (3), which is
gradually replacing the idea of minimally branching signaling pathways marked by
hierarchical signaling relationships. Network models (4–6) emphasize dense connections
among signaling proteins, lack of hierarchy, feedback signaling loops, and tendencies
towards protective redundancy due to the existence of paralogous proteins with overlapping
functionality (3). A robust network paradigm has critical implications for targeted cancer
therapies, predicting that in cells treated with therapies inhibiting an oncogenic node, rescue
signaling can be provided by modifying signaling output from any of a number of distinct
proteins that are enriched among the components of the web of interactions centered on the
target of inhibition. This concept is reinforced by studies in model organisms demonstrating
that quantitatively significant signal-modulating relationships commonly involve proteins
that have closely linked functions (7). The goal of this study was to use siRNA libraries
targeting the EGFR signaling network to identify potential regulators of resistance to EGFR-
targeted therapies, and to provide leads for overcoming therapeutic resistance.

Results
Integration of orthogonal data sets allows construction of an EGFR-centered signaling
network for targeted RNAi screening

To construct a network-based library, genes encoding proteins with evidence of functional
interactions with EGFR were collected from multiple databases (Fig. 1A, and Materials and
Methods). We used two members of the EGFR family, EGFR (also known as ERBB1) and
HER2 (also known as ERBB2), as seed nodes to select first- and second-order binary
protein-protein interactions (PPIs). We mined non-PPI functional linkages relevant to the
EGFR pathway from five pathway databases. From BOND (8) and EBI (9), we identified
proteins that associated with the seed proteins in purified complexes. We included genes that
were transcriptionally responsive to inhibition or stimulation of EGFR that we identified
from the NIH GEO resource (10). We added human orthologs for genes identified in other
species (predominantly Drosophila) that genetically interacted with evolutionarily
conserved EGFR orthologs. Together, these data nominated 2689 genes encoding proteins
linked by at least one criterion to the initial seed list. We chose 638 genes to target in the
siRNA library (Table S1) predominantly on the basis of representation in at least two
overlapping orthogonal sources. Also included in the 638 genes were those of the 2689
genes that exhibited a physical interaction with the EGFR adaptor protein SHC, or close
signaling connections to the nonreceptor tyrosine kinase SRC and transforming growth
factor β (TGF-β) pathways that interact with ERBB family proteins to promote tumor
aggressiveness (11,12).

siRNA screening defines subsets of genes that sensitize cells to EGFR inhibition
The A431 cervical adenocarcinoma cell line is dependent on EGFR signaling for
proliferation and survival. We reiteratively screened this cell line with the targeted siRNA
library in combination with DMSO (vehicle), or small molecule inhibitors of EGFR, or
function-blocking EGFR antibodies, or with the non-EGFR-targeted cytotoxic and DNA-
damaging agent camptothecin (CPT11) applied at IC25–IC35 concentrations (fig. S1A).
Viability was measured with Alamar blue, a metabolic indicator of the number of viable
cells. Primary hits were defined as genes that when targeted with siRNAs reduced negative
control-normalized viability by at least 15% in the presence of a drug compared to the
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viability in the presence of DMSO [defined as the Sensitization Index (SI) <0.85], with a
false discovery rate (FDR) < 20% (fig. S1B, S2). (In the absence of drug treatment,
knockdown of (247/638) of genes in the library reduced the viability of DMSO-treated A431
cells by at least 15%, including 45 that reduced viability more than 30%. The distribution of
primary hits was independent of the tendency of a siRNA to affect cell viability in the
absence of drug treatment (Fig. 1B), indicating the action of hits was not merely a reflection
of accumulated injury to hit-depleted cells. The majority of hits obtained by treating the cells
with the EGFR-targeted antibody panitumumab were included within the larger set of genes
identified as hits in the cells exposed to the EGFR-targeted small molecule inhibitor
erlotinib (Fig. 1C). Knockdown of 212 primary hits, including 95 hits with an SI <0.7,
sensitized to cells to one or both EGFR-targeting agents. In contrast, knockdown of only 83
primary hits, including 30 hits with an SI <0.7, sensitized cells to CPT11 (Fig. 1C).

Performance of additional validation testing (fig. S2, S3) identified a set of 61 genes (Table
1) for which 2 or more independent gene-targeted siRNAs both efficiently knocked down
their target gene and sensitized cells to EGFR-targeting agents. The majority of the
sensitizing genes (48/61) encoded proteins that were connected in a physically interacting
network (Fig. 1D). The remaining 13 encoded proteins that are not known to interact
physically with EGFR or its direct partners, but instead are linked to EGFR on the basis of
rapid changes in the abundance of their mRNA transcripts in response to pathway activation,
inhibition, or both.

Relative to the overall properties of the 638-gene library, the erlotinib-sensitizing hits were
significantly enriched for genes that were first-order PPIs of the seeds and were also present
in the pathway maps (Fig. 2A). When examined within the context of the EGFR-centered
network, the erlotinib-sensitizing hits encoded proteins that exhibited topology parameters
distinct from those of the overall network, such as increased degree, which reflected the
number of edges linked to it; topological coefficient, which provided an estimate for the
trend of nodes in the network to have shared neighbors; stress, which reflected how
frequently a node was in the shortest path connecting other nodes; and neighborhood
connectivity, which represented the average number of neighbors for each direct interactor
of the node. Together these properties suggest that these genes encode proteins that serve as
network “hubs” and connect with many other proteins in the network (Fig. 2B). On the basis
of their Gene Ontology (GO) function, erlotinib-sensitizing hits encoded proteins that were
significantly enriched for involvement in phosphate metabolism (kinases or phosphatases)
and signaling (represented by several GO categories) relative to the overall composition of
the siRNA library (Fig. 2C). We observed a weak trend for hits to be evolutionarily
conserved, as reflected by the increased number of orthologs in lower eukaryotes among hits
relative to the overall library (Fig. 2D).

A subgroup of validated genes is active in multiple cell lines and promotes drug-induced
apoptosis

To assess if the genes that sensitized A431 cells to EGFR inhibitors or non-EGFR-targeted
cytotoxic agents also influenced the sensitivity of other cancer cell lines to these drugs, we
profiled the efficacy of siRNAs targeting 45 of these genes in sensitizing 7 other cell lines to
erlotinib, cetuximab (an EGFR function-blocking antibody), or CPT11. These lines included
A431, the colorectal adenocarcinoma cell lines HCT116, DLD-1, DKS-8, and LoVo, the
head and neck squamous cell carcinoma cell line SCC61, and the pancreatic
adenocarcinoma cell lines PANC-1 and MIA PaCa-2 (Fig. 3A). Cell lines with mutations in
genes encoding proteins that are known to produce drug resistance (for example, in K-Ras or
p53, or both) had more noise in their sensitization responses, with the result that lines
containing such mutations (DLD-1, DKS-8, LoVo, MIA PaCa-2) yielded many fewer
sensitizing hits than we found in the A431 cells, as judged by a strict FDR-based statistical
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criteria. One contributing factor to the reduced number of hits was an increase in the
stochastic “noise”, which caused greater standard deviation in experimental repetitions. To
compensate for this factor, we analyzed the data in two ways-- not only by statistically
stringent conventional threshold analysis (Fig. 3A, left) but also by assessing the rank order
of sensitization phenotype, using relaxed statistical criteria (compare to Fig. 3A, right; see
Materials and Methods). This analysis indicated a subset of sensitizing genes were
consistently most sensitizing among the group analyzed.

