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SUMMARY
While the commonly used log-rank test for comparing survival times between 2 groups enjoys many
desirable properties, sometimes the log-rank test and its related linear rank tests perform poorly when
sample sizes are small. Similar concerns apply to interval estimates for treatment differences in this set-
ting, though their properties are less well known. Standard permutation tests are one option, but these are
not in general valid when the underlying censoring distributions in the comparison groups are unequal.
We develop 2 methods for testing and interval estimation, for use with small samples and possibly unequal
censoring, based on first imputing survival and censoring times and then applying permutation methods.
One provides a heuristic justification for the approach proposed recentielmzeand others(2003
Exact log-rank tests for unequal follow-uBiometrics59, 1151-1157). Simulation studies show that
the proposed methods have good Type | error and power properties. For accelerated failure time mod-
els, compared to the asymptotic methodsliofand others(2003 Rank-based inference for the accel-
erated failure time modeBiometrika90, 341-353), the proposed methods yield confidence intervals
with better coverage probabilities in small-sample settings and similar efficiency when sample sizes
are large. The proposed methods are illustrated with data from a cancer study and an AIDS clinical
trial.

Keywords Accelerated failure time models; Imputation; Log-rank test; Permutation tests.

1. INTRODUCTION

The log-rank test and virtually equivalent score, likelihood ratio, or Wald tests arising from fitting Cox’s
proportional hazards modelC6x, 1972 Peto and Petol972 Klein and Moeschberger2003 are

the most commonly used statistical methods for comparing 2 groups with respect to a time-to-event
end point. These tests are computationally simple to evaluate, asymptotically valid even if the
censoring distributions are different, robust to model misspecificaond and Slud1997, Dirienzo
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and Lagakos200l), and easily adapted to adjust for other covariates and to handle more than 2
groups Breslow 1970. One limitation of these and related generalized linear rank tést®rie and

Ware 1977 Prentice 1978, however, is that the asymptotic approximations to the distributions of the
test statistics can be inaccurate when sample sizes are small and/or unbalanced or when the under-
lying censoring distributions differ between groupsaita, 1981, Johnsonand others 1982 Kellerer

and Chmelevsky1983 Schemper1984 Jones and Crowlgy1989 Neuhaus1993 Heinzeand others

2003.

Most previous attempts to improve upon the log-rank test for small samples, especially when the un-
derlying censoring distributions differ, have met with only limited success. Standard permutation methods
are valid regardless of sample sizes when the censoring distribution of the 2 groups ar&leghaug
1993. However, when the censoring distributions differ, standard permutation methods do not work well
for small-sample settings and/or when the amount of censoring is ldegeénn and Neuhap$998. An
early approachJennrich 1984 uses an artificial mechanism to equalize censorship between the groups,
but this results in a loss in power and, in some settings, distorted Type 1 idgioizéand others2003.
Heinzeand otherq2003 describe a testing procedure and show through simulations that the test main-
tains appropriate Type | error rates and exhibits good power over a wide range of settings. However, the
rationale of this approach is unclear. Recenthgendle and Y2006 use nonparametric likelihood tech-
nigues to obtain tests for either the identity hypothesis or the nonparametric Behrens—Fisher hypothesis
in this setting.

In this paper, we develop 2 types of permutation tests based on first imputing survival and censoring
times and then applying permutation methods and provide insight into their theoretical underpinnings.
The first modifies the traditional permutation method that would be applicable if the censoring distri-
butions in the 2 groups were equal. The second is motivated from the hypothetical situation where the
underlying survival times and censoring times were known and makes use of the fact that the underly-
ing survival and censoring times are independent within each group. The methtainaiand others
(2003 is shown to coincide with the second approach when different imputation is performed for each
permutation.

The second purpose of this paper is to develop confidence intervals for the parameter representing
the group difference in an accelerated failure time (AFT) model that perform well for small sample
sizes. Previous semiparametric inference methods for AFT models are based on large-sample consid-
erations, including the initial work ofouis (1981, who transforms observations in one group based
on the AFT assumption and then uses an estimating equation motivated by Cox’s proportional hazards
model to estimate the AFT model parameter, and the wolWeif and Gail(1983, who transform ob-
servations similarly and then form a confidence interval by inverting the log-rank test. More redently,
and otherg(2003 propose a semiparametric approach for the general covariate settings that is based on
an estimating equation similar to that usedLlmuis (1981 and estimate the variance of the parameter
estimate using robust perturbation methods. To our knowledge, the performance of confidence intervals
obtained from these large-sample methods have not been investigated for small-sample settings. We form
confidence intervals by inverting the proposed imputation/permutation tests designed for small-sample
situations, which provide a natural complement to the corresponding testing procedures when analyzing
data.

