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SUMMARY

Homerand others(2008. Resolving individuals contributing trace amounts of DNA to highly complex
mixtures using high-density SNP genotyping microarrays.PLoS Genetics4, e1000167) recently showed
that, given allele frequency data for a large number of single nucleotide polymorphisms in a sample to-
gether with corresponding population “reference” frequencies, by typing an individual’s DNA sample at
the same set of loci it can be inferred whether or not the individual was a member of the sample. This
observation has been responsible for precautionary removal of large amounts of summary data from pub-
lic access. This and further work on the problem has followed a frequentist approach. This paper sets
out a Bayesian analysis of this problem which clarifies the role of the reference frequencies and allows
incorporation of prior probabilities of the individual’s membership in the sample.
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1. INTRODUCTION

Homerand others(2008) have recently addressed the problem of inference of whether an individual has
contributed to a mixture, given a large number of measurements on the individual and the mean mea-
surements in the mixture. Their primary concern was with the forensic problem arising when one wishes
to determine whether an individual contributes DNA to a pooled sample, but the problem also arises in
assessing whether publication of allele frequencies for large numbers of single nucleotide polymorphisms
(SNPs) in medical studies compromises undertakings given to subjects that they will not be identified.
The publication of this paper raised sufficient concerns as to cause removal of large amounts of summary
SNP data from publicly accessible web sites.

Homerand otherstook a frequentist, hypothesis testing approach to the problem. Briefly, and using
their notation, their approach was as follows. Assume genotype is known from a “test” individual at SNPs
j = 1, . . . , P and denote these byYj ∈ (0, 0.5, 1), where 0 and 1 refer to the homozygous genotypes
and 0.5 to the heterozygous genotype. In addition, it is assumed that allele relative frequencies are also
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available for a sample of sizeN and for a “reference population.” These were denotedM j and Popj . For
each SNP, define the difference

D(Yj ) = |Yj − Popj | − |Yj − M j |. (1.1)

Under H0 (that the test subject does “not” belong to the sample), these differences are assumed to have zero
mean. To test this hypothesis against the alternative hypothesis, H1 (the test subject “does” belong to the
sample), Homerand othersadvocate a 1-sample, 1-sidedt-test, initially treating the SNPsj = 1, . . . , P
as independent observations.

This work appeared in a nonstatistical journal, and the statistical problem was stated somewhat in-
formally. In particular, the precise role of the “reference population” in the inference is not very clear.
Subsequently,Jacobsand others(2009) described a more formal likelihood-based hypothesis testing ap-
proach in which there is no reference but summary data are available for 2 samples, assumed to be drawn
from the same population. A 2-sided test statistic was derived, which has zero expectation when the test
sample belongs to neither sample, and a nonzero value otherwise, with sign determined by the sample to
which it belongs.

Here, a Bayesian approach to the problem, as originally described byHomerand others(2008) is
proposed. By deriving a Bayes factor for whether or not the test observation was in the sample, it becomes
possible to incorporate additional prior information and to decide on an appropriate level of evidence to
allow a decision to be made. The approach also clarifies the role of the “reference” frequencies and allows
quantitative exploration of the effects of the use of nonrepresentative reference data.

2. A SIMPLE GAUSSIAN PROBLEM

It is convenient to start with a simple Gaussian problem which is closely analogous to that considered
above. Consider aP-dimensional observation,x, assumed to be sampled at random from a multivariate
normal distribution with mean vectorμ and variance–covariance matrixI P. Also available is the mean
of a sample ofN such observations,x. We wish to determine whether the observation belonged to the
sample (H1) or not (H0). Formally,

E(x) = E(x) = μ,

Var(x) = I P,

Var(x) =
1

N
I P,

Cov(x, x) = 0 (under H0),

=
1

N
I P (under H1).

It seems natural to approach this problem by calculation of the Bayes factor, Pr(Data|H1)/Pr(Data|H0).
This can then be multiplied by the prior odds (which would be expected to vary from one situation to an-
other), yielding the posterior odds. However, the problem of the nuisance parameter,μ, must be addressed.
Three different situations can be considered:

1. μ is known with certainty,
2. no information concerningμ is available, or
3. a preliminary estimate ofμ is available from external data.
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The problem considered by Homerand othersis analogous to this simple problem and their use of a
allele frequencies from a “reference population” is clearly analogous to provision of information about
the means,μ, in the current formulation. However, it is not clear whether their reference population
allele frequencies really do refer to population parameters or to estimates derived from external sources
(although, clearly, only the latter would be available in practice).