None of the 45 genes when knocked down sensitized all tested cell lines to erlotinib. On the
basis of the threshold analysis (Fig. 3A, left), knockdown of the 45 genes originally
identified in the A431 cells, most consistently sensitized this cell line to erlotinib, with many
in this group also sensitizing A431 cells to cetuximab (Table 1). Knockdown of a subset of
these genes (including those targeting RPS6KA5, FLNA, DUSP7, PRKCE, PRKACB,
SC4MOL, and ASCL2) sensitized cells to erlotinib, CPT11, or both, in 3 to 5 cell lines,
suggesting a broader action in resistance, but less specificity for EGFR-targeting agents.
This overlap in CPT11 sensitizing genes with erlotinib sensitizing genes may indicate
general roles for some of the genes in general cell survival pathways, or alternatively, reflect
the important role of genes closely linked to EGFR in supporting general cell survival.
Surprisingly, we also observed that a small number of genes originally identified as
sensitizing in A431 cells treated with erlotinib actually antagonized the effects of this or
other drugs in other cell lines (for example, PPIAP19 and INPPL1).

Reanalyzing the same set of 45 genes on the basis of sensitization ranking (Fig. 3A, right),
all genes detected on the basis of strict thresholds were again identified, but additional genes
of interest were now detected (Table 2). For example, in the ranking analysis, PRKCE was
one of the most sensitizing genes in 11/16 conditions assessed, whereas in the threshold
analysis it only scored as significantly sensitizing in 6/16 conditions.

The effects of inhibiting a selected target gene reflect not only drug-related sensitizing
activity, but also an intrinsic effect on cell growth due to loss of the gene product, which
may cumulatively result in an altered rank order of target genes in influencing cell viability.
We therefore also established the baseline intrinsic activity of the validated siRNAs in
reducing cell viability in DMSO-treated cells (Fig. 3B). In multiple cell lines in the presence
of vehicle alone, targeting of some genes, such as RPS6KA5 and SHC1, significantly
reduced cell viability; whereas targeting of others, including DUSP7 and DLG4, had
relatively little effect on cell viability in the absence of drug treatment (Table 2).

On the basis of the combination of intrinsic and sensitizing effects, knock down of many
genes (including PRKCE, DUSP7, SH2D3C, SHC1, SC4MOL, FLNA, and NEDD9)
strongly reduced the viability of multiple tumor cell lines treated with EGFR-targeting
agents. Further, depletion of 30 of the hits showed statistically significant drug-gene
interactions by selectively enhancing apoptosis in the presence of erlotinib versus GL2-
targeted control siRNA A431 cells, including 9 of the hits that selectively enhanced
apoptosis >2-fold in erlotinib- versus DMSO-treated cells (Fig. 4).) These genes may be
particularly useful targets for cancer therapy, because of their ability to induce cell death
rather than only cytostasis.

Many strongly sensitizing hits populate a protein network connected to EGFR
These findings support the idea that a cogently designed network focused around a core
cancer target, such as EGFR, would provide a rich source of genes that modulate resistance
to EGFR pathway-targeted agents. In general, we observed a greater effect on the core
viability of cell lines containing wild-type versus mutant RAS (for example, SCC61 and
DKS8 in A431 cells), although the stronger hits (SI <0.7) were typically active in both (Fig.
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3, Table 2); in contrast, no meaningful correlation was detected between sensitization profile
and RAS mutational status, suggesting that sensitizing activity occurred downstream or
independently from core RAS signaling outputs. We investigated the relative interactions of
the stronger hits within the overall topology of the EGFR signaling network (Fig. 5A). We
could place the majority of hits in a connected subnetwork defined by direct physical
interactions. We identified genes encoding 2 members of the protein kinase C (PRKC)
family as sensitizing in multiple cell lines (PRKCD and PRKCE), with a third PRKC
encoding gene PRKCE also directly connecting to another sensitizer, PRKACB (encoding
the catalytic subunit of cAMP-dependent protein kinase). A second cluster included
SH2D3C, BCAR1, and NEDD9 (in each case encoding a scaffolding protein involved in
integrin-dependent signaling), which on the basis of rank-order analysis (Fig. 3A) sensitized
cells preferentially to erlotinib and cetuximab relative to non-EGFR targeted agents, and
were all connected by direct physical interactions. Many of these most sensitizing hits were
directly connected to MAPK1 (encoding mitogen-activated protein kinase 1, also known as
extracellular signal-regulated protein kinase ERK2), PIK3R (encoding the regulatory
subunit of phosphoinositide 3-kinase), STAT3 (encoding signal transducer and activator of
transcription 3), SHC1 (encoding a scaffolding protein intermediate between receptor
tyrosine kinases and RAS), and EGFR itself, supporting the idea that these proteins
modulated core outputs of the central EGFR signaling pathway.

We next tested the ability of a number of the hits in this network to directly modulate both
basal and EGF-stimulated activation of the core pathway effectors MAPK1 and AKT, which
is activated by PI3K (Fig. 5B and fig. S4). Knockdown of ERBB3, ANXA6 (encoding
annexin VI), PRKCD, NEDD9, BCAR1, or SH2D3C reduced basal activation of MAPK1 or
AKT, or both, implying the encoded proteins could influence activity of these canonical
effectors of EGFR-RAS signaling. However, knockdown of none of these genes reduced
EGF-stimulated activation of AKT or MAPK1, indicating that EGF signaling to MAPK1
and AKT does not require these components of the network.

By contrast, a small number of the hits, including TBL1Y [encoding transducin (beta)-like,
an adaptor protein], PIN1 (encoding peptidyl-prolyl cis/trans isomerase), NIMA-interacting
1 protein), SC4MOL (encoding sterol-C4-methyl oxidase-like protein, involved in sterol
biosynthesis), and ASCL2 (encoding achaete-scute complex homolog 2, a transcription
factor), were not connected by direct protein-protein interactions to the core network (Fig.
5A), suggesting either a different mode of action or previously undetected connections.

Direct testing of knockdown of ASCL2 showed that a reduction of the encoded protein
failed to statistically significantly affect MAPK1 or AKT activation under basal or EGF-
stimulated conditions, although it potently sensitized erlotinib-treated cells to apoptosis (Fig.
4). ASCL2 is a target of Wnt signaling that is increased in abundance in a subset of colon
carcinomas (13), and that also controls the expansion of epithelial stem cells (14). Together,
these observations suggest that inhibition of ASCL2 may be promising as a direction for
therapeutic development.

Chemical inhibition of proteins encoded by or associated with hit genes synergizes with
erlotinib in reducing cell viability and tumor growth

We wanted to gain insights that could be rapidly translated into the clinic. Although the
clinical use of RNAi is a topic of intense current research, small molecules and monoclonal
antibodies remain the most broadly applicable therapy platforms. Further, given that siRNA
rarely depletes targeted genes more than 90%, whereas small molecule inhibitors can
completely block the functions of targeted gene products, they may produce more robust
effects relative to RNAi. For some sensitizing hits, targeted small molecules exist, including
Stattic [a small molecule inhibitor of STAT3 activation and dimerization (15)], enzastaurin
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and Ro-318220 [both targeting the PRKC family (16), including members represented
among the hits].

Stattic synergized with erlotinib in inhibiting the viability of both A431 and HCT116 cells
(Fig. 5C and fig. S5A) in keeping with the reported dependency of EGFR-driven autocrine
growth on STAT3 activation in cancer (17,18), but showed no statistically significant
synergy in reducing cell motility (Fig. 5D, left panel). Both Ro-318220 and enzastaurin
synergized with erlotinib in A431 and HCT116 cells (Fig. 5C and fig. S5B), at multiple
ratios of drug combination. Combined application of erlotinib and Ro-318220 also
significantly reduced tumor cell motility (Fig. 5D, right panel), and reduced tumor growth in
a xenograft assay (Fig. 5E). We analyzed the effect of drug combinations on the activation
state of a series of benchmark signaling proteins relevant to proliferation and apoptosis,
including AKT, ERK, MDM2 (an E3 ubiquitin ligase), and p53 (Fig. S6). Erlotinib used as a
single drug reduced basal ERK activation, and basal and EGF-stimulated AKT signaling,
but did not affect MDM2 or p53. None of these proteins exhibited changes in amount of
phosphorylated (active) species as a consequence of combined application of two drugs,
with the exception of AKT, which consistently trended towards reduced phosphorylation on
S473 in cells treated with erlotinib in combination with either stattic or enzastaurin. S473

phosphorylation of AKT has been described as dependent on integrated signaling by PRKC,
EGFR, and mTOR (19), which may be a pathway by which the enzastaurin-erlotinib
combination reduced cell viability.