We present the rationale and details of the proposed methods in S@ctinrSection3, we first
present simulation results comparing the Type | error and power of the proposed methods to those of the
ordinary log-rank test, standard permutation té&(haus1993, and the approach proposedHieinze
and otherg2003 and then use simulations to compare the performance of the proposed interval estimates
to those obtained by the semiparametric methods for AFT mod&igd others2003. We illustrate
the methods with 2 data sets in Sectigrand discuss extensions and areas for further investigation in
Sectionb.
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2. METHODS

Suppose that andC denote the underlying survival time and potential censoring time for an individual
and assume both are continuous. The observation for a subjddt &, whereU = min(T, C) and
0 = 1[T < C]is an indicator of whetheT is observedo = 1) or right censoredd = 0). Let Z (=1, 2)
denote group. We assume that censoring is noninformative; tiatisdC are conditionally independent
givenZ, which we denotd 1 C|Z. For a subject in group, denote the cumulative distribution functions
of T andC by F;j(-) andGj(-), and letf;(-) andgj(-) denote the corresponding density functions, for
j =1, 2. We are interested in testing the hypothésisF1(-) = F2().

Suppose we hava; independently and identically distributed observationgfd) from group
j (j = 1,2), wheren = nj + ny, which are denoted by, 6;, Z;), fori = 1,...,n. LetT, C, and
Z denote then x 1 vectors of values of th§, C;, andZ;, and let(U, é) denote then x 2 matrix of values
of (Ui, d).

2.1 Hypothesis testing

Below we develop 2 tests fdrp for settings when one or both of andn, are small and when the
underlying censoring distribution&, (-) andGz(-), may be unequal. Both tests involve an imputation step

and a permutation step. In developing these methods, we first consider the situation where one imputation
is performed to prepare the observed data set for subsequent permutation. We will then discuss the general
case withM imputations andN permutations for each imputation.

2.1.1Permuting group membershiplf the underlying censoring distribution§(-) andGz(-), in the 2
groups were equal, then unddg, the joint distribution ofU, ¢) would be the same in the 2 groups. Thus,
an exact permutation test could be formed fromnhe 3 matrix (Z, U, ) by permuting the rows of
while keeping the rows alU, ) fixed. For each of the resulting permuted matrices, sa (P, U, 8), we
could then calculate a statistic, such as the numerator of the log-rank statistic, aHd bgstomparing
the observed value of the test statistic to the permutation distribution formed fromh tegulting values
of the statistic.

The validity of this approach is lost when the censoring distribut®ns) andG»(-) differ because the
null distribution of (U, d) is no longer independent &. To overcome this, we use imputation to create
2 pairs of new observationdl1, 1) and (U», J5), based on the observed data, so that they arise from
the underlying survival distributioR and from an underlying censoring distribution equaBtpandGa,
respectively. The resulting observatlc(hlsl 51) and(U,, 6») become independent @f. This provides the
basis to permut& while holdlng(Ul, 51, U,, 62) fixed to create permuted data $BtP, U, 61, U,, 52)
that are equally I|kely a&Z, Uy, 61,05, 62) under the null hypothesis. As we will illustrate below, based
on (ZP, Uy, é1, Uo, 62) we can then construct data sets that are equally likely as the observed data set
under the null hypothesis.

More specifically, for each observati@b;, o), we first create 2 new pairs of observations, denoted
Vi1 = (Uil, o 1) andVjo = (Uiz, o 2), such that if observationcorresponds to group(i.e. Zj = j), then
(1) the underlying survival distribution i5;j (-) for each pair and (2) the underlying censoring distributions
for Vi1 andV;, areG1(-) andGa(-), respectively. Tak®;1 as an examplelJ;1, 1) = (Ui, 6) if Zj = 1;
if Zy = 2, Vi1 is representative of the observation we would have observed if the underlying survival
time T; was subject to group 1 censori@j (). For each of the group 2 observatiols,; is generated in
the following way (suppressing the subscripts for simplicity): first generate the new underlying censoring

time C for a subject byC G (r) wherer is a uniform(0, 1) random variable that is independent
of the observations. For ead:h, defineT to be theU if = 1 and a realization from the distribution
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Fo(t|t > u) if 6 = 0. The new(U, J) is then defined by

[(U,1) fd=1&min(U,C)=U
(€,00 ifo=1&minU,C)=C
0,5 =1(C,0 fs=08&minU,C)=C
(T,1) ifo=0&min(T,C)=T
(€,00 fo=0&U <C<T.

The 5 categories above are mutually exclusive and exhaustive.
UnderHo: F1(-) = F2(+), note that

PU<0,6=1Z=2)
=PU <0,0=1,min(U,C) =U|Z=2)+ P(T <0v,6=0,min(T,E) =T|Z=2)

. fa(u) _ _
- /0 F2(u)(1 — Ga(U) (1 — G (u))du + / / Tt %O L~ Fa9)(1 - Ga(udsch

= /0 f2(U)(1 — G2(w))(1 — G1(u))du +/O f2(1)G2(u)(1 — Gy (u))du

- / fo(U)(1 — Gy(u))du= PU < 0,6 =1Z = 1)
0

and

PU < 01Z=2)

0,0 =
=PU<»,U=C <min(T,C)|Z=2)+PU <v,U=C<C<T|Z=2)

- /0 W)L — Fa(U))(1 — Ga(U))du + /0 01U G2(U) (L — Fa(U))du

= /v g (W@ - F(u)du=PU <v,6=01Z=1).
0

Therefore,
PWU < ud=jlZ=2=PU <u,d=j|Z=1), (2.1)

for all u and forj = 0, 1. That is,(U, ), formed for group 2 observations, has the same distribution as
an observatioriU, ¢) from group 1 undeHp. V2 is created in a similar fashion.