When the value ofμ is known,μ0 say, then some simple algebra yields

loge Bayes factor= loge
Pr(x, x|H1)

Pr(x, x|H0)

=
P

2
loge

N

N − 1
−

1

2

{
N

N − 1
(x − x)T(x − x) − (x − μ0)

T(x − μ0)

}
. (2.1)

Similarly to Homerand others, this contrasts the distance ofx from x with the distance ofx from
a “reference” value,μ0, although the distance metrics differ. For largeN, the expectation of this is, to
a close approximation,±P/(2N), where the sign is positive under H1 and negative under H0. Thus,
when the number of variables is even a relatively small multiple of the sample size, it will be possible to
discriminate between the H0 and H1 with some confidence. Since modern gene chips deliver data on up to
10 00 000 SNPs and sample sizes rarely exceed a few thousand, this somewhat simplified analysis would
suggest that, as suggested by Homerand others, it should be relatively easy to determine whether a DNA
sample was one of those considered in a study for which we have summary data.

This conclusion, however, depends crucially on the availability of appropriate reference data. The
situation of complete ignorance ofμ can be modeled by integration with respect toμ over a uniform prior
distribution. This yields

loge Bayes factor=
P

2
loge

N + 1

N − 1
−

N

N2 − 1
(x − x)T(x − x). (2.2)

This depends only on the distance betweenx and x. For largeN, its expectation under H1 and H0 is
approximately±P/N2. Thus, in these circumstances, the number of variables needed to be measured to
place an individual in a sample is proportional toN2 rather than toN.

The 2 scenarios discussed above represent extreme positions and real situations are likely to be inter-
mediate between them. This can be represented by assuming an “informative prior” forμ:

μ ∼ N

(
m,

1

K
Ip

)
. (2.3)

This is the situation where the prior is derived entirely from a “representative reference sample” of sizeK ,
that is, a sample drawn from the same population as the study observations (bothx and the observations
contributingto x). Integration with respect to this prior then yields,

loge Bayes factor

=
P

2
loge

N(N + K + 1)

(N − 1)(N + K )
−

1

2

{
N

N − 1
(x − x)T(x − x) −

N + K + 1

N + K
(x − μ̃)T(x − μ̃)

}
, (2.4)

whereμ̃ = (N x + Km + x)/(N + K + 1). Again, this expression has some similarity to the statistic
of Homerand others(1.1), contrasting the distance ofx from the sample mean, with its distance from a
reference, now given bỹμ. However, whereas Homerand othersused an L1 (Manhattan) distance metric,
the current approach leads to the use of the L2, or Euclidean, metric.
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Table 1. Number of variables required to discriminate between hypotheses. The table shows, for sample
sizes N= 100and N = 1000, and with varying amounts of prior information concerningμ, the number

of variables, P, needed for the expectation oflog10 Bayes factor to be+5 under H1 and−5 under H0

Prior knowledge ofμ Samplesize

N = 100 N = 1000

Known 2300 23 000
Ignorance 115 000 11 500 000
Informative prior

K = 200 3450 138 000
K = 500 2760 69 100
K = 5000 2350 27600

For largeN andK , it is shown in the Appendix that the marginal expectations of the log Bayes factor
(2.4) under H1 and H0 are given approximately by

E(loge Bayes factor) ≈ ±
P

2

(
1

N
−

1

N + K

)
. (2.5)

Thus, the number of variables needed to place the test individual in the sample is proportional to the
sample sizeN unless the amount of extraneous information (i.e.K ) is small. AsK approaches zero, the
approximation eventually becomes dominated by the term inP/N2.

Table1 shows the number of variables needing to be measured for the expectation of the log10 Bayes
factor to be±5 under H1 and H0.

3. NONREPRESENTATIVE REFERENCE SAMPLE

The last section concluded with a discussion of the more realistic situation in which we have partial prior
knowledge ofμ. We have assumed that this prior information is derived from a representative reference
sample of sizeK drawn from the same population as the single observation,x, and the sample which may
or may not include it, which hasmeanx. If the mean of the representative reference sample ism, this yields
the prior distribution (2.3). A simple model for nonrepresentativeness of the reference sample assumes that
it is drawn from a reference population in which the variance is the same as that of the study population,
that is,I P, but where the means in the study and reference populations differ by the unobserved vector

ε ∼ N

(
0,

F

1 − F
I P

)
. (3.1)

F is assumed to be a known constant which has an interpretation as an intraclass correlation coefficient.
After integration overε, the prior distribution forμ is of the same form as (2.3), but with K replaced by

K ′ =
K (1 − F)

1 + (K − 1)F
. (3.2)

Consequently, the log Bayes factor is given by (2.4) with K replaced byK ′. Note that

Limit
K → ∞

K ′ =
1 − F

F
.