The proteins of the sensitizing BCAR1-SH3D2C-NEDD9 cluster have been linked to
control of cell survival in the context of integrin-mediated signaling cascades that are
frequently active in advanced and metastatic tumors (20–24), suggesting this cluster may be
of particular interest for therapeutic exploitation. However, these proteins are scaffolding
proteins and not catalytic, and in contrast to STAT3, have not been targeted by existing
small molecule agents. Given the results suggesting the enrichment of sensitizing genes
among gene encoding proteins closely linked to core hits, we hypothesized that small
molecules targeting kinases closely linked to this cluster by physical interactions might
similarly provide a source of synergizing agents for combination with erlotinib. We
identified more than 20 kinases as direct interaction neighbors around BCAR1, SH3D3C,
and NEDD9 (Fig. 6A). Ten of these kinases (either uniquely, or as one member of a protein
family) are targeted by drugs that are in pre-clinical or clinical development, or approved
agents, and some of these drugs have indeed been combined productively with EGFR-
directed therapeutics, for example dasatinib, targeting Src family kinases (25). Among these,
the NEDD9-interacting (26) kinase AURKA (known as Aurora A kinase or STK6) also
stimulates the EGFR effector RALA (a guanosine trisphosphatase) (27), and when
overexpressed in tumors is associated with increased amounts of phosphorylated AKT (28).
Moreover, drugs targeting AURKA are currently undergoing clinical evaluation (29–31).

Analysis on the basis of the Chou-Talalay coefficient of interaction showed that the small
molecule AURKA inhibitor PHA-680632 (29) synergized with erlotinib in reducing cell
viability of both A431 and HCT116 cells (Fig. 6B). In HCT116 cells, we found strong
synergy (coefficient of interaction values <0.5) between cetuximab and either PHA-680632
or another AURKA inhibitor C1368 (32) (Fig. 6B). Erlotinib exhibited strong synergy with
PHA-680832 (combination index <0.5) and a slightly less strong interaction with C1368.
Combination of AURKA and EGFR-targeting agents did not merely produce cytostasis, but
resulted in cell death, increasing the frequency of apoptosis nearly two-fold (Fig. 6C, 6D). In
addition, combination of these drugs significantly reduced cell motility (Fig. 6E), colony
growth in soft agar (Fig. 6F), and the growth of tumor xenografts implanted in SCID mice
(Fig. 6G).

Astsaturov et al. Page 6

Sci Signal. Author manuscript; available in PMC 2011 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Co-inhibition of EGFR and AURKA reduces SRC family kinase activity
We explored the signaling changes underlying the synergy between EGFR inhibition with
erlotinib and the AURKA inhibitor PHA-680632. Treatment of cells with PHA-680632
alone did not reduce the abundance of EGFR or alter EGFR autophosphorylation, and
activation when compared to DMSO-treated cells (fig. S7). Furthermore, inhibition of
AURKA alone with PHA-680632 had little effect on ERK1/2 or AKT phosphorylation in
response to transient EGF stimulation (Fig. 6H and fig. S7). However, in combination with
erlotinib treatment, PHA-680632 significantly reduced Ser473-AKT phosphorylation below
the amounts seen in cells treated with either agent alone (Fig. 6H), which is consistent with
the reduced survival of cells treated with the drug combination, despite not significantly
influencing other EGFR-dependent signaling benchmarks (fig. S7).

To explore signaling consequences of co-inhibition of AURKA and EGFR in greater depth,
we performed a more comprehensive phosphoproteomic analysis of 46 signaling proteins
linked to cell proliferation or survival responses, or both, following treatment of A431 cells
with erlotinib, PHA-680632, or both. Analysis of two independently performed Western-
based screens with phosphorylation-directed antibodies (Fig. 7A) established that erlotinib
blocked EGF-induced activation of multiple signaling pathways (reducing AKT and ERK
phosphorylation below the amount in unstimulated cells), and PHA-680632 had little effect
on EGF-mediated phosphorylation events when used as single agent. In contrast, the
combination of drugs led to specific inhibition of a subset of proteins, including greater
inhibition of ERK and AKT, as well as inhibition of GSK3β (glycogen synthase kinase 3β, a
known functional partner of AUKRA (33)), JNK (c-Jun-N-terminal kinase), and the SRC
family kinase FGR.

We performed similar experiments to analyze signaling changes under the steady-state
growth conditions in the presence of serum (when the activation state of pathways was not
strictly dependent on EGF), which we used to assess synergistic killing of cells (Fig. 7B).
Strikingly, this analysis re-identified the same targets for the drug combination as those seen
with EGF-dependent signaling (Fig. 7A), but in addition showed significant reduction in the
phosphorylation of STAT3 and a group of SRC kinases, including FGR, HCK, LYN, SRC,
and LCK. These last hits in particular are intriguing, because the BCAR1-NEDD9-SH2D3C
proteins that led us to consider AURKA are direct activators and substrates of these same
kinases of SRC family (Fig. 6A) (34). AURKA inhibitors may weaken this resistance cluster
in the network.

Discussion
Another potential use of this data set is for the nomination of new biomarkers for selecting
patient responsiveness. However, extensive analysis of the expression of siRNA targets in
cell lines used for functional analysis (Fig. S8) showed no statistically significant correlation
between expression level and role in modulating resistance, whereas analysis of Oncomine
profiles (Fig. S9) did not reveal specific trends of altered expression in tumors. Large
sequencing projects, including among others the Cancer Gene Census, have noted mutations
with some frequency for RET, FLNA, FGFR2, SMAD2, PIK3R1, ABL1, CCND1, and
AKT2 [(35) and http://www.sanger.ac.uk/CGP/]; however, most of the genes we identified
are not common targets for mutations. These observations have potentially important
translational implications, because much effort has gone into analyzing gene expression or
mutational status to predict drug resistance. This cumulative lack of a clear pattern of
expression or mutation likely reflects the complexity of cancer-associated signaling
networks. For many solid tumors, no unique oncogenic driver has been yet identified, but
instead, tumor cells undergo multiple, sequential process-oriented oncogenic alterations that
together reprogram multiple yet discrete aspects of tumor functionality. In such a scenario,
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fitness of a cancer cell is determined by the robustness of its signaling network as a whole.
The resistance-mediating genes that we have identified should undergo scrutiny as
alternative EGFR modulators, joining with proteins such as KRAS, BRAF (a MAPKKK), c-
MET (a receptor tyrosine kinase), IGF1 (insulin growth factor 1), and others (36).

A major goal of systems-level bioinformatics analyses is to nominate critical nodes to target
in combination to enhance therapy in the clinic and successes are beginning to emerge from
this information-driven strategy (37). Separately, screening of siRNA libraries has emerged
as an approach to identify genes that when knocked down can kill cancer cells or sensitize
them to cytotoxic agents. To date, such screening has typically employed either full genome
screens, or screens of small libraries targeting limited groups of proteins, such as the kinome
or phosphatome (38,39). A genome-wide screen to identify sensitizers to the microtubule-
targeting agent paclitaxel identified a number of hits that clustered into coherent groups of
genes associated with the proteasome or mitotic spindle (40), which had been linked to
paclitaxel activity on the basis of existing pathway knowledge.

