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SUMMARY

While the commonly used log-rank test for comparing survival times between 2 groups enjoys many
desirable properties, sometimes the log-rank test and its related linear rank tests perform poorly when
sample sizes are small. Similar concerns apply to interval estimates for treatment differences in this set-
ting, though their properties are less well known. Standard permutation tests are one option, but these are
not in general valid when the underlying censoring distributions in the comparison groups are unequal.
We develop 2 methods for testing and interval estimation, for use with small samples and possibly unequal
censoring, based on first imputing survival and censoring times and then applying permutation methods.
One provides a heuristic justification for the approach proposed recently byHeinzeand others(2003,
Exact log-rank tests for unequal follow-up.Biometrics59, 1151–1157). Simulation studies show that
the proposed methods have good Type I error and power properties. For accelerated failure time mod-
els, compared to the asymptotic methods ofJin and others(2003, Rank-based inference for the accel-
erated failure time model.Biometrika90, 341–353), the proposed methods yield confidence intervals
with better coverage probabilities in small-sample settings and similar efficiency when sample sizes
are large. The proposed methods are illustrated with data from a cancer study and an AIDS clinical
trial.
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1. INTRODUCTION

The log-rank test and virtually equivalent score, likelihood ratio, or Wald tests arising from fitting Cox’s
proportional hazards model (Cox, 1972; Peto and Peto, 1972; Klein and Moeschberger, 2003) are
the most commonly used statistical methods for comparing 2 groups with respect to a time-to-event
end point. These tests are computationally simple to evaluate, asymptotically valid even if the
censoring distributions are different, robust to model misspecification (Kong and Slud, 1997; Dirienzo
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and Lagakos, 2001), and easily adapted to adjust for other covariates and to handle more than 2
groups (Breslow, 1970). One limitation of these and related generalized linear rank tests (Tarone and
Ware, 1977; Prentice, 1978), however, is that the asymptotic approximations to the distributions of the
test statistics can be inaccurate when sample sizes are small and/or unbalanced or when the under-
lying censoring distributions differ between groups (Latta, 1981, Johnsonand others, 1982, Kellerer
and Chmelevsky, 1983, Schemper, 1984, Jones and Crowley, 1989, Neuhaus, 1993, Heinzeand others,
2003).

Most previous attempts to improve upon the log-rank test for small samples, especially when the un-
derlying censoring distributions differ, have met with only limited success. Standard permutation methods
are valid regardless of sample sizes when the censoring distribution of the 2 groups are equal (Neuhaus,
1993). However, when the censoring distributions differ, standard permutation methods do not work well
for small-sample settings and/or when the amount of censoring is large (Heimann and Neuhaus, 1998). An
early approach (Jennrich, 1984) uses an artificial mechanism to equalize censorship between the groups,
but this results in a loss in power and, in some settings, distorted Type 1 error (Heinzeand others, 2003).
Heinzeand others(2003) describe a testing procedure and show through simulations that the test main-
tains appropriate Type I error rates and exhibits good power over a wide range of settings. However, the
rationale of this approach is unclear. Recently,Troendle and Yu(2006) use nonparametric likelihood tech-
niques to obtain tests for either the identity hypothesis or the nonparametric Behrens–Fisher hypothesis
in this setting.

In this paper, we develop 2 types of permutation tests based on first imputing survival and censoring
times and then applying permutation methods and provide insight into their theoretical underpinnings.
The first modifies the traditional permutation method that would be applicable if the censoring distri-
butions in the 2 groups were equal. The second is motivated from the hypothetical situation where the
underlying survival times and censoring times were known and makes use of the fact that the underly-
ing survival and censoring times are independent within each group. The method ofHeinzeand others
(2003) is shown to coincide with the second approach when different imputation is performed for each
permutation.

The second purpose of this paper is to develop confidence intervals for the parameter representing
the group difference in an accelerated failure time (AFT) model that perform well for small sample
sizes. Previous semiparametric inference methods for AFT models are based on large-sample consid-
erations, including the initial work ofLouis (1981), who transforms observations in one group based
on the AFT assumption and then uses an estimating equation motivated by Cox’s proportional hazards
model to estimate the AFT model parameter, and the work ofWei and Gail(1983), who transform ob-
servations similarly and then form a confidence interval by inverting the log-rank test. More recently,Jin
and others(2003) propose a semiparametric approach for the general covariate settings that is based on
an estimating equation similar to that used byLouis (1981) and estimate the variance of the parameter
estimate using robust perturbation methods. To our knowledge, the performance of confidence intervals
obtained from these large-sample methods have not been investigated for small-sample settings. We form
confidence intervals by inverting the proposed imputation/permutation tests designed for small-sample
situations, which provide a natural complement to the corresponding testing procedures when analyzing
data.