By construction, it follows tha¥;1 andV,, are independent af; underHp. Let V1 andV2 denote
the n-dimensional column vectors wiitth rowsVj; and Vi, respectively. We then permute the rows of
Z while keeping those ofV1, V>) fixed, resulting inn! matrices(Z®, V1, V), whereZ® denotes a
row permutation oZ andp = 1, 2, ..., nl. Consider a one-to-one transformation fré&P, V1, V,) to
(2™, u*, 5*), where

Ui,6) ifzP =1z,
.o =1 Ui, &1 if zP =1andz =2, (2.2)
(Uiz,giz) if Z(p) 2andzZj = 1.
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It follows that then! matrices(Z®, U*, 5*) are equally likely. Note that the original data set cor-
responds taZ, V1, V). Thus, if S is any test statistic, an exact permutation testHgf can be ob-
tained by comparing the observed val®l, 8, Z), to the permutation distribution of values formed
by evaluatingS for each of then! transformed permuted matric€ég®, U*, §*). We denoted this test as
IPz(F1, F2, G1, G2) toreflect that it consists of first imputing realizations that dependenfF2, G1, G2)
and then forming permuted data matrices obtained by permuting the radus of

In practice, this test cannot be evaluated because construction @d Vi requires knowledge
of F(), G1(-), andG2(-). We recommend thaf (-), Gi(-), andG2(-) be replaced by their respective
Kaplan—Meier estimators (Kaplan and Meier, 1958); resulting i F, G1, G»). That is, replacing
F1 and F> by the Kaplan—Meier estimators of their common vakieunder Hyg based on the pooled
data, and replacin@; and G, by the their Kaplan—Meier estimators, resulting in an approximate test.
ReplacingF; andF by their individual Kaplan—Meier estimators instead of usinépr both also yields
a valid approximate test. However, because we are interested in the settings where the events in either or
both groups are smalf; and F» will be estimated with less precision, and in some extreme cases where
groupi has no events, it would be impossible to obt&jn To create a for an observatior{u, 0), we

first generate a from the uniforn(lf(u), 1) distribution, and then let be If—l(v) def inf{t: F(t) v}
In the eventF is an incomplete distribution, that i&,(tmax) < 1, andv > F(tmay), we setf = tmax and
consider it to be a censored value, aslginzeand otherq2003. Here, we usénax to denote the largest
observation time. To create@ ~ Gy(-) for an observation in group 1, we first generate fiom the

uniform(0, 1) distribution, and then le€ be G;*(v). In the eveniG; is an incomplete distribution, and

v > éz(tmaxz), we setC to betmax. Here,tmaxj, ] = 1, 2 refers to the largest observed time in grgup
j = 1, 2. We refer to this approximate test ag IP

2.1.2Permuting survival times.Because censoring is noninformative in each group, that is,C|Z, it
follows that undeHo: T L Z, T is independent ofC, Z). Thus, if T were observable, a permutation test
Ho could be created by permuting the rowsTofvhile holding thosgC, Z) fixed. Since the underlying
failure timesT;,i = 1,..., nand censoring time§;,i = 1, ..., n are not always observed, we employ
imputation techniques: consider thesurvival timesT;, i = 1, ..., n, whereT; equalsU; whend; = 1
and, wherj; = 0, is an independent realization from the conditional distributen(t|T > U;), of T,
givenT > Uj andz;, fori = 1,...,n. Similarly, fori = 1,...,n, defineC; to beU; if 5 = 0 and,
whend; = 1, is an independent realization from the conditional distributi®s,(t|C > U;), of C, given
C > Uj; andz;.

To see thafl; has unconditional distributiontsz, (-), supposeZ; = 1 so thatT ~ F1(-). Then,

PO<t)=PT<t,0=)+PT <t,0=00=P(T<t,d=1)+P(T <t,6=0)

_ t t u fl(u)
_/0 fo(W)[1 — G1(uw)]du +/O /0 1——F(u)(l — F(v))g1(v)do du

t t t
=/ fo(u)[1 — G1(u)]du +/ f1(U)G1(u)du =/ f1(u)du = F1(1).
0 0 0

Similar arguments apply whefi = 0 and for showing thaf; has distributiorG z; .