In the current study, we employed bioinformatics design and direct screening and found that
many proteins influencing cellular resistance to EGFR-targeting agents clustered in
connection-dense, highly interactive portions of the EGFR signaling network, thus
supporting our core hypothesis that these characteristics would be enriched for synthetic
lethal interactions. These sensitizing protein clusters were useful for predicting the efficacy
of combining protein-targeted drugs with inhibitors of EGFR, suggesting the potential of
this approach for speeding the translation of results to the clinic. We believe this targeted
approach has several advantages in comparison to a full genome screen. Beyond the
pragmatic factors of convenience, speed, and cost, all hits arising from a targeted screen
already have at least some defined functional relationships to the signaling pathway under
investigation, which should accelerate validation and mechanistic analysis. Further, the
limited size of the library allowed the use of more relaxed statistical criteria in nominating
hits for validation than would be necessary in a full genome screen, which allowed us to
repeat the primary screen multiple times. Given the intrinsic noise in siRNA screening, these
are important advantages. Although the use of focused screening approaches (for instance, a
kinome library) overcomes a number of these problems, it is notable that only 25/61 of our
hits were kinases, and some of the most potent, such as the BCAR1-SH2D3C-NEDD9
cluster, are entirely noncatalytic. Together with our observation that the single greatest
source of enrichment for hits (Figure 2A) is among the proteins with both direct physical
interactions and literature-based pathway connections to the library seeds, these observations
provide guidance for future library optimization.

Materials and Methods
Cell lines, compounds, and antibodies

The A431 cervical adenocarcinoma, (wild type for the gene encoding KRAS and mutation
in the gene encoding p53 (41), HCT116 and LoVo,(both of which have mutations in the
gene encoding KRAS and are p53 wild type) colorectal carcinoma, and the PANC-1
(mutations in the genes encoding KRAS and p53) and MIA PaCa-2 (mutations in the genes
encoding KRAS, p53, and the cell cycle inhibitor p16) pancreatic adenocarcinoma (42) cell
lines were obtained from the ATCC (USA). The DLD-1 (mutations in the genes encoding
KRAS and p53) and DKS-8 (a cell line derived from DLD-1 in which the activated KRAS
allele is disrupted, mutation in the gene encoding p53) (43) were a gift of Robert J. Coffey
(Vanderbilt University, TN). SCC61 cells (wild type for KRAS, mutation in the gene
encoding p53), derived from squamous cell carcinomas of the head and neck, were provided
by Dr. Tanguy Y. Seiwert (University of Chicago). All cell lines were maintained in DMEM
supplemented with 10% v/v fetal bovine serum (FBS) and L-glutamine without antibiotics.
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Cetuximab, panitumumab, and erlotinib were purchased from the Fox Chase Cancer Center
pharmacy; CPT11 and C1368 from Sigma-Aldrich (USA); Stattic and Ro-318220 from
EMD Chemicals (Gibbstown, NJ, USA). PHA-680632 was obtained from Nerviano Medical
Sciences (Nerviano, Italy), as a gift of Dr. Jurgen Moll. Enzastaurin was provided by the Elli
Lilly Company (Indianapolis, IN). All antibodies used in Western blot experiments were
purchased from Cell Signaling (Danvers, MA, USA), except the mouse monoclonal
antibody against p53, which was from Calbiochem (EMD Biosciences, USA).

EGFR network construction
Four sources of information were used, including (i) published EGFR pathway maps, (ii)
human PPI data from mulitple databases, (iii) human orthologs of PPIs and genetic
interactions modeled from Drosophila, and (iv) microarray data obtained at brief intervals
after treatment of cells with stimulators or inhibitors of EGFR or ERBB2. Following initial
assembly of a larger gene list, genes were parsed into high confidence (“core”, denoted as
“1” after the corresponding letter code) versus lower confidence sets (denoted as “2”), on the
basis of the confidence criteria outlined for each section below. For each category of
information, all “core” components were included in the final library, as were genes noted as
lower confidence but that were included in at least two categories of search criteria (for
example, second order protein-protein interaction and microarray linkage). Finally, for the
assembled set of EGFR interactors, multiple paralogous genes were identified in humans
with the KEGG Sequence Similarity DataBase (SSDB) resource
(http://www.genome.jp/kegg/ssdb/) (44). 77 paralogs of the best-characterized and
biologically significant genes were added to the set. All data storage, handling, and analysis
were done primarily in Cytoscape (http://www.cytoscape.org/)(45).

For the data from pathway map sources, protein names for were extracted from the
following pathway maps focused on EGFR: Science Signaling Database of Cell Signaling
(http://stke.sciencemag.org/cgi/cm/stkecm;CMP_14987) (46); Biocarta
(http://www.biocarta.com/pathfiles/PathwayProteinList.asp?showPFID=102); the Systems
Biology model repository (http://www.systems-biology.org/001/005.html) (47); NetPath
(http://www.netpath.org/pathways?path_id=NetPath_4) (48); and from Protein Lounge
(http://www.proteinlounge.com/pop_pathways1.asp?id=EGF+Pathway). Protein names
were individually inspected and, where necessary, converted to the corresponding official
(NCBI or EMBL) symbols. Proteins mentioned on at least two EGFR-centered pathways
were designated as “pathway core”; substantial divergence was seen among different
interpretations of the “EGFR pathway” by the 5 sources.

EGFR (ERBB1) and ERBB2 were used as seeds for PPI searches. Curated information
regarding human PPIs of these seeds was collected from the following databases:
Biomolecular Object Network Databank (BOND) (http://bond.unleashedinformatics.com/),
which derives from the Biomolecular Interaction Network Database (8); General Repository
for Interaction Datasets (http://thebiogrid.org/) (49); EMBL_EBI IntAct
(http://www.ebi.ac.uk/intact/site/index.jsf) (9); The Human Protein Reference Database
(http://www.hprd.org/) (50); Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.jp/about_genomenet/service.html) (44); and Prolinks Database 2.0
(http://mysql5.mbi.ucla.edu/cgi-bin/functionator/pronav) (51). Data for first rank (direct)
interactors were collected both by export from the corresponding database and subsequent
import into Cytoscape, and by directly querying those databases with the BioNetBuilder
plugin (http://err.bio.nyu.edu/cytoscape/bionetbuilder/) (52)), and then cross-comparing
retrieved results. Data for the second order interactions were obtained by using EGFR and
ERBB2 first rank interactors as seeds for an additional round of query with the
BioNetBuilder plugin. Finally, an orthogonal set of second rank interactors was obtained by
analysis of protein complexes with more than 2 subunits, which included EGFR.
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Information for complexes was obtained from BOND and IntAct (XX), and manually
compared to the lists in the corresponding publications. We also used the SHC1 and SHC3
adaptors, which bridge between EGFR and downstream signaling effectors, and the CAS
(EFS, BCAR1, and NEDD9) scaffolding proteins, which connect EGFR to the SRC and
TGF-β core signaling cascades (34,53), as seeds for first order PPI searches. Second order
PPIs with EGFR and ERBB2 were ranked higher (as a P1) if they were also first order
interactors of SHC or CAS proteins

To extract a set of EGFR-centered interactions potentially conserved between humans and
D. melanogaster, we used information assembled by the Michigan Proteomics Consortium
in the Drosophila Interactions Database (DroID) (http://www.droidb.org) (54). Briefly, this
database integrates genetic and or protein interaction data from various nonmammalian
species (yeast, worms, and flies). Of the 105 EGFR interactors (almost exclusively from
Drosophila genetic interactions), 65 had 1 or 2 conserved human orthologs (encoded by 117
genes).

Microarray data were obtained from The Gene Expression Omnibus (GEO, release date Dec
15, 2006) (10). In the selected dataset (GSE6521; raw data available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6521), MCF-7 human breast
cancer cells were incubated with the growth hormone heregulin (HRG), or AG1478 (an
EGFR kinase inhibitor), or both growth hormone and AG1478. Controls were set as cells
that were not treated with growth hormone or inhibitor. A total of 348 genes with a >1.5 fold
change (+ or −) upon AG1478 treatment was identified. In this group, the core set included
89 genes that showed a >2-fold change in expression upon AG1478 treatment, or which
were inducible by HRG (>1.5 fold) and repressible by AG1478 (>1.5 fold).