We present the rationale and details of the proposed methods in Section2. In Section3, we first
present simulation results comparing the Type I error and power of the proposed methods to those of the
ordinary log-rank test, standard permutation test (Neuhaus, 1993), and the approach proposed inHeinze
and others(2003) and then use simulations to compare the performance of the proposed interval estimates
to those obtained by the semiparametric methods for AFT models (Jin and others, 2003). We illustrate
the methods with 2 data sets in Section4, and discuss extensions and areas for further investigation in
Section5.
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2. METHODS

Suppose thatT andC denote the underlying survival time and potential censoring time for an individual
and assume both are continuous. The observation for a subject is(U, δ), whereU = min(T, C) and
δ = 1[T 6 C] is an indicator of whetherT is observed(δ = 1) or right censored(δ = 0). Let Z (=1, 2)
denote group. We assume that censoring is noninformative; that is,T andC are conditionally independent
givenZ, which we denoteT ⊥ C|Z. For a subject in groupj , denote the cumulative distribution functions
of T andC by Fj (∙) andG j (∙), and let f j (∙) andgj (∙) denote the corresponding density functions, for
j = 1, 2. We are interested in testing the hypothesisH0: F1(∙) = F2(∙).

Suppose we haven j independently and identically distributed observations of(U, δ) from group
j ( j = 1, 2), wheren = n1 + n2, which are denoted by(Ui , δi , Zi ), for i = 1, . . . , n. Let T, C, and
Z denote then × 1 vectors of values of theTi , Ci , andZi , and let(U, δδδ) denote then × 2 matrix of values
of (Ui , δi ).

2.1 Hypothesis testing

Below we develop 2 tests forH0 for settings when one or both ofn1 andn2 are small and when the
underlying censoring distributions,G1(∙) andG2(∙), may be unequal. Both tests involve an imputation step
and a permutation step. In developing these methods, we first consider the situation where one imputation
is performed to prepare the observed data set for subsequent permutation. We will then discuss the general
case withM imputations andN permutations for each imputation.

2.1.1Permuting group membership.If the underlying censoring distributions,G1(∙) andG2(∙), in the 2
groups were equal, then underH0, the joint distribution of(U, δ) would be the same in the 2 groups. Thus,
an exact permutation test could be formed from then × 3 matrix (Z, U, δδδ) by permuting the rows ofZ
while keeping the rows of(U, δδδ) fixed. For each of the resultingn! permuted matrices, say(Z(p), U, δδδ), we
could then calculate a statistic, such as the numerator of the log-rank statistic, and testH0 by comparing
the observed value of the test statistic to the permutation distribution formed from then! resulting values
of the statistic.

The validity of this approach is lost when the censoring distributionsG1(∙) andG2(∙) differ because the
null distribution of(U, δ) is no longer independent ofZ. To overcome this, we use imputation to create
2 pairs of new observations(Ũ1, δ̃1) and (Ũ2, δ̃2), based on the observed data, so that they arise from
the underlying survival distributionF and from an underlying censoring distribution equal toG1 andG2,
respectively. The resulting observations(Ũ1, δ̃1) and(Ũ2, δ̃2) become independent ofZ. This provides the
basis to permuteZ while holding(Ũ1, δ̃δδ1, Ũ2, δ̃δδ2) fixed to create permuted data set(Z(p), Ũ1, δ̃δδ1, Ũ2, δ̃δδ2)
that are equally likely as(Z, Ũ1, δ̃δδ1, Ũ2, δ̃δδ2) under the null hypothesis. As we will illustrate below, based
on (Z(p), Ũ1, δ̃δδ1, Ũ2, δ̃δδ2), we can then construct data sets that are equally likely as the observed data set
under the null hypothesis.

More specifically, for each observation(Ui , δi ), we first create 2 new pairs of observations, denoted
Vi 1 = (Ũi 1, δ̃i 1) andVi 2 = (Ũi 2, δ̃i 2), such that if observationi corresponds to groupj (i.e. Zi = j ), then
(1) the underlying survival distribution isFj (∙) for each pair and (2) the underlying censoring distributions
for Vi 1 andVi 2 areG1(∙) andG2(∙), respectively. TakeVi 1 as an example,(Ũi 1, δ̃i 1) = (Ui , δi ) if Zi = 1;
if Zi = 2, Vi 1 is representative of the observation we would have observed if the underlying survival
time Ti was subject to group 1 censoringG1(∙). For each of the group 2 observations,Vi 1 is generated in
the following way (suppressing the subscripts for simplicity): first generate the new underlying censoring

time C̃ for a subject byC̃
def
= G−1

1 (r ), wherer is a uniform(0, 1) random variable that is independent
of the observations. For eachU , defineT̃ to be theU if δ = 1 and a realization from the distribution
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F2(t |t > u) if δ = 0. The new(Ũ , δ̃) is then defined by

(Ũ , δ̃) =






(U, 1) if δ = 1 & min(U, C̃) = U,

(C̃, 0) if δ = 1 & min(U, C̃) = C̃,

(C̃, 0) if δ = 0 & min(U, C̃) = C̃,

(T̃, 1) if δ = 0 & min(T̃, C̃) = T̃,

(C̃, 0) if δ = 0 & U < C̃ < T̃ .