Let T andC denote the corresponding column vectors of lengthlow consider then x 3 matrix
(T, C, Z) and note that undetl, the components 6f are identically distributed and independent of the
random variables comprising@, Z). Thus, an exact permutation testd§ could be formed analogous
to the test described above by permuting the rows while holding the rows ofC, Z) fixed. That is, if
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S(T®, C, Z) denotes the value of some test statistic applied to the permuted f&®ixC, Z), an exact
p-value forHg could be calculated by comparing the observed vaiig, C, Z), to the tail area of the per-
mutation distribution formed byS(T(®, C, Z)|p = 1, ..., n!}. We denote this test {RF1, Fo, G1, G2)
to reflect that it consists of an initial imputation step that depend$-onF2, G1, G») followed by a step
in which the survival times are permuted.

In practice, this test cannot be implemented becabsg), F2(-), G1(-), and Ga(-), used for
imputations, are unknown. We recommend tRdt), Gi1(-), andGz(-) be replaced by their respective
Kaplan—Meier estimators, yielding an approximate test(R, F, Gl, Go). In this case] is generated
from F, the same way a$ in IPz. The imputed censoring timé3; and C,, based on the individual
Kaplan—Meier estimators d&1(-) and Gz(-), respectively, are generated in a similar way, except that
wheny > G,(tmaxj) we setC to betmax.

It may appear natural to simply choose a test statistic only dependifigand Z, as this parallels
the usual permutation approach that would be used ififfeuld be observed. However, our experience
has been that with small samples and substantial censoring, better performance can be achieved when
the test statistic also depends énthrough (U, 8), whereU; = mln(T.,C.) andd = 1if T; < G
and 0 otherwise. For example, for théh permuted matrixT (P, C, Z), we can form a log-rank statistic

based on the pseudo-data®, 3, 7), whereU,? = min(t®, &) ands® = 1if T < & and

0 otherwise, and then compare the observed vaIuS @ the permutat|on d|str|but|on oﬂ possible

values. WherF1(-) # F2(-), the treatment difference in survival times manifested in the original data set
(U, 6, Z) might be attenuated if we obtain the observed test statistic fiarZ) because a proportion af

is obtained from the commoah. The magnitude of attenuation would depend on the amount of censoring,
which determines the proportion dfthat needs to be imputed. Furthermore, as one reviewer has pointed
out, this approach is “too imputation dependent” in the sense that even the observed test statistic would be
different depending on the employed imputations, which makes this approach of little value in practice.

2.1.3 Multiple imputations. In the 2 imputation—permutation methods described above, we can view
the observed data as incomplete data and the imputation step attempts to create complete data for the
subsequent permutation step. yatenote the observed dg@, U, §). The complete datais (Z, V1, V2)

for IPz and(Z, T, C) for IP1. Let X and) denote the sample spaces correspondingaiody. There is a
many-to-one mapping — y(x) from X and)’. Let A(yo) = {x € X:y(X) = Yo}, which is the collection

of all complete data sets that are consistent with an obsefyeldet h(x) denote the sampling density

for x. The imputations inA(yg) are independently and identically distributed with den&it)! (x €
A(Yo))/P(x € A(Yo)). Let B(x) = {x*: x* is a permutation ok}. Let C(yp) be the union of the B{) over

X in A(yp), which gives all complete data sets that can be obtained as a permutation of a complete data
set that is consistent wityy. Finally, let D(yp) = {y:y = y(X) for some randomly selectedin C(yp)},

which is the reduction of the complete data setS {§ip) to observable data sets. For botk Iénd 1P, we

are trying to make inferences conditional yin D(yp); that is, ony being obtained from a permutation

of a complete data set consistent with the observed data. However, this conditional reference set does not
give a distribution-free test, as reflected in the need to specify a distribution for the imputationd. Let
denote the number of imputations sampled fréyo), and letN denote the number of permutations

per imputation. In Sections 2.1.1 and 2.1.2, we show that for each imputation, when imputed from the
true distribution, theN permutations are equally likely as the observed data under the null hypothesis.
Therefore, we can vieyp as a random sample of size 1 frd{yg). The one-sideg-value corresponding

to the observed data sgi takes the form

M N
P(yo) = >_ D 1(Sii) = Sobd/(M * N), (2.3)

j=1i=1
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where Sps denote the observed test statistic &)@ denote the test statistic evaluated on the reduced
permuted imputed data set fopr=1,..., M andi = 1,..., N. In practice, although when imputing
from the true distribution$-, G1, and G2, the p-value obtained from I or IPt based on one single
imputation would follow a uniform distribution and leads to valid inference, its interpretation depends
on a specific imputation. Note tha?.8) can also be viewed as the averagevbp-values, each obtained
from a single imputation antll permutations. Multiple imputation eliminates the problem of reliance on
a single imputation and can be viewed as an approximation to the expectationpfahees obtained
from the complete data conditional on the observed data.