For example, whenF = 0.005,K ′ cannot exceed 199 no matter how large the reference sample.
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If F is correctly specified, the expression (2.5) for the marginal expectation of the log Bayes factor
will continue to hold whenK is replaced byK ′ as described above. However, misspecification ofF will
lead to poorly calibrated inference.

4. BINOMIAL OBSERVATIONS

In out-bred populations, autosomal SNP genotypes coded (0, 0.5, 1) as described in Section1 can be
treated as binomial variates on 2 trials. If the mean of thei th SNP genotype isμi , then its variance is
μi (1 − μi )/2. A natural approach is to adopt a Gaussian approximation, but it is first necessary to relax
the unrealistic and inflexible variance assumption of Section 3. This is achieved simply by replacing the
identity matrix,I P, by a more general matrix,6. The results of Section2 are changed only by replacement
of inner products of the formvTv by quadratic formsvT6−1v. Thus, in the case of partial prior knowledge
of μ, the log Bayes factor (2.4) becomes

P

2
loge

N(N + K + 1)

(N − 1)(N + K )
−

1

2

{
N

N − 1
(x − x)T6−1(x − x) −

N + K + 1

N + K
(x − μ̃)T6−1(x − μ̃)

}
.

(4.1)

If the model for nonrepresentative prior is modified so that the differences between means of study and
reference populations have variance proportional to6:

ε ∼ N

(
0,

F

1 − F
6

)
, (4.2)

then, as before,K must be replaced byK ′ as given by (3.2).
Assuming SNPs to be in linkage equilibrium, a Gaussian approximation for the log Bayes factor

can be obtained by use of (4.1), approximating6 by the diagonal matrix with elements6i i = μ̃i (1 −
μ̃i )/2. With this variance assumption, the parameterF in the model for a nonrepresentative reference
sample is equivalent to Wright’sFST measure of divergence between the study and reference populations.
The valueF = 0.005 used as an illustration above is at the extreme of the values observed between
different European populations (Heathand others, 2008). Thus, this would represent a relatively seriously
nonrepresentative reference sample.

As has been pointed above, the log Bayes factor contrasts the L2 distances betweenx andx with that
betweenx and μ̃, whereas the statistic of Homerand otherscontrasts the corresponding L1 distances.
However, whereas Homerand othersweighted absolute distances for each SNP equally, the Bayes factor
approach weights the squared distance for thei th SNP by{μ̃i (1 − μ̃i )}−1.

Figure1 shows values of log10 Bayes factors for 1000 simulations of each of the combinations of
(N, K , P) listed in the last part of Table1 both when the observation was included in the sample (H1) and
when it was not (H0). The numbers of SNPs were chosen to ensure that the expectation of the log Bayes
factor was±5 and the simulated values were distributed symmetrically around these expected values.
However, the simulated values were quite variable, the extent of variability seemingly unrelated to either
the sample size or the number of variables.

An exact treatment of the binomial case is also possible, at least in the case of independent variables.
the likelihood contribution for thei th SNP is given by

Pr(xi , xi |μi ) =
(

2
2xi

)(
2N

2N xi

)
μ

2xi +2N xi
i (1 − μi )

2+2N−2xi −2N xi under H0,

=
(

2
2xi

)(
2N − 2

2N xi − 2xi

)
μ

2N xi
i (1 − μi )

2N−2N xi under H1.
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Fig. 1. A simulation study. For each of the partial prior knowledge cases shown in Table1, 1000 simulations were run
for genotype (binomial) data under each of H1 (In sample) and H0 (Not in). The box plots show the distribution of
values of the Gaussian approximation to log10(Bayes factor).

The conjugate prior forμi is a beta distribution. Parameterizing this to be equivalent to the information
gained from observing an allele frequencymi in a reference sample of sizeK :

f (μi ) =
1

B(2Kmi , 2K − 2Kmi )
μ

2Kmi −1
i (1 − μi )

2K−2Kmi −1,
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whereB() is the beta function. Noting that

(
n
r

)
= {(n + 1)B(r + 1, n − r + 1)}−1, it follows that the

log Bayes factor is given by

loge(Bayes factor) = P loge
2N + 1

2N − 1

+
P∑

i =1

{
loge

(
B(2Kmi + 2N xi , 2K − 2Kmi + 2N − 2N xi )

B(2Kmi + 2N xi + 2xi , 2K − 2Kmi + 2N − 2N xi + 2 − 2xi )

)

− loge

(
B(2N xi − 2xi + 1, 2N − 2N xi + 2xi − 1)

B(2N xi + 1, 2N − 2N xi + 1)

)}
.