The 5 categories above are mutually exclusive and exhaustive.
UnderH0: F1(∙) = F2(∙), note that

P(Ũ 6 v, δ̃ = 1|Z = 2)

= P(U 6 v, δ = 1, min(U, C̃) = U |Z = 2) + P(T̃ 6 v, δ = 0, min(T̃, C̃) = T̃ |Z = 2)

=
∫ v

0
f2(u)(1 − G2(u))(1 − G1(u))du +

∫ v

0

∫ u

0

f2(u)

1 − F2(s)
g2(s)(1 − F2(s))(1 − G1(u))dsdu

=
∫ v

0
f2(u)(1 − G2(u))(1 − G1(u))du +

∫ v

0
f2(u)G2(u)(1 − G1(u))du

=
∫ v

0
f2(u)(1 − G1(u))du = P(U 6 v, δ = 1|Z = 1)

and

P(Ũ 6 v, δ̃ = 0|Z = 2)

= P(Ũ 6 v, Ũ = C̃ < min(T, C)|Z = 2) + P(Ũ 6 v, Ũ = C < C̃ < T̃ |Z = 2)

=
∫ v

0
g1(u)(1 − F2(u))(1 − G2(u))du +

∫ v

0
g1(u)G2(u)(1 − F2(u))du

=
∫ v

0
g1(u)(1 − F2(u))du = P(U 6 v, δ = 0|Z = 1).

Therefore,
P(Ũ 6 u, δ̃ = j |Z = 2) = P(U 6 u, δ = j |Z = 1), (2.1)

for all u and for j = 0, 1. That is,(Ũ , δ̃), formed for group 2 observations, has the same distribution as
an observation(U, δ) from group 1 underH0. Vi 2 is created in a similar fashion.

By construction, it follows thatVi 1 andVi 2 are independent ofZi underH0. Let V1 andV2 denote
then-dimensional column vectors withi th rowsVi 1 andVi 2, respectively. We then permute the rows of
Z while keeping those of(V1, V2) fixed, resulting inn! matrices(Z(p), V1, V2), whereZ(p) denotes a
row permutation ofZ and p = 1, 2, . . . , n!. Consider a one-to-one transformation from(Z(p), V1, V2) to
(Z(p), U∗, δ∗), where

(U∗
i , δ∗

i ) =






(Ui , δi ) if Z(p)
i = Zi ,

(Ũi 1, δ̃i 1) if Z(p)
i = 1 andZi = 2,

(Ũi 2, δ̃i 2) if Z(p)
i = 2 andZi = 1.

(2.2)
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It follows that then! matrices(Z(p), U∗, δ∗) are equally likely. Note that the original data set cor-
responds to(Z, V1, V2). Thus, if S is any test statistic, an exact permutation test ofH0 can be ob-
tained by comparing the observed value,S(U, δδδ, Z), to the permutation distribution of values formed
by evaluatingS for each of then! transformed permuted matrices(Z(p), U∗, δδδ∗). We denoted this test as
IPZ(F1, F2, G1, G2) to reflect that it consists of first imputing realizations that depend on(F1, F2, G1, G2)
and then forming permuted data matrices obtained by permuting the rows ofZ.

In practice, this test cannot be evaluated because construction ofVi 1 and Vi 2 requires knowledge
of F(∙), G1(∙), andG2(∙). We recommend thatF(∙), G1(∙), andG2(∙) be replaced by their respective
Kaplan–Meier estimators (Kaplan and Meier, 1958); resulting in IPZ(F̂, F̂, Ĝ1, Ĝ2). That is, replacing
F1 and F2 by the Kaplan–Meier estimators of their common valueF under H0 based on the pooled
data, and replacingG1 andG2 by the their Kaplan–Meier estimators, resulting in an approximate test.
ReplacingF1 andF2 by their individual Kaplan–Meier estimators instead of usingF̂ for both also yields
a valid approximate test. However, because we are interested in the settings where the events in either or
both groups are small,̂F1 and F̂2 will be estimated with less precision, and in some extreme cases where
group i has no events, it would be impossible to obtainF̂i . To create aT̃ for an observation(u, 0), we

first generate aν from the uniform(F̂(u), 1) distribution, and then let̃T be F̂−1(ν)
def
= inf{t : F̂(t) > ν}.

In the eventF̂ is an incomplete distribution, that is,̂F(tmax) < 1, andν > F̂(tmax), we sett̃ = tmax and
consider it to be a censored value, as inHeinzeand others(2003). Here, we usetmax to denote the largest
observation time. To create ãC ∼ G2(∙) for an observation in group 1, we first generate aν from the
uniform(0, 1) distribution, and then let̃C be Ĝ−1

2 (ν). In the eventĜ2 is an incomplete distribution, and
ν > Ĝ2(tmax,2), we setC̃ to betmax. Here,tmax, j , j = 1, 2 refers to the largest observed time in groupj ,
j = 1, 2. We refer to this approximate test as IPZ .

2.1.2Permuting survival times.Because censoring is noninformative in each group, that is,T ⊥ C|Z, it
follows that underH0: T ⊥ Z, T is independent of(C, Z). Thus, ifT were observable, a permutation test
H0 could be created by permuting the rows ofT while holding those(C, Z) fixed. Since the underlying
failure timesTi , i = 1, . . . , n and censoring timesCi , i = 1, . . . , n are not always observed, we employ
imputation techniques: consider then survival timesT̃i , i = 1, . . . , n, whereT̃i equalsUi whenδi = 1
and, whenδi = 0, is an independent realization from the conditional distribution,FZi (t |T > Ui ), of T ,
given T > Ui and Zi , for i = 1, . . . , n. Similarly, for i = 1, . . . , n, defineC̃i to beUi if δi = 0 and,
whenδi = 1, is an independent realization from the conditional distribution,GZi (t |C > Ui ), of C, given
C > Ui andZi .