High-throughput siRNA screening methods
IC values for erlotinib, panitumumab, and CPT11 were established (fig. S1A). The custom
siRNA library targeting 638 human genes was designed and synthesized with two siRNA
duplexes for each gene target (Qiagen, Valencia, CA). Transfection conditions were
established for the A431 cervical adenocarcinoma ((41) cell line (Fig. S1B) using PLK1 &
GL2 siRNA controls to achieve Z′ values (55) of 0.5 or greater. Details of establishment of
Z′ factor for transfections (fig S1), and statistical consideration for selection of preliminary
positive candidates graphically outlined in fig. S2 and based on standard approaches
described in detail in (40). For each gene targeted, two independent siRNA duplexes were
combined and arrayed in 96-well plates with a layout that systematically placed positive
control siRNA (targeting PLK1) and negative control siRNA (targeting insect luciferase
GL2, Thermo Fisher Scientific, USA) amongst the test siRNAs. We used a reverse
transfection protocol in which siRNA at a final concentration of 50 nM was mixed with
Dharmafect 1 transfection reagent according to the manufacturer’s instructions (Thermo
Fisher, USA). Cells (3500 per well, resuspended in 1% FBS/DMEM) were added directly to
wells with an automated liquid dispenser. At 24 hr following transfection, two replica plates
were treated with drugs at previously established IC30 or 0.02% DMSO diluted in culture
media. We assessed viability 96 hr post-transfection with Alamar blue (CellTiter Blue
Viability Assay, Promega, USA). Dose-responses for each drug and cell line were retested
in parallel with each screen.

For screening, A431 cells were transfected with siRNA followed by exposure to vehicle
(0.02% DMSO), or drug used at inhibitory concentrations of 30% (IC30). Viability was
determined for each target gene and normalized to the averaged GL2 viability on each plate.
Sensitization index (SI) was calculated for each individual well on a 96-well plate as
SI=(Vdrug/GL2drug)/(VDMSO/GL2DMSO), where V was viability in wells transfected with
targeting duplexes and GL2 was the averaged viability of 4 wells with non-targeting
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negative control siRNA on the same plate. All calculations were automated using cellHTS
package within open source Bioconductor Package (http://www.bioconductor.org)(56). The
effect of drug treatment on viability was measured based on the normalized viabilities in the
drug-treated and vehicle wells using Limma (57). Limma borrows strength across genes on
the basis of an empirical Bayes approach and identifies statistically significant changes in
viability by combining information from a set of gene-specific tests. Hits were identified
based on statistical significance, as well as biological significance. Statistical significance
was determined by p-value controlled for the false discovery rate (FDR) using the
Benjamini-Hochberg step-up method (58) to account for multiple testing. Hits showing an
FDR of less than 20% were considered statistically significant. Biological significance was
arbitrarily defined as an increase or decrease in SI greater than 15%. Hits identified as
statistically and biologically significant were further validated.

Primary sensitizing hits obtained with erlotinib, cetuximab, or both were further tested with
erlotinib and DMSO in the A431 cell line with 4 siRNA individual duplexes (the two
originally used in the screen, plus two new nonoverlapping RNA oligoribonucleotides), to
confirm the sensitization phenotype at 10 nM and 50 nM concentrations. Hits were
considered as validated by this method if at least 2 out of 4 siRNA reproduced the
sensitization phenotype with SI≤0.85, FDR≤20% for each individual siRNA sequence in at
least two independent experiments. For a number of hits, we additionally confirmed that
sensitizing siRNAs reduced mRNA abundance for the targeted genes, using qRT-PCR; and
confirmed reduction in protein abundance by Western analysis (fig. S3).

Cell line and drug specificity of candidate sensitizing genes
Of the confirmed set of 61 siRNA targets identified as causing erlotinib sensitivity in A431
cells, 45 were further tested for sensitization to erlotinib, cetuximab and CPT11 in A431
versus refractory adenocarcinoma cell lines for which optimal transfection conditions and
drug sensitivity had been established. In this analysis, for each target, the two most active
siRNA duplexes identified during the validation stage were pooled in a 96-well format, cells
were transfected with these siRNA pools and drug-treated under conditions similar to those
described above for the initial A431 screen. SI and statistical significance were calculated as
in the validation experiments. All experiments were performed at least three times
independently.

We used two approaches in subsequent data analysis. For the relative ranking approach, for
each experiment, SI values (regardless of FDR) for each siRNA pool were ranked from the
strongest (assigned a value of 0) to the weakest (assigned as 1). For all experiments
performed with a given cell:drug combination (for example, A431:erlotinib, or
HCT116:CPT11) averages were determined on the basis of at least three experimental runs.
The averaged data were imported and clustered in MultiExperiment Viewer (MeV_4_3)
software (59), and dendrograms were created using HCL Support Trees (using Euclidian
Distance as a metric, and bootstrapping with 100 iterations). For the absolute threshold
approach, specific SI thresholds were applied for each data point, considering only data with
an FDR ≤20% in each independent experiment. Data were visualized in MultiExperiment
Viewer using color assignments to indicate SI cutoffs obtained in at least two independent
experiments, as described in figure legends. The resulting output of both analytic strategies
was processed using the graphic software package Canvas (ACD Systems International,
Canada) to improve visualization of data.

Quantitative RT-PCR
For evaluation of expression of validated target genes, each of the cell lines was grown to
70% confluency in DMEM media with 10% FBS, then total RNA was extracted with
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RNeasy Minikit (Qiagen, Valencia, CA). To confirm mRNA depletion by siRNA, 48 hrs
after transfection of A431 cells grown in 96-well plates, total RNA was extracted with a
Cell-to-Ct kit from Applied Biosystems, Foster City, CA. Quantitative RT-PCR reactions
were performed with TaqMan probes and primers designed by the manufacturer of the Cell-
to-Ct kit, using an ABI PRISM 7700 detection system (Applied Biosystems, Foster City,
CA). The results were analyzed with the comparative Ct method to establish relative
expression curves.

To assess whether gene expression correlated with the ability of gene-targeted siRNAs to
inhibit intrinsic cell growth, we used a Pearson correlation of the mean values of gene
expression relative to that obtained in A431 cells measured by RT-PCR, against the mean
growth observed in DMSO-treated cells in all experiments. To test significance, we
permuted the labels on the cell lines in the RT-PCR measurements, which created a series of
100 data sets that should show only chance correlation, and generated Pearson correlation
values on this permuted set. Significance was defined as an FDR of 5%, setting Pearson
correlation greater than 0.745 or less than −0.71 for positive correlated or negative-
correlated, respectively. Positive correlation indicates that higher expression (lower number
of RT-PCR cycles) correlated with greater growth inhibition, whereas negative correlation
indicates higher expression is correlated with lower inhibition.

Network analysis with hits
For all genes in the library, the String search engine (60) was used in subsequent analysis to
augment information on PPIs in human cells, PPIs between homologous genes in model
organisms, database or pathway links, and text mining (coappearance of gene names in
PubMed). Data regarding experimentally proven interactions in human and model organisms
were merged. Topological properties of the library network were assessed with the
NetworkAnalyzer plugin for Cytoscape (61), on the basis of STRING-expanded defined
interactions among genes in the library (based only on experimental data). In this analysis,
for each node, degree, stress, and neighborhood connectivity were separately assessed. The
topological coefficient was calculated to provide an estimate for the trend of the nodes in the
network to have shared neighbors. To provide additional context in some analyses (Fig. 5)
STRING-extracted information from pathway databases and text-mining data were merged
and displayed using Cytoscape as indicated in figure legends.

Apoptosis assays
Apoptosis was measured with the Annexin V assay (Guava Technologies, Hayward, CA).
Annexin V-positive A431 cells were counted using Guava flow cytometry 72 hours post
transfection, 48 hours after treatment. Statistical significance versus cells transfected with
the control GL2 siRNA was determined by logistic regression models to identify genes that
when knocked down increased apoptosis in the presence of erlotinib relative to vehicle.