The approach iteinzeand otherg2003 coincides with IR for the caseM > 1 andN = 1. That s,
we perform multiple imputations and one permutation for each imputation is includedyi). Heinze
and others(2003 describe their approach by first permutifig, 8) (step 3), and creating andC by
imputation (step 4). We first note th@tis created from the observed data set and does not involve the
permuted data set. Therefore, it can be created before the permutation s Fotf, although the in-
dices of(U;, 6 ) change after permutation, because it is imputed from the confimeswitching the group
membership does not affect the imputation. Therefbrean also be created before the permutation as in
IP1. That is, one initially generates multiple imputed values of the vedtaadC, and then for thepth
permutation, creates a permuted data matrix based opttHE while holdingZ and thepth C fixed. One
can then use this data matrix to evaluate the test statistic. This would yield the hireand others
(2003.

2.2 Point and interval estimation

When a semiparametric or parametric model is postulated for how the survival distributions of the 2 groups
differ, then methods proposed in Sect®i can be inverted to obtain point and interval estimates for the
model parameters. We consider the AFT model: specifically; iind T, denote survival times from

F1() and F2(.), respectively, ang > 0 is some positive constant, th&n has the same distribution as

S T2; equivalently,Fo(t) = F1(Bt). Thus,p characterizes the difference between the underlying survival
distributions in the 2 groups ando: F1(-) = F2(-) is equivalent toHp: # = 1. If § > 1(< 1), thenTy

is stochastically larger (smaller) thdp. Note that under an AFT model, the hazards for the 2 groups are

in general nonproportional, with the exception being when the groups have Weibull survival distributions
with the same shape parameter (and thus also when they both have exponential survivals), in which case
ha(t) = ha(Bt).

Consider an observation, sély1, d1) from group 1, and recall that this arisesldg = min(Ty, C1)
andoy = 1if Ty < Cq and 0 otherwise. Under an AFT modely = U1/ = min(T1/p,Cy/8) =
min(T;", CI), where T has distribution functionF;1(t) = Fz(t) and C] has distribution function
G1(pt). Thus, if theith observation, sagU;, d;) in group 1 were transformed @J;*, 6) = (Ui /f, di),
the result would be an observation from an underlying survival distribugigt) and underlying censor-
ing distributionG1 (5t).

To use these results to construct a confidence intervat ftet fo be some specified value and con-
sider testingH (fo): f = po- Let (U*, 5, Z) denote the data matrix obtained by replacing thdséor
subjects in group 1 bW;/fo. Then undeH (o), the transformed data arise from 2 groups with equal
underlying survival distributions and, in general, different underlying censoring distributions. It follows
that the methods in Sectighl can be used to construct a testtd{Sp) for any So. A confidence interval
of size 10@1 — «)% for £ can then be formed by the setgf which are not rejected at thelevel of sig-
nificance. These intervals would be exact if the tests in Se@tibwere imputed from the true underlying
distributions(F1, F2, G1, G2) but in practice would be approximate because Kaplan—Meier estimators
would be used. A point estimate f@ris given by the value for which there is the least evidence against
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H (bo): f = po, say, by giving the largegtvalue. In the absence of censoring observations, the confidence
intervals obtained from inverting both4Rand IP; yield the same results as thl®dges and Lehmarin-

terval estimates of the location shift for underlying survival times on the log sdaldges and Lehmann
1963.

3. SMULATION RESULTS

We begin this section by presenting simulation studies to assess the performancarmd IP; for testing
hypotheses and to compare these to the methétbofzeand otherg2003. We then assess the coverage
probabilities of the proposed methods for interval estimation and compare these to coverage probabilities
from the semiparametric approachJif and otherg2003.

Empirical Type 1 errors and power are based on 2000 replications of studies. For each setting,
we performed one imputation to prepare the data set for permutation and then randomly generated
1000 permutations rather than enumerating rdllpossible permutations. For ease of comparisons,
simulations were done first using the settings asHeinze and others (2003, where (1) the
sample sizes for 2 groups a(é, 6), (6, 30), (30, 30), and (3, 120), (2) censoring times are generated
as the minimum of a realization from unifor(i2, 60) reflecting administrative censoring and a real-
ization from an exponential distribution with hazard rateand y, for groups 1 and 2, respectively,
reflecting potential times until loss to follow up, and (3) the underlying failure times are from an ex-
ponential distribution with hazard ratég and A,. For IP; and IR, the test statistic we used was
the numerator of the log-rank statistic, asHeinze and others(2003. The results are displayed in
Table 1 (empirical Type 1 error) and Tabl (power) for the log-rank test (“Log-rank”), ordinary per-
mutation test (“Perm”) which requires equal underlying censoring distributions, the test in Heidze
others (“Heinze”), and the 2 proposed tests (fflPand “IPz"). We also examined the performance
of IPt and IP,, whereT and C are imputed from the true survival and censoring distributiéns
G1, and G2 (“IP7” and “IP%"). In Table 2, where F1 # F,, the commonF is taken to be a mix-
ture distribution of F; and F, with the mixture probabilities proportional to the sample sizes in the
2 groups. The results for the Log-rank, Perm, and Heinze methods are taket&ioaeand others
(2003. As shown inHeinzeand others(2003, the Type | errors for the log-rank test become dis-
torted with very small sample sizes and/or unequal censoring distributions, and those for the ordinary
permutation test become distorted when the underlying censoring distributions differ. In contrast, the
Type 1 errors of the Heinze test and the 2 proposed tests are relatively close to nominal levels for
all settings. The empirical powers of the 2 proposed tests are generally similar to those of the Heinze
test. Imputing from the Kaplan—Meier estimatés G1, and G, yield very similar results as imputing
from the trueF, G1, and Gy, both in terms of Type | error and power. We will return to this point in
Sectionb.