To see that̃Ti has unconditional distributionsFZi (∙), supposeZi = 1 so thatT ∼ F1(∙). Then,

P(T̃ 6 t) = P(T̃ 6 t, δ = 1) + P(T̃ 6 t, δ = 0) = P(T 6 t, δ = 1) + P(T̃ 6 t, δ = 0)

=
∫ t

0
f1(u)[1 − G1(u)]du +

∫ t

0

∫ u

0

f1(u)

1 − F(v)
(1 − F(v))g1(v)dv du

=
∫ t

0
f1(u)[1 − G1(u)]du +

∫ t

0
f1(u)G1(u)du =

∫ t

0
f1(u)du = F1(t).

Similar arguments apply whenZi = 0 and for showing that̃Ci has distributionGZi .
Let T̃ andC̃ denote the corresponding column vectors of lengthn. Now consider then × 3 matrix

(T̃, C̃, Z) and note that underH0, the components of̃T are identically distributed and independent of the
random variables comprising(C̃, Z). Thus, an exact permutation test ofH0 could be formed analogous
to the test described above by permuting the rows ofT̃ while holding the rows of(C̃, Z) fixed. That is, if
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S(T̃(p), C̃, Z) denotes the value of some test statistic applied to the permuted matrix(T̃(p), C̃, Z), an exact
p-value forH0 could be calculated by comparing the observed value,S(T̃, C̃, Z), to the tail area of the per-
mutation distribution formed by{S(T(p), C̃, Z)|p = 1, . . . , n!}. We denote this test IPT (F1, F2, G1, G2)
to reflect that it consists of an initial imputation step that depends on(F1, F2, G1, G2) followed by a step
in which the survival times are permuted.

In practice, this test cannot be implemented becauseF1(∙), F2(∙), G1(∙), and G2(∙), used for
imputations, are unknown. We recommend thatF(∙), G1(∙), andG2(∙) be replaced by their respective
Kaplan–Meier estimators, yielding an approximate test IPT (F̂, F̂, Ĝ1, Ĝ2). In this case,T̃ is generated
from F̂ , the same way aŝT in IPZ . The imputed censoring times̃C1 and C̃2, based on the individual
Kaplan–Meier estimators ofG1(∙) and G2(∙), respectively, are generated in a similar way, except that
whenν > Ĝ j (tmax, j ), we setC̃ to betmax.

It may appear natural to simply choose a test statistic only depending onT̃ andZ, as this parallels
the usual permutation approach that would be used if theTi could be observed. However, our experience
has been that with small samples and substantial censoring, better performance can be achieved when
the test statistic also depends onC̃ through(Ũ, δ̃δδ), whereŨi = min(T̃i , C̃i ) and δ̃i = 1 if T̃i 6 C̃i

and 0 otherwise. For example, for thepth permuted matrix(T̃(p), C̃, Z), we can form a log-rank statistic

based on the pseudo-data (Ũ(p), δ̃δδ
(p)

, Z), whereŨ (p)
i = min(T̃ (p)

i , C̃i ) and δ̃
(p)
i = 1 if T̃ (p)

i 6 C̃i and
0 otherwise, and then compare the observed value ofS to the permutation distribution ofn! possible
values. WhenF1(∙) 6= F2(∙), the treatment difference in survival times manifested in the original data set
(U, δ, Z) might be attenuated if we obtain the observed test statistic from(T̃, Z) because a proportion of̃T
is obtained from the common̂F . The magnitude of attenuation would depend on the amount of censoring,
which determines the proportion ofT̃ that needs to be imputed. Furthermore, as one reviewer has pointed
out, this approach is “too imputation dependent” in the sense that even the observed test statistic would be
different depending on the employed imputations, which makes this approach of little value in practice.

2.1.3 Multiple imputations. In the 2 imputation–permutation methods described above, we can view
the observed data as incomplete data and the imputation step attempts to create complete data for the
subsequent permutation step. Lety denote the observed data(Z, U, δδδ). The complete datax is (Z, V1, V2)
for IPZ and(Z, T̃, C̃) for IPT . LetX andY denote the sample spaces corresponding tox andy. There is a
many-to-one mappingx → y(x) fromX andY. Let A(y0) = {x ∈ X : y(x) = y0}, which is the collection
of all complete data sets that are consistent with an observedy0. Let h(x) denote the sampling density
for x. The imputations inA(y0) are independently and identically distributed with densityh(x)I (x ∈
A(y0))/P(x ∈ A(y0)). Let B(x) = {x∗: x∗ is a permutation ofx}. Let C(y0) be the union of the B(x) over
x in A(y0), which gives all complete data sets that can be obtained as a permutation of a complete data
set that is consistent withy0. Finally, let D(y0) = {y: y = y(x) for some randomly selectedx in C(y0)},
which is the reduction of the complete data sets inC(y0) to observable data sets. For both IPZ and IPT , we
are trying to make inferences conditional ony in D(y0); that is, ony being obtained from a permutation
of a complete data set consistent with the observed data. However, this conditional reference set does not
give a distribution-free test, as reflected in the need to specify a distribution for the imputations. LetM
denote the number of imputations sampled fromA(y0), and letN denote the number of permutations
per imputation. In Sections 2.1.1 and 2.1.2, we show that for each imputation, when imputed from the
true distribution, theN permutations are equally likely as the observed data under the null hypothesis.
Therefore, we can viewy0 as a random sample of size 1 fromD(y0). The one-sidedp-value corresponding
to the observed data sety0 takes the form