Pathway analysis
To measure the effect of siRNAs on the activity of EGFR effectors, cells were transfected
with siRNA and the culture media was replaced with glutamine-supplemented serum-free
DMEM at 24 hrs post-transfection. After overnight incubation, cells were treated with
DMSO, erlotinib, or PHA-680632 for 2 hrs, then either left untreated or stimulated with
EGF at 15 ng/ml for 15 minutes. Cell extracts were prepared using M-PER™ mammalian
protein extraction buffer (Thermo Scientific, Rockford, IL) supplemented with the Halt™
phosphatase inhibitor cocktail (Thermo Scientific, Rockford, IL) and the Complete Mini™
protease inhibitor cocktail (Roche Diagnostics Gmbh, Manheim, Germany). Extracts were
centrifuged at 15,000g for 10 min at 4°C. Western signal detection was performed using
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antibodies to indicated proteins with LiCor technology (Lincoln, NE, USA) or standard X-
ray film.

For phosphoproteomic analysis, we used the Proteome Profiler™ array (R&D Systems,
Minneapolis, MN, USA) according to the manufacturer’s protocol. In brief, A431 cells were
grown for 24 hours in DMEM supplemented with L-glutamine and 1% FBS to 70%
confluency. Cells were either then serum-starved overnight or maintained in the same
media. Serum-starved and cells incubated in 1% serum were either left untreated or
incubated with IC30 concentrations of inhibitors for 3 hours. For a subset of
phosphoproteins, phosphorylation status was confirmed by Western blot. Quantification was
done with ImageJ software (62).

Drug synergy testing
The combination index (CI) between pharmacological inhibitors was established by the
Chou-Talalay method (63). We used the software package CalcuSyn (BioSoft, UK) to
automate calculations. Briefly, for each drug tested, an IC50 curve was established in each
cell line, and used to select combination doses of drugs for subsequent synergy tests. 3500
cells were plated per well in 96-well plates. After 24 hours, cells were treated with serial
dilutions of individual inhibitors or combinations of two inhibitors maintained at a constant
molar ratio. After 72 hours incubation, cell viability was measured using either CellTiter
Blue (Promega, USA) or a WST1 assay (Roche Applied Science, Indianapolis, IN). The CI
values for each dose and corresponding cytotoxicity were expressed as the fraction affected
(Fa) and were calculated using CalcuSyn computer software and presented as Fa-CI plots.

Anchorage-independent growth and cell motility
Soft agar assays were done essentially as described (64). Cells were seeded at 2000 cells per
well and grown for 2 to 3 weeks. Colonies were stained with thiazolyl blue tetrazolium
bromide, and scored with a Nikon SMZ1500 microscope coupled with Cool Snap charge-
coupled device camera (Roper Scientific, Inc., Tucson, AZ) with Image Pro-Plus software
(Media Cybernetics, Silver Spring, MD). Survival curves were based on at least two
concentration points, with values determined in at least two separate experiments, with each
assay done in duplicate. Drug interactions were calculated as above using CalcuSyn
software. For motility assays, movement of A431 cells grown in 1% FCS into a scratched
area of the monolayer was monitored with a phase contrast 10x objective using an inverted
microscope (Nikon TE2000). Images were obtained every 20 min for 18 hours. Areas of
migration were estimated using MetaMorph software. For both studies, analysis of variance
was used to determine the treatment effect for each comparison. The logarithm of
normalized ratios (to vehicle control) was used in the analysis. Multiple hypothesis testing
performed with the FDR method of Benjamini & Hochberg (58).