Tables3 presents empirical coverage probabilities for nominal 95% confidence intervals of the AFT
parametel (Section2.2) obtained from the semiparametric approacliimand otherg2003, denoted
“Jin,” and based on the proposed methods, with varyiia¢) and F2(-), sample sizes, and amount
of censoring. In addition, we evaluated performance of a variation of Jin’s method where a bootstrap
method was used for estimating variance, denoted ag."Jitne actual coverage probabilities of Jin
(or Jin*) can be substantially lower than the nominal level 95% when the sample sizes (or number of
events) are small. In contrast, the coverage probabilities from the proposed methods are usually close
to the nominal level. We also compare the performance of Jin and the proposed methods when sample
sizes are large (Tablé). Here, the actual coverage of all methods is in general close to the nominal
level. The confidence intervals formed by the proposed methods have similar median width as the Jin’s
method.
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Table 4. Actual coverage and median width of nomi8&bb confidence interval using Jin, 1R and 1P,
for g in the AFT model: E(t) = F1(ft), wherep = 2, ¢; and ¢ refer to the percentages of censored
observations in groups 1 and Zspectively

Uniform(12, 60), log(T1) ~ logistic(0, 1)

n Ny y1 72 c1 (%) ¢ (%) Jin IPr IPz
50 50 0.00 0.04 3 18 92.2%, 1.37 94.2%, 1.55 95.6%, 1.54
50 100 0.00 0.04 3 18 91.0%, 1.21 94.4%, 1.33 95.4%, 1.33
100 50 0.00 0.04 3 18 94.2%, 1.33 96.0%, 1.33 95.0%, 1.32
100 100 0.00 0.04 3 18 95.8%, 1.10 94.6%, 1.09 95.094,08
Uniform(12, 60), log(T1) ~ N(3, 1)
ng R n 72 c1 (%) c2 (%) Jin IPr IPz
50 50 0.00 0.04 32 79 93.4%, 1.06 94.8%, 1.13 96.2%, 1.15
50 100 0.00 0.04 32 79 95.0%, 0.88 96.2%, 0.93 96.4%, 0.94
100 50 0.00 0.04 32 79 96.6%, 1.00 96.0%, 1.00 94.4%, 1.02
100 100 0.00 0.04 32 79 95.2%, 0.79 94.8%, 0.78 93.8%0,81
Uniform(12, 60), log(Ty) ~ logistic(0, 1)
N np  y1 2 ¢y (%) ¢ (%) Jin IPr [Pz
50 50 15 1.5 67 79 93.6%, 2.05 94.8%, 2.12 96.0%, 2.19
50 100 1.5 1.5 67 79 94.8%, 1.72 95.4%, 1.73 94.8%, 1.79
100 50 1.5 1.5 67 79 97.4%, 1.81 95.6%, 1.80 95.2%, 1.83
100 100 1.5 1.5 67 79 94.4%, 1.43 95.8%, 1.44 94.8%,.48
Uniform(12, 60), log(T1) ~ N(O, 1)
ng_ N2 n 2 cy (%) ¢ (%) Jin IPr IPz
50 50 1.5 1.5 72 86 94.0%, 1.39 95.4%, 1.34 97.6%, 1.15
50 100 1.5 1.5 72 86 93.8%, 1.13 94.4%, 1.12 95.6%, 1.26
100 50 1.5 1.5 72 86 95.4%, 1.26 94.4%, 1.20 93.4%, 1.30
100 100 1.5 1.5 72 86 93.2%, 0.98 95.8%, 0.96 95.694,.04
Uniform(0.5, 2), log(Ty) ~ logistic(0, 1)
n Ny y1 2 ¢y (%) ¢ (%) Jin IPr [Pz
50 50 15 1 69 77 95.4%, 1.93 94.4%, 2.00 95.0%, 2.07
50 100 1.5 1 69 77 93.6%, 1.63 95.6%, 1.68 95.4%, 1.71
100 50 1.5 1 69 77 97.4%, 1.71 93.4%, 1.73 92.4%, 1.76
100 100 1.5 1 69 77 96.4%, 1.36 97.0%, 1.35 95.2%,.41
Uniform(0.5, 2), log(Ty) ~ N(O, 1)
N N2 y1 72 cy (%) ¢z (%) Jin IPr IPz
50 50 1.5 1 75 85 94.6%, 1.28 96.0%, 1.32 95.8%, 141
50 100 1.5 1 75 85 95.6%, 1.06 94.2%, 1.13 95.8%, 1.14
100 50 1.5 1 75 85 95.2%, 1.13 95.8%, 1.15 94.2%, 1.21
100 100 1.5 1 75 85 94.2%, 0.91 94.4%, 0.91 95.694).95