P(y0) =
M∑

j =1

N∑

i =1

I (Sj (i ) > Sobs)/(M ∗ N), (2.3)
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whereSobs denote the observed test statistic andSj (i ) denote the test statistic evaluated on the reduced
permuted imputed data set forj = 1, . . . , M and i = 1, . . . , N. In practice, although when imputing
from the true distributionsF , G1, andG2, the p-value obtained from IPZ or IPT based on one single
imputation would follow a uniform distribution and leads to valid inference, its interpretation depends
on a specific imputation. Note that (2.3) can also be viewed as the average ofM p-values, each obtained
from a single imputation andN permutations. Multiple imputation eliminates the problem of reliance on
a single imputation and can be viewed as an approximation to the expectation of thep-values obtained
from the complete data conditional on the observed data.

The approach inHeinzeand others(2003) coincides with IPT for the caseM > 1 andN = 1. That is,
we perform multiple imputations and one permutation for each imputation is included inD(y0). Heinze
and others(2003) describe their approach by first permuting(Ũ, δδδ) (step 3), and creating̃T and C̃ by
imputation (step 4). We first note thatC̃ is created from the observed data set and does not involve the
permuted data set. Therefore, it can be created before the permutation as in IPT . For T̃, although the in-
dices of(Ui , δi ) change after permutation, because it is imputed from the commonF̂ , switching the group
membership does not affect the imputation. Therefore,T̃ can also be created before the permutation as in
IPT . That is, one initially generates multiple imputed values of the vectorsT̃ andC̃, and then for thepth
permutation, creates a permuted data matrix based on thepth T̃ while holdingZ and thepth C̃ fixed. One
can then use this data matrix to evaluate the test statistic. This would yield the test inHeinzeand others
(2003).

2.2 Point and interval estimation

When a semiparametric or parametric model is postulated for how the survival distributions of the 2 groups
differ, then methods proposed in Section2.1can be inverted to obtain point and interval estimates for the
model parameters. We consider the AFT model: specifically, ifT1 and T2 denote survival times from
F1(∙) and F2(∙), respectively, andβ > 0 is some positive constant, thenT1 has the same distribution as
βT2; equivalently,F2(t) = F1(βt). Thus,β characterizes the difference between the underlying survival
distributions in the 2 groups andH0: F1(∙) = F2(∙) is equivalent toH0: β = 1. If β > 1(< 1), thenT1
is stochastically larger (smaller) thanT2. Note that under an AFT model, the hazards for the 2 groups are
in general nonproportional, with the exception being when the groups have Weibull survival distributions
with the same shape parameter (and thus also when they both have exponential survivals), in which case
h2(t) = βh1(βt).

Consider an observation, say(U1, δ1) from group 1, and recall that this arises asU1 = min(T1, C1)
andδ1 = 1 if T1 6 C1 and 0 otherwise. Under an AFT model,U∗

1 = U1/β = min(T1/β, C1/β) =
min(T∗

1 , C∗
1), where T∗

1 has distribution functionF1(βt) = F2(t) and C∗
1 has distribution function

G1(βt). Thus, if thei th observation, say(Ui , δi ) in group 1 were transformed to(U∗
i , δi ) = (Ui /β, δi ),

the result would be an observation from an underlying survival distributionF2(t) and underlying censor-
ing distributionG1(βt).

To use these results to construct a confidence interval forβ, let β0 be some specified value and con-
sider testingH(β0): β = β0. Let (U∗, δ, Z) denote the data matrix obtained by replacing thoseUi for
subjects in group 1 byUi /β0. Then underH(β0), the transformed data arise from 2 groups with equal
underlying survival distributions and, in general, different underlying censoring distributions. It follows
that the methods in Section2.1can be used to construct a test ofH(β0) for anyβ0. A confidence interval
of size 100(1− α)% for β can then be formed by the set ofβ0 which are not rejected at theα level of sig-
nificance. These intervals would be exact if the tests in Section2.1were imputed from the true underlying
distributions(F1, F2, G1, G2) but in practice would be approximate because Kaplan–Meier estimators
would be used. A point estimate forβ is given by the value for which there is the least evidence against
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H(β0): β = β0, say, by giving the largestp-value. In the absence of censoring observations, the confidence
intervals obtained from inverting both IPT and IPZ yield the same results as theHodges and Lehmannin-
terval estimates of the location shift for underlying survival times on the log scale (Hodges and Lehmann,
1963).

3. SIMULATION RESULTS

We begin this section by presenting simulation studies to assess the performance of IPT and IPZ for testing
hypotheses and to compare these to the method ofHeinzeand others(2003). We then assess the coverage
probabilities of the proposed methods for interval estimation and compare these to coverage probabilities
from the semiparametric approach ofJinand others(2003).