Tumor formation in vivo
Male CB.17/scid mice aged 6 to 8 weeks were obtained from the Fox Chase Cancer Center
breeding colony. All experiments were performed according to protocols approved by the
institutional animal use committee. Mice were injected with 3 × 106 A431 cells
subcutaneously into the flanks. Palpable tumors appeared in all animals in 10 to 14 days, and
were measured 3 times a week in two dimension and volume calculated by modified
ellipsoidal formula as Length × Width2 × 0.52. Mice were randomized and treatments
commenced when tumor volume exceeded 65 mm3. Erlotinib at doses 10 to 20 mg/kg was
given by oral gavage in 10% DMSO/saline. Enzastaurin was suspended in 5% dextrose in
water and dosed at 75 mg/kg by gavage twice daily. PHA-680632 was freshly dissolved in
acidified 5% dextrose in water and administered intraperitoneally twice daily at 15 mg/kg
dose. The generalized estimating equations approach (with an autoregressive correlation
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structure) was used to model tumor growth. A linear time-effect was included in the model
for the logarithm of tumor volume and interacted with the treatments in each comparison.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Design and screening of a targeted library
(A) Genes targeted in the library were identified from a preliminary large set (open circles)
of genes engaged in protein-protein interactions (PPIs) with one of the seeds, or interacting
with one of the direct interactors; collected from 5 curated pathway resources for the EGFR
signaling network (Pathway maps); shown by microarray experiments to be rapidly
transcriptionally responsive to stimulation or inhibition of EGFR; or human orthologs of
genes known to genetically interact with EGFR in Drosophila (Drosophila genetics). Genes
from this larger set were prioritized by a series of collection criteria aimed at finding genes
connected to EGFR by more than one criterion (detailed in table S1); final numbers of genes
added to the library from each group are shown in filled circles. At the intersection of the
circles is the number of genes added to the library, because they belong to at least two sets.
For the PPI, pathway map, and microarray sets, additional 77 genes were identified as
closely related in sequence and potentially paralogous in function (dashed line). (B)
Distribution of hits as a factor of overall viability reduction with the siRNA. siRNAs in
library are listed in order of intrinsic impact on viability of A431 cells treated with DMSO
(gray line). Blue triangles, sensitization index (SI) for primary hits with erlotinib; red
triangles, SI for validated hits with erlotinib; green squares, SI for primary hits with CPT11.
(C) Degree of overlap between primary hits obtained for erlotinib, panitumumab, and
CPT11. (D) Network of validated (red circles) hits sensitizing to EGFR-targeting agents, in
the context of the full library. Lines (edges) represent connections based on direct protein-
protein interactions or genetic interactions in Drosophila. Hits and genes from the starting
set that were not connected in the network are shown below the network.
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Fig. 2. Network properties of hits
(A) Hits by source of input in library. MA, microarray indicates transcriptionally responsive
to EGFR; DG, Drosophila genetics; PPI1, direct protein interactions with seeds; PM,
pathway maps; PPI2, direct protein interactions with a protein within the PPI1 group, or
found in a complex with seed proteins; 3S, any 3 sources combined. (B) Topological
analysis of erlotinib hit network identified in A431 cells. Data shown represents difference
between properties of the set of 61 validated hits and the average for 20 randomly generated
sets of 61 genes from the library. Measures of degree, topological coefficient (Topological
Coeff/100), stress (Stress/1000), and neighborhood connectivity (Neighborhood Conn/3)
show significant enrichment for hits validated with erlotinib, with the error bars for the
random set data reflecting a 99% confidence interval. (C) Enriched GO classifications (for
each category shown, p<0.01). among hits. Enrichment is significant for proteins annotated
as involved in phosphate metabolism (kinases and phosphatases) and in multiple signal
transduction-related categories. (D) Percentage of hits versus library proteins having a
recognized ortholog in S. cerevisiae, C. elegans or D. melanogaster. X axis, the number of
species (among listed) having a recognized ortholog.
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Fig. 3. Sensitization profile of hits
(A) Left, SI values for erlotinib and CPT11, calculated as (test siRNA)/(GL2) for cells
grown in drug, divided by (test siRNA/GL2) for cells grown in DMSO: dim yellow,
SI≤0.85; bright yellow, SI≤0.7; dim blue, SI≥1.15; bright blue, SI≥1.3. Right, gradient of
relative ranking of the efficacy of hits to sensitize cells to drugs indicated: black, most
sensitizing; white, least sensitizing or in some cases antagonizing (compare to left panels).
For rank order analysis, cluster analysis was performed to identify genes with similar
profiles of sensitization (dendrogram, Y axis), and also to cluster cell lines by similarity of
response (dendrogram, X axis): these clustered patterns are used to organize the display of
genes selected by threshold. Two cell lines, MIA-Paca2 and LoVo, yielded no reproducible
hits sensitizing to erlotinib; BCAR1 and TBL1Y were not tested in LoVo. Note, not all hits
initially obtained and validated in A431 score as positive by rigorous statistical criteria with
A431/erlotinib in this experiment because of the intrinsic false negative rate of the assay. (B)
Left, siRNA-induced viability reduction below 0.85 (dim yellow), or 0.7 (bright yellow) that
of control siRNA-treated cells, calculated based on the formula (test siRNA)/(GL2 control
siRNA) for cells grown in DMSO. Right, relative ranking of hit efficacy in reducing cell line
viability.
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Figure 4. siRNA hits enhance apoptosis in the presence of EGFR inhibitor
Apoptosis was determined by annexin-V labeling and normalized to negative control
siRNA. Composite results from two independent experiments are shown as odds ratio
columns; black, DMSO-treated; white, erlotinib-treated. Asterisks indicate statistically
significant (FDR ≤ 0.05) erlotinib-gene interactions from two independent experiments.
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Fig. 5. Functional classification of hits
(A) Network of validated genes that sensitize cells to EGFR-targeting agents. Blue lines
represent connections based on direct PPIs or genetic interactions in Drosophila; green lines
represent connections generated by pathway maps and text mining. Green shadowing on
boxes indicates genes that are in the top quartile by rank order of those strongly sensitizing
at least 1 (lightest green) to at least 5 (darkest green) cancer cell lines to erlotinib. Gray
boxes, genes that were never in the top quartile; white boxes, validated genes not tested for
sensitization. (B) Analysis of ERK (top) and AKT (bottom) status in cell lysates from A431
cells following siRNA transfection, under basal medium conditions and following EGF
stimulation. Average results of three independent Western blots are shown as ratios of
amounts of phosphorylated and total proteins. Results were normalized to corresponding
ratios in GL2 siRNA-transfected control cells; error bars are standard deviations. Asterisks
indicate statistically significant difference with negative control; t-test p<0.05. (C) Viability
curves for erlotinib and Stattic used as single agents, or combined at 1:1 molar ratio in A431
(left) and HCT116 (right) cells, or for erlotinib and Ro-318220 used as single agents, or
combined at 1:5 molar ratio in A431 (left) and HCT116 (right) cells. (D) Motility was
measured by wound healing assay in A431 cells cells treated with 0.5 μM erlotinib alone or
in combination with 0.5 μM Stattic (left) or 0.25 μM Ro-318220 (right), and assessed over
18 hours. NS, not significant. *, FDR=3.57*10−5. (E) A431 xenografts implanted in SCID
mice were treated with drugs as indicated when palpable tumors appeared (day zero) Drug
treatment was administered from days 0–14, and tumor measurement continued until day 18.
The generalized estimating equations approach (with an autoregressive correlation structure)
was used to model tumor growth. A linear time-effect was included in the model for the
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logarithm of tumor volume and interacted with the treatments in each comparison. P-values
are 1, 0.042 and 2, 0.032, n=5 mice per group.
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Fig. 6. Synergy between inhibitors of AURKA and inhibitors of EGFR
(A) Kinases directly associated with the BCAR1-NEDD9-SH2D3C cluster. Kinases for
which no clinical small molecule inhibitor is available are indicated in pink; kinases for
which small molecule inhibitors are available are indicated in blue or in green, if inhibitor
has previously been tested for synergy with EGFR-targeting agents. (B) Inhibitors of EGFR
and inhibitors of AURKA synergize to reduce viability of cancer cells in vitro. Summary
results of drug interactions calculated as Chou-Talalay combination index (CI) based on Cell
Titer blue viability determinations. CI values <1 indicate synergy, and <0.5 strong synergy,
between the two agents in producing cytotoxic effect.. (C) Dose-dependent inhibition of
HCT116 cell viability by combination of PHA-680632 and erlotinib. (D) Combination of
PHA-680632 and erlotinib treatment increases apoptosis in HCT116 cells at 72 hours; *, t-
test p=0.001. (E) Cell motility was measured by wound healing assay in cells treated with
drugs at concentrations indicated, and assessed over 18 hours. FDR is <10−5 for 1 and 2. (F)
Left, relative soft agar colony formation of cells grown for 2 to 3 weeks in drugs at the
concentrations indicated. FDR is equal to 1, 0.0003; 2, 0.0006; 3, 0.0003; and 4, 0.004.
Right, results from typical experiment. (G) Tumor xenografts were implanted in SCID mice
treated with drugs as indicated. The generalized estimating equations approach (with an
autoregressive correlation structure) was used to model tumor growth. A linear time-effect
was included in the model for the logarithm of tumor volume and interacted with the
treatments in each comparison. P-values are 1: 0.005; 2: 0.008. (H) Quantitation of 3
independent Western analyses of protein lysates of cells treated with erlotinib and
PHA-680632 for 3 hrs followed by EGF stimulation. Error bars represent standard error of
the mean (SEM) of three independent experiments; *, t-test comparing erlotinib to erlotinib
+ PHA-680632 yielded P = 0.013.
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Fig. 7. Dual inhibition of Aurora-A and EGFR suppresses activation of multiple signaling nodes
Ranked fold increase in phosphorylation signal of 46 proteins in A431 cells stimulated with
EGF (15 ng/mL, 15 min) (A) or grown in 1% serum media (B) and treated with indicated
drugs. Stimulation in cells exposed to EGF in the absence of drugs is shown in the far left of
panel A. In panel A, the proteins are listed in the same order in the right and left sides, with
all proteins labeled on the left and those that are substantially reduced by drug treatment
labeled on the right. In panel A, cells were exposed to 0.5 μM erlotinib or 1 μM
PHA-680632, or both. In panel B, cells were exposed to 1 μM erlotinib or 0.5 μM
PHA-680632, or 0.5 μM erlotinib plus 1 μM PHA-680632. Inset, graphs illustrate magnified
scale of indicated phosphoproteins. Proteins showed in red have consistent decrease of >2-
fold in signal intensity in independent biological replicates, as indicated.
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Table 1
Validated EGFR-sensitizing genes

Validated screen hits. Symbol is the official Entrez gene name, ID is Entrez gene ID.

Symbol ID Gene Description Origin Clinical agent

ABL1 25 v-abl Abelson murine leukemia viral oncogene
homolog 1

PPI1 Imatinib, dasatinib

AKT2 208 v-akt murine thymoma viral oncogene homolog 2 PG Perifosine, triciribine, GSK690693

ANXA6 309 annexin A6 C, PPI2

ARF4 378 ADP-ribosylation factor 4 PM, PPI1

ARF5 381 ADP-ribosylation factor 5 PG

ASCL2 430 achaete-scute complex homolog 2 (Drosophila) PPI2, DG

BCAR1 9564 breast cancer anti-estrogen resistance 1 PM, C, PPI1

CALM1 801 calmodulin 1 (phosphorylase kinase, delta) C PPI1 phenothiazines

CBLC 23624 Cas-Br-M (murine) ecotropic retroviral transforming
sequence c

PM PPI1

CCND1 595 cyclin D1 PM, PPI2

CD59 966 CD59 molecule, complement regulatory protein C, PPI2 Roche, Preclinical

CDH3 1001 cadherin 3, type 1, P-cadherin (placental) PG

CXCL12 6387 chemokine (C-X-C motif) ligand 12 (stromal cell-
derived factor 1)