4. EXAMPLES
4.1 Survival following breast cancer

We first illustrate the proposed methods with the example usétkinze (2002, which compares the
survival of breast cancer patients who had primary treatment at the Department of Surgery of the Univer-
sity Hospital in Vienna between 1982 and 2001 and had either been enrolled in clinical trials (the “trial”
group) or not (the “nontrial” group). The group sizes were 38 (all censored) for the trial group and 90 (80



688 R. WANG AND OTHERS

censored) for the nontrial group. The median (quartiles) of follow-up time were 9.5 (5.8-24.3) and 79.1
(56.0-98.7), respectively, suggesting unequal underlying censoring distributions.

As noted inHeinzeand otherq2003, use of Heinze and Log-rank give one-sigedalues of 0.031
and 0.05, suggesting that breast cancer patients enrolled in a clinical study experience longer survival. The
one-sidedp-values are 0.023 using tPand 0.075 using I, based on 10 000 imputation—permutations.
Previous analyses of these data have focused on testing and not on interval estimation. To quantify the
difference in survival times between 2 groups of cancer patients, we then fit AFT models and obtained
95% one-sided confidence intervals firthe ratio of a typical underlying survival time in the trial group
to one in the nontrial group, of (1.060 ) using IPr and (0.6600) using IP-. The upper limits in both
cases reflect the fact that all observations in the trial group were censored. Jin’s method failed to provide
a point estimate or an interval estimate because there were no events in the trial group.

4.2 Virologic progression and survival in HIV-infected infants

We then apply the proposed methods to data from a recent AIDS stisdkrfanand others 2007).

One of the main study objectives was to investigate whether a single dose of nevirapine (NVP) leads to
viral NVP resistance mutations in infants. The primary end point for infants was virologic failure within

6 months after initiating antiretroviral treatment (ART). Among thirty infants who started ART, one out

of the fifteen randomized to placebo group and ten out of the fifteen randomized to single NVP group
reached the primary end point (Figur@)). Figurel(b) plots the IR and IP; p-values for testing various
hypothesisHp: f = po, where o ranges from 0.0001 to 1.5. For{4Pwe obtain a point estimate of

/ = 0.43 and 95% confidence interval (0, 0.83)z ffives the same point estimate and a 95% confidence
interval (0, 0.84). Jin's method gives the same point estimate but with a shorter nominal confidence interval
(0.27, 0.70). Because this is a setting where one group had only one event, the simulation studies from

(a) (b)
e | o |
«© @©
o 7 o 7
[%]
[}
© | 2 9
o > o
o
el
[}
o
< & <
o o o
2
N o
S ] S
o | <
o o
T T T T T T T T T
0 50 100 150 200 250 0.0 0.5 1.0 15
Days B

Fig. 1. Time to virologic failure. (a): Kaplan-Meier estimates for time to virologic failure, by treatment group; (b):
the average of 10 p-values for testiblg : f = S for variousfg € (0, 1.5). Solid: IPr; Dashed: IR ; Dotdashed: a
horizontal line at 0.05.
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Fig. 2. Time to virologic failure or death. (a): Kaplan-Meier estimates for time to virologic failure or death, by
treatment group; (b): the average of 10 p-values for testgg: f = fo for variousfg € (0, 1.5). Solid: IPr;
Dashed: IR ; Dotdashed: a horizontal line at 0.05.

Section3 would suggest that the coverage of Jin's method may be substantially lower than the nominal
level. Consequently, the confidence intervals obtained from invertingtPPz are more likely to reflect
the true uncertainty associated with the point estimate.

A secondary end point for infants was time until the composite end point of either virologic failure
or death. Four infants from the placebo group and eleven from the single NVP group had this composite
end point. The Kaplan—Meier estimates are presented in FR{ajeln this case, inverting Pyields a
point estimate off = 0.60 with a 95% confidence interval of (0.19, 1.02); inverting felds the same
point estimate and a slightly wider confidence interval of (0.19, 1.07) (Fig{ib). The Jin’'s method
gives a point estimate of 0.58 and a 95% confidence interval of (0.28, 1.19). The point estimates from
IPT, IPZz, and the Jin’s method are again very similar. The intervals obtained through inveriingy IP
IPz, somewhat shifted to the left, are slightly shorter in length than the interval obtained through Jin’s,
suggesting that the proposed procedures have similar efficiency as thoseawmd ditherdor settings like
this, where the number of events is not extremely small.