Empirical Type 1 errors and power are based on 2000 replications of studies. For each setting,
we performed one imputation to prepare the data set for permutation and then randomly generated
1000 permutations rather than enumerating alln! possible permutations. For ease of comparisons,
simulations were done first using the settings as inHeinze and others (2003), where (1) the
sample sizes for 2 groups are(6, 6), (6, 30), (30, 30), and(3, 120), (2) censoring times are generated
as the minimum of a realization from uniform(12, 60) reflecting administrative censoring and a real-
ization from an exponential distribution with hazard rateγ1 and γ2 for groups 1 and 2, respectively,
reflecting potential times until loss to follow up, and (3) the underlying failure times are from an ex-
ponential distribution with hazard ratesλ1 and λ2. For IPT and IPZ , the test statistic we used was
the numerator of the log-rank statistic, as inHeinzeand others(2003). The results are displayed in
Table1 (empirical Type 1 error) and Table2 (power) for the log-rank test (“Log-rank”), ordinary per-
mutation test (“Perm”) which requires equal underlying censoring distributions, the test in Heinzeand
others (“Heinze”), and the 2 proposed tests (“IPT ” and “IPZ”). We also examined the performance
of IPT and IPZ , where T̃ and C̃ are imputed from the true survival and censoring distributionsF ,
G1, and G2 (“IP∗

T ” and “IP∗
Z”). In Table 2, where F1 6= F2, the commonF is taken to be a mix-

ture distribution ofF1 and F2 with the mixture probabilities proportional to the sample sizes in the
2 groups. The results for the Log-rank, Perm, and Heinze methods are taken fromHeinzeand others
(2003). As shown inHeinze and others(2003), the Type I errors for the log-rank test become dis-
torted with very small sample sizes and/or unequal censoring distributions, and those for the ordinary
permutation test become distorted when the underlying censoring distributions differ. In contrast, the
Type 1 errors of the Heinze test and the 2 proposed tests are relatively close to nominal levels for
all settings. The empirical powers of the 2 proposed tests are generally similar to those of the Heinze
test. Imputing from the Kaplan–Meier estimatesF̂ , Ĝ1, and Ĝ2 yield very similar results as imputing
from the trueF , G1, andG2, both in terms of Type I error and power. We will return to this point in
Section5.

Tables3 presents empirical coverage probabilities for nominal 95% confidence intervals of the AFT
parameterβ (Section2.2) obtained from the semiparametric approach inJin and others(2003), denoted
“Jin,” and based on the proposed methods, with varyingF1(∙) and F2(∙), sample sizes, and amount
of censoring. In addition, we evaluated performance of a variation of Jin’s method where a bootstrap
method was used for estimating variance, denoted as “Jin∗.” The actual coverage probabilities of Jin
(or Jin∗) can be substantially lower than the nominal level 95% when the sample sizes (or number of
events) are small. In contrast, the coverage probabilities from the proposed methods are usually close
to the nominal level. We also compare the performance of Jin and the proposed methods when sample
sizes are large (Table4). Here, the actual coverage of all methods is in general close to the nominal
level. The confidence intervals formed by the proposed methods have similar median width as the Jin’s
method.
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Table 4. Actual coverage and median width of nominal95%confidence interval using Jin, IPT , and IPZ

for β in the AFT model: F2(t) = F1(βt), whereβ = 2, c1 and c2 refer to the percentages of censored
observations in groups 1 and 2, respectively

Uniform(12, 60), log(T1) ∼ logistic(0, 1)

n1 n2 γ1 γ2 c1 (%) c2 (%) Jin IPT IPZ

50 50 0.00 0.04 3 18 92.2%, 1.37 94.2%, 1.55 95.6%, 1.54
50 100 0.00 0.04 3 18 91.0%, 1.21 94.4%, 1.33 95.4%, 1.33

100 50 0.00 0.04 3 18 94.2%, 1.33 96.0%, 1.33 95.0%, 1.32
100 100 0.00 0.04 3 18 95.8%, 1.10 94.6%, 1.09 95.0%,1.08

Uniform(12, 60), log(T1) ∼ N(3, 1)

n1 n2 γ1 γ2 c1 (%) c2 (%) Jin IPT IPZ
50 50 0.00 0.04 32 79 93.4%, 1.06 94.8%, 1.13 96.2%, 1.15
50 100 0.00 0.04 32 79 95.0%, 0.88 96.2%, 0.93 96.4%, 0.94

100 50 0.00 0.04 32 79 96.6%, 1.00 96.0%, 1.00 94.4%, 1.02
100 100 0.00 0.04 32 79 95.2%, 0.79 94.8%, 0.78 93.8%,0.81

Uniform(12, 60), log(T1) ∼ logistic(0, 1)

n1 n2 γ1 γ2 c1 (%) c2 (%) Jin IPT IPZ
50 50 1.5 1.5 67 79 93.6%, 2.05 94.8%, 2.12 96.0%, 2.19
50 100 1.5 1.5 67 79 94.8%, 1.72 95.4%, 1.73 94.8%, 1.79

100 50 1.5 1.5 67 79 97.4%, 1.81 95.6%, 1.80 95.2%, 1.83
100 100 1.5 1.5 67 79 94.4%, 1.43 95.8%, 1.44 94.8%,1.48

Uniform(12, 60), log(T1) ∼ N(0, 1)

n1 n2 γ1 γ2 c1 (%) c2 (%) Jin IPT IPZ
50 50 1.5 1.5 72 86 94.0%, 1.39 95.4%, 1.34 97.6%, 1.15
50 100 1.5 1.5 72 86 93.8%, 1.13 94.4%, 1.12 95.6%, 1.26

100 50 1.5 1.5 72 86 95.4%, 1.26 94.4%, 1.20 93.4%, 1.30
100 100 1.5 1.5 72 86 93.2%, 0.98 95.8%, 0.96 95.6%,1.04