MA

DCN 1634 decorin PPI1

DDR2 4921 discoidin domain receptor family, member 2 PPI1

DIXDC1 85458 DIX domain containing 1 MA

DLG4 1742 discs, large homolog 4 (Drosophila) PPI1

DUSP4 1846 dual specificity phosphatase 4 MA

DUSP6 1848 dual specificity phosphatase 6 DG

DUSP7 1849 dual specificity phosphatase 7 DG

EPHA5 2044 EPH receptor A5 PG

ERBB3 2065 v-erb-b2 erythroblastic leukemia viral oncogene
homolog 3 (avian)

PM, PPI1, DG antibodies, for example MM-121

FER 2241 fer (fps/fes related) tyrosine kinase (phosphoprotein
NCP94)

PPI1

FGFR2 2263 fibroblast growth factor receptor 2 (bacteria-expressed
kinase, keratinocyte growth factor receptor,
craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer
syndrome, Jackson-Weiss syndrome)

DG For example, brivanib, masitinib,
TKI258, PHA-739358

FLNA 2316 filamin PG, alpha (actin binding protein 280) C, PPI2

GRB7 2886 growth factor receptor-bound protein 7 PM, PPI1

HSPA9 3313 heat shock 70kDa protein 9 (mortalin) C, PPI2

INPPL1 3636 inositol polyphosphate phosphatase-like 1 PM, PPI1

KLF10 7071 Kruppel-like factor 10 MA

LOC284393 284393 similar to ribosomal protein L10 PG

LOC63920 63920 transposon-derived Buster3 transposase-like MA

LTK 4058 leukocyte tyrosine kinase PPI1

MAP3K1 4214 mitogen-activated protein kinase kinase kinase 1 PM, PPI2

MAPK1 5594 mitogen-activated protein kinase 1 PM, PPI1
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Symbol ID Gene Description Origin Clinical agent

MATK 4145 megakaryocyte-associated tyrosine kinase PM, PPI1

NEDD9 4739 neural precursor cell expressed, developmentally
down-regulated 9

PPI1

NOTCH2 4853 notch 2 DG

PIK3R1 5295 phosphoinositide-3-kinase, regulatory subunit 1 (p85
alpha)

PM, PPI1 For example, PX-866, BGT226,
GDC-0941, XL765

PIK3R2 5296 phosphoinositide-3-kinase, regulatory subunit 2 (p85
beta)

PM, PPI1

PIN1 5300 protein (peptidylprolyl cis/trans isomerase) NIMA-
interacting 1

PM

PKN2 5586 protein kinase N2 PM, PPI2

PLSCR1 5359 phospholipid scramblase 1 PM, PPI1, MA

PPIA 5478 peptidylprolyl isomerase PG (cyclophilin PG) C, PPI2

PRKACB 5567 protein kinase, cAMP-dependent, catalytic, beta PG

PRKCD 5580 protein kinase C, delta PM, PPI1 ruboxistaurin, enzastaurin, tamoxifen

PRKCE 5581 protein kinase C, epsilon PM, PPI2

PRKCZ 5590 protein kinase C, zeta PM, PPI2

PTPRF 5792 protein tyrosine phosphatase, receptor type, F nexin-II,
Alzheimer disease)

PPI1

RAC1 5879 ras-related C3 botulinum toxin substrate 1 (rho family,
small GTP binding protein Rac1)

PM, PPI2

RAPGEF1 2889 Rap guanine nucleotide exchange factor (GEF) 1 PPI1

RASA3 22821 RAS p21 protein activator 3 DG

RET 5979 ret proto-oncogene PPI1, M2 valdetanib

RPS6KA5 9252 ribosomal protein S6 kinase, 90kDa, polypeptide 5 PM ruboxistaurin

SC4MOL 6307 sterol-C4-methyl oxidase-like MA

SH2D3C 10044 SH2 domain containing 3C PM, PPI1

SHC1 6464 SHC (Src homology 2 domain containing)
transforming protein 1

PM, C, PPI1,
DG

SMAD2 4087 SMAD family member 2 PM, PPI1 peptide 144 targets TGFβ1RIII

SOS2 6655 son of sevenless homolog 2 (Drosophila) PM, PPI1, DG

STAT3 6774 signal transducer and activator of transcription PM, C, PPI1 STAT 3 decoy oligonucleotide

TBL1Y 90665 3 (acute-phase response factor) transducin (beta)-like
1Y-linked

DG

VAV3 10451 vav 3 oncogene PM, C, PPI1

Hits are listed alphabetically by Gene Symbol (Symbol). Entrez Gene ID (ID), description (including alternative common names), reason for
inclusion in the library (Origin), and existence of any targeted small molecule agent (Clinical Agent) are also provided. C, found in a protein
complex with seeds; DG, identified from Drosophila genetics; MA, microarray indicates transcriptionally responsive to EGFR; PG, paralog; PM,
present in pathway maps; PPI1, direct protein interactions with seeds; PPI2, direct protein interactions with a protein within the PPI1 group.
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Table 2

Genes that when knocked down sensitized multiple cell lines to drugs. Threshold analysis provides a set of
target genes based on strict statistical criteria. Rank order analysis provides a different view of the target gene
set by compensating for stochastic noise in the responsiveness of cell lines (including DLD-1, DKS-8, LoVO,
MIA PaCa-2, Panc1, and HCT116) with nonspecific drug-resistance mutations, such as in the genes encoding
K-RAS or p53. For rank analysis, genes indicated represent those found in the highest and lowest quartiles
based on absolute activity for each of the categories specified.

Cutoff Analysis Only Rank Analysis Only

Genes that sensitize A431 cells to erlotinib and cetuximab ASCL2
CDH3
CXCL12
DIXDC1
DLG4
DUSP7
FLNA
INPPL1
PLSCR1
PPIAP19
PRKACB
PRKCE
PRKCZ
RPS6KA5
SC4MOL
SH2D3C

CDH3
CXCL12
FLNA
INPPL1
PRKACB
PRKCE
RPS6KA5
SC4MOL
SH2D3C

Genes that sensitize two or more cell lines to erlotinib AKT2
ASCL2
BCAR1
CD59
DIXDC1
DUSP7
FLNA
LTK
PIK3R2
PRKACB
PRKCD
PRKCE
RPS6KA5
SC4MOL
SH2D3C

AKT2
ASCL2
BCAR1
CD59
DIXDC1
DLG4
DUSP7
FLNA
KLF10
LTK
NEDD9
PRKACB
PRKCE
SC4MOL
SH2D3C
SHC1

Genes that sensitize one or more resistant cell lines to erlotinib AKT2
BCAR1
CD59
DIXDC1
DUSP7
EPHA5
NEDD9
PIK3R2
PRKACB
SC4MOL
SH2D3C
SHC1

AKT2
ANXA6
ASCL2
BCAR1
CD59
DIXDC1
DLG4
DUSP6
DUSP7
EPHA5
FGFR2
KLF10
LOC63920
LTK
NEDD9
PKN2
PPIAP19
PRKACB
RET
SC4MOL
SH2D3C
SHC1

Genes that sensitized cells to both erlotinib and CPT11 in >3 cell lines, none BCAR1
CD59
DLG4
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Cutoff Analysis Only Rank Analysis Only

Genes that sensitized cells to erlotinib and CPT11, but did not reduce viability in the
absence of drug

CXCL12 (only in A431) DLG4
DUSP6

Genes that affected both the viability and sensitization to erlotinib or CPT11 in ≥ 2 tumor
cells lines

ASCL2
BCAR1
DUSP7
ERBB3
FLNA
INPPL1
LTK
PIK3R2
PRKACB
PRKCD
PRKCE
RASA3
RPS6KA5
SC4MOL
SH2D3C
SHC1
SOS2
VAV3

DIXDC1
FLNA
PRKCE
SH2D3C
SHC1

Genes that reduced viability of at least 2 RAS mutant cell lines but not more than one
wild-type cell line

AKT2
ARF4
CDH3
CXCL12
DUSP7
FLNA
LOC63920
PPIAP19

ANXA6
FLNA
PPIAP19
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