5. DISCUSSION

Motivated by the poor performance of the log-rank test in settings where the sample sizes in one or
both groups is small and where the underlying censoring distributions of the groups may differ, and by
the lack of interval estimation methods for such settings, we develop 2 methods by adapting hypotheti-
cal permutation methods that could be used when the censoring distributions in 2 groups were equal or
when the underlying survival and censoring times were known. One of the methods coincides with the
approach oHeinzeand others(2003 when imputation is performed for each permutation. We exam-
ined cases with very small sample sizes in one or both groups (e.g. 6 versus 6, 3 versus 120). In such
settings, the Kaplan—Meier estimator Bfor G cannot be expected to be accurate. However, the tests
still maintain very good Type | error rates. More interestingly, the Type | error and power of the pro-
posed methods are very similar to those obtained when imputing from thé tarel G. This may be



690 R. WANG AND OTHERS

partly due to the fact that each imputed permuted data set may only involves a small portion of imputed
values. When comparing the permuted imputed failure times and censoring times, extra variation due to
imputing from estimated distributions only comes into play when the minimum of the 2 happens to be the
imputed value. In addition, this could happen only to the rows of the data matrix affected by a particular
permutation.

The proposed methods readily provide confidence intervals for the group difference under an AFT
model. The large-sample methodJif and otherg2003 is seen to sometimes have poor coverage prob-
abilities in small-sample settings. In contrast, the coverage probabilities of the proposed methods are gen-
erally close to nominal levels in the simulation studies we examined. In addition, the proposed methods
are seen to be as efficient as the Jin's method in large-sample settings.

In all the settings we examined,tRand IP; have similar performance with respect to Type | error,
power and required computing time. Therefore, we do not prefer one over the other. For the permutation
step, IR only requiresT L Z, while IPr requires botir L Z andT L C|Z. However, for the imputation
step because we use the Kaplan—Meier estimatEs Gfi, andG», the independent censoring assumption
T L CJ|Z is required for both. For I, the imputation for the censoring times only uses information
from the censoring distribution of the other group; while fof JBhe imputation for the censoring times
depends on both the censoring distribution of the same group, as well as the observed survival times.
As with any statistical method that uses imputation, for B#hd IP,, the resultingp-values will depend
in part on the random number generators and seeds used to impute. We recommend the use of multiple
imputations and the number of imputations should be large enough to adequately control the dependence
on the specific imputations. For a particular setting, although imputations can be completely enumerated
in theory, the number of possible imputations increases as the number of observations increases and it
is often not necessary to enumerate all imputations in practice. For each imputation, there are a large
number of associated permutations. In our example in Sedtignve used 10 imputations and 2000
permutations for each imputation. Thevalue curves for both Pand IR, in Figure2(b) appeared to be
reasonably smooth, suggesting that 10 imputations were sufficient in this case. This observation is in line
with recommendations on the number of imputations needed in other multiple imputation settings. For
exampleRubin (1987 argued that more than 10 imputations would rarely be needed.

Although we focus our discussion on testiHg: F1(-) = F2(-), the proposed methods also apply for
testing other null hypotheses. For example, if our main interest were in the cumulative survival probability
at a specific time point, say, 1 year, then we could usedRd IP; with a test statistic based on the
difference between the Kaplan—Meier estimators of the 2 groups at 1 year. Note that for this hypothesis
and particular choice of test statistic, the influence of imprecision resulting from having to imptite the
andC from an incomplete distribution would be reduced because the test statistic is invariant to specific
values of observations larger than 1 year.

It would also be useful to evaluate how the performances gfdRd IP- are affected by different
choices of test statistics. The imputation—permutation principleiirali®tl IP; can be extended to the class
of weighted log-rank statistics, such as Prentice’s festrftice 1978. We used the numerator of the log-
rank test so that the results were directly comparabléimzeand otherg2003. Different test statistics
were used imroendle and Y§2006. Neuhaug1993 examined the asymptotic properties of the standard
permutation test and found that, when a standardized test statistic is used, the resulting permutation test is
strictly distribution free under the null hypothesis if the censoring distributions are equal in both groups
and asymptotically equivalent to their unconditional counterparts when the censoring distributions are
different. We assessed the performance of using a standardized test statistic in finite-sample settings and
did not observe consistent improvement in the settings examined.

The proposed methods can readily be generalized for the comparison of more than 2 groups. In ad-
dition, they can be generalized to allow stratified analyses, analogous to the stratified log-rank test, by
using a restricted set of permutations. For example, to adapt the proposed methods to compare treatment
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groups while stratifying by sex, one need only (1) use a test statistic that reflects the stratification, such as
the numerator of the stratified log-rank test and (2) only consider those permutations in which the rows of
the permuted values of survival or group membership lead to the same gender as the original data matrix.
Although our focus in interval estimation was on AFT models, thedRd IP; tests can, in principle, be
inverted to obtain confidence regions for parameters in other semiparametric models such as the changing
shape and scale mod@&dgdonawtiusand others2004).
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