Uniform(0.5, 2), log(T1) ∼ logistic(0, 1)

n1 n2 γ1 γ2 c1 (%) c2 (%) Jin IPT IPZ
50 50 1.5 1 69 77 95.4%, 1.93 94.4%, 2.00 95.0%, 2.07
50 100 1.5 1 69 77 93.6%, 1.63 95.6%, 1.68 95.4%, 1.71

100 50 1.5 1 69 77 97.4%, 1.71 93.4%, 1.73 92.4%, 1.76
100 100 1.5 1 69 77 96.4%, 1.36 97.0%, 1.35 95.2%,1.41

Uniform(0.5, 2), log(T1) ∼ N(0, 1)

n1 n2 γ1 γ2 c1 (%) c2 (%) Jin IPT IPZ
50 50 1.5 1 75 85 94.6%, 1.28 96.0%, 1.32 95.8%, 1.41
50 100 1.5 1 75 85 95.6%, 1.06 94.2%, 1.13 95.8%, 1.14

100 50 1.5 1 75 85 95.2%, 1.13 95.8%, 1.15 94.2%, 1.21
100 100 1.5 1 75 85 94.2%, 0.91 94.4%, 0.91 95.6%,0.95

4. EXAMPLES

4.1 Survival following breast cancer

We first illustrate the proposed methods with the example used inHeinze(2002), which compares the
survival of breast cancer patients who had primary treatment at the Department of Surgery of the Univer-
sity Hospital in Vienna between 1982 and 2001 and had either been enrolled in clinical trials (the “trial”
group) or not (the “nontrial” group). The group sizes were 38 (all censored) for the trial group and 90 (80
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censored) for the nontrial group. The median (quartiles) of follow-up time were 9.5 (5.8–24.3) and 79.1
(56.0–98.7), respectively, suggesting unequal underlying censoring distributions.

As noted inHeinzeand others(2003), use of Heinze and Log-rank give one-sidedp-values of 0.031
and 0.05, suggesting that breast cancer patients enrolled in a clinical study experience longer survival. The
one-sidedp-values are 0.023 using IPT and 0.075 using IPZ , based on 10 000 imputation–permutations.
Previous analyses of these data have focused on testing and not on interval estimation. To quantify the
difference in survival times between 2 groups of cancer patients, we then fit AFT models and obtained
95% one-sided confidence intervals forβ, the ratio of a typical underlying survival time in the trial group
to one in the nontrial group, of (1.06, ∞ ) using IPT and (0.66, ∞) using IPZ . The upper limits in both
cases reflect the fact that all observations in the trial group were censored. Jin’s method failed to provide
a point estimate or an interval estimate because there were no events in the trial group.

4.2 Virologic progression and survival in HIV-infected infants

We then apply the proposed methods to data from a recent AIDS study (Lockmanand others, 2007).
One of the main study objectives was to investigate whether a single dose of nevirapine (NVP) leads to
viral NVP resistance mutations in infants. The primary end point for infants was virologic failure within
6 months after initiating antiretroviral treatment (ART). Among thirty infants who started ART, one out
of the fifteen randomized to placebo group and ten out of the fifteen randomized to single NVP group
reached the primary end point (Figure1(a)). Figure1(b) plots the IPT and IPZ p-values for testing various
hypothesisH0: β = β0, whereβ0 ranges from 0.0001 to 1.5. For IPT , we obtain a point estimate of
β̂ = 0.43 and 95% confidence interval (0, 0.83). IPZ gives the same point estimate and a 95% confidence
interval (0, 0.84). Jin’s method gives the same point estimate but with a shorter nominal confidence interval
(0.27, 0.70). Because this is a setting where one group had only one event, the simulation studies from

Fig. 1. Time to virologic failure. (a): Kaplan-Meier estimates for time to virologic failure, by treatment group; (b):
the average of 10 p-values for testingH0 : β = β0 for variousβ0 ∈ (0, 1.5). Solid: IPT ; Dashed: IPZ ; Dotdashed: a
horizontal line at 0.05.
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Fig. 2. Time to virologic failure or death. (a): Kaplan-Meier estimates for time to virologic failure or death, by
treatment group; (b): the average of 10 p-values for testingH0 : β = β0 for variousβ0 ∈ (0, 1.5). Solid: IPT ;
Dashed: IPZ ; Dotdashed: a horizontal line at 0.05.

Section3 would suggest that the coverage of Jin’s method may be substantially lower than the nominal
level. Consequently, the confidence intervals obtained from inverting IPT or IPZ are more likely to reflect
the true uncertainty associated with the point estimate.

A secondary end point for infants was time until the composite end point of either virologic failure
or death. Four infants from the placebo group and eleven from the single NVP group had this composite
end point. The Kaplan–Meier estimates are presented in Figure2(a). In this case, inverting IPT yields a
point estimate ofβ̂ = 0.60 with a 95% confidence interval of (0.19, 1.02); inverting IPZ yields the same
point estimate and a slightly wider confidence interval of (0.19, 1.07) (Figure2(b)). The Jin’s method
gives a point estimate of 0.58 and a 95% confidence interval of (0.28, 1.19). The point estimates from
IPT , IPZ , and the Jin’s method are again very similar. The intervals obtained through inverting IPT or
IPZ , somewhat shifted to the left, are slightly shorter in length than the interval obtained through Jin’s,
suggesting that the proposed procedures have similar efficiency as those of Jinand othersfor settings like
this, where the number of events is not extremely small.

5. DISCUSSION

Motivated by the poor performance of the log-rank test in settings where the sample sizes in one or
both groups is small and where the underlying censoring distributions of the groups may differ, and by
the lack of interval estimation methods for such settings, we develop 2 methods by adapting hypotheti-
cal permutation methods that could be used when the censoring distributions in 2 groups were equal or
when the underlying survival and censoring times were known. One of the methods coincides with the
approach ofHeinzeand others(2003) when imputation is performed for each permutation. We exam-
ined cases with very small sample sizes in one or both groups (e.g. 6 versus 6, 3 versus 120). In such
settings, the Kaplan–Meier estimator ofF or G cannot be expected to be accurate. However, the tests
still maintain very good Type I error rates. More interestingly, the Type I error and power of the pro-
posed methods are very similar to those obtained when imputing from the trueF andG. This may be
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partly due to the fact that each imputed permuted data set may only involves a small portion of imputed
values. When comparing the permuted imputed failure times and censoring times, extra variation due to
imputing from estimated distributions only comes into play when the minimum of the 2 happens to be the
imputed value. In addition, this could happen only to the rows of the data matrix affected by a particular
permutation.

The proposed methods readily provide confidence intervals for the group difference under an AFT
model. The large-sample method ofJinand others(2003) is seen to sometimes have poor coverage prob-
abilities in small-sample settings. In contrast, the coverage probabilities of the proposed methods are gen-
erally close to nominal levels in the simulation studies we examined. In addition, the proposed methods
are seen to be as efficient as the Jin’s method in large-sample settings.

In all the settings we examined, IPT and IPZ have similar performance with respect to Type I error,
power and required computing time. Therefore, we do not prefer one over the other. For the permutation
step, IPZ only requiresT ⊥ Z, while IPT requires bothT ⊥ Z andT ⊥ C|Z. However, for the imputation
step because we use the Kaplan–Meier estimates ofF , G1, andG2, the independent censoring assumption
T ⊥ C|Z is required for both. For IPZ , the imputation for the censoring times only uses information
from the censoring distribution of the other group; while for IPT , the imputation for the censoring times
depends on both the censoring distribution of the same group, as well as the observed survival times.
As with any statistical method that uses imputation, for IPT and IPZ , the resultingp-values will depend
in part on the random number generators and seeds used to impute. We recommend the use of multiple
imputations and the number of imputations should be large enough to adequately control the dependence
on the specific imputations. For a particular setting, although imputations can be completely enumerated
in theory, the number of possible imputations increases as the number of observations increases and it
is often not necessary to enumerate all imputations in practice. For each imputation, there are a large
number of associated permutations. In our example in Section4.2, we used 10 imputations and 2000
permutations for each imputation. Thep-value curves for both IPT and IPZ in Figure2(b) appeared to be
reasonably smooth, suggesting that 10 imputations were sufficient in this case. This observation is in line
with recommendations on the number of imputations needed in other multiple imputation settings. For
example,Rubin(1987) argued that more than 10 imputations would rarely be needed.

Although we focus our discussion on testingH0: F1(∙) = F2(∙), the proposed methods also apply for
testing other null hypotheses. For example, if our main interest were in the cumulative survival probability
at a specific time point, say, 1 year, then we could use IPT and IPZ with a test statistic based on the
difference between the Kaplan–Meier estimators of the 2 groups at 1 year. Note that for this hypothesis
and particular choice of test statistic, the influence of imprecision resulting from having to impute theT̃
andC̃ from an incomplete distribution would be reduced because the test statistic is invariant to specific
values of observations larger than 1 year.

It would also be useful to evaluate how the performances of IPZ and IPT are affected by different
choices of test statistics. The imputation–permutation principle in IPT and IPZ can be extended to the class
of weighted log-rank statistics, such as Prentice’s test (Prentice, 1978). We used the numerator of the log-
rank test so that the results were directly comparable toHeinzeand others(2003). Different test statistics
were used inTroendle and Yu(2006). Neuhaus(1993) examined the asymptotic properties of the standard
permutation test and found that, when a standardized test statistic is used, the resulting permutation test is
strictly distribution free under the null hypothesis if the censoring distributions are equal in both groups
and asymptotically equivalent to their unconditional counterparts when the censoring distributions are
different. We assessed the performance of using a standardized test statistic in finite-sample settings and
did not observe consistent improvement in the settings examined.

The proposed methods can readily be generalized for the comparison of more than 2 groups. In ad-
dition, they can be generalized to allow stratified analyses, analogous to the stratified log-rank test, by
using a restricted set of permutations. For example, to adapt the proposed methods to compare treatment



Two-sample survival comparisons 691

groups while stratifying by sex, one need only (1) use a test statistic that reflects the stratification, such as
the numerator of the stratified log-rank test and (2) only consider those permutations in which the rows of
the permuted values of survival or group membership lead to the same gender as the original data matrix.
Although our focus in interval estimation was on AFT models, the IPT and IPZ tests can, in principle, be
inverted to obtain confidence regions for parameters in other semiparametric models such as the changing
shape and scale model (Bagdonavĭciusand others, 2004).
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