Figure2 compares exact and approximate log Bayes factors for 20 simulations from each of H0 and H1
(N = 100, K = 200 andP = 3450). It can be seen that the Gaussian approximation performs very well
in this relatively small problem.

For largeN andK , application of Stirling’s approximation in the above expression yields the further
approximation

loge(Bayes factor) ≈
P

N
+ 2

N∑

i =1

{
xi loge

xi

˜̃μi
+ (1 − xi ) loge

1 − xi

1 − ˜̃μi

}
,

wherẽ̃μ = (N x+Km)/(N+K ). This is similar in form to the test statistic proposed byJacobsand others
(2009).

Fig. 2. Gaussian approximation log Bayes factors versus exact values. This figure shows the results of 20 simulations
under each of H0 and H1 for binomial data withN = 100, K = 200 andP = 3450.
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5. CORRELATED VARIABLES

Previous sections have assumed that the set of variables is independent. In the case of SNP genotypes,
when only a relatively small number of SNPs are required, independence could be ensured by picking
well-separated SNPs. However if, either because of largeN or small K ′, a large number of SNPs are
required, the independence assumption is likely to break down because of “linkage disequilibrium”
between SNPs which are physically close together on the genome. Homerand othersaddress this problem
without modifying their statistic by calculating an empirical estimate of its distribution. This is calculated
by repeated sampling, with replacement, from a reasonably extensive set of individual-level data for the
same set of SNPs. Jacobsand othersdiscuss the problem of linkage disequilibrium only in very general
terms but seem also to advocate use of an empirical distribution for an unmodified test statistic.

The current Bayesian approach requires estimates of the intercorrelation between SNPs and this, too,
will generally require access to a set of individual-level data. Currently, the only widely available data
set of this type is that from the International HapMap Project (The International HapMap Consortium,
2003) in which sample sizes are relatively small. However, larger sample sizes will become available, for
example, from the 1000 Genomes Project.

Calculation of the Gaussian approximation to the Bayes factor can allow for correlation, as is clear
from the general expression (4.1). 6 need not be diagonal and can be estimated from a suitable external
data set. However, estimation of6−1 is not a trivial problem since even the largest data sets likely to
be available will have many fewer subjects than variables. It seems sensible to continue to estimate the
diagonal elements of6 from the study data. Thus, writing

6−1 = D−1/2R−1D−1/2,

whereD is diagonal withDii = μ̃i (1 − μ̃i )/2, it is then necessary to estimate the inverse correlation
matrix, R−1 from the external data set. Note, however, that this matrix is likely to be extremely sparse and
the nonzero elements will lie quite close to the diagonal.

The problem of estimation of very large inverse correlation and partial correlation matrices has re-
ceived some attention recently. The problems of instability of estimates and loss of rank are approached
by the use of penalty functions.Scḧafer and Strimmer(2005) proposed a shrinkage approach based on an
L2 penalty function, but the use of L1 penalties leads to sparse solutions and has been preferred by most
authors (Meinshausen and B̈uhlmann, 2006; Yuan and Lin, 2007; Friedmanand others, 2008).

Returning to the Gaussian problem, a small simulation study was undertaken to test the sensitiv-
ity of the calculations to correlation between the variables and to assess the possibility of correcting
the calculations using estimates of the inverse correlation matrix obtained from an additional sample.
In this study, the variables formed a first order autoregressive (AR(1)) process with correlation 0.5 be-
tween neighboring variables. A slight adaptation of the method ofMeinshausen and B̈uhlmann(2006)
was used for estimation of the inverse correlation matrix, owing to its speed and its ease of implemen-
tation, taking account of the local nature of the dependencies. The method is based on the fact that the
off-diagonol elements of thei th column of an inverse covariance matrix contain, with a change of sign,
the regression coefficients of thei th variable on the remaining variables, multiplied by the reciprocal
of the residual variance from this regression, which also provides thei th diagonal element of the in-
verse matrix.Meinshausen and B̈uhlmann(2006) estimated the inverse covariance matrix by estimating
each of these regressions using the lasso. Here, the inverse correlation matrix was estimated in a simi-
lar manner, by a series of least angle regressions (LAR) (Efron and others, 2003), restricting the choice
of variables to 10 on either side of each target (LAR is computationally faster than the lasso and gives
very similar results). Since the initial estimate obtained in this way is not a symmetric matrix, in the
calculations shown the final estimate was taken as the mean of the initial estimate and its transpose. How-
ever, using the initial nonsymmetric estimate gave almost identical results and is computationally more
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convenient. For this reason, the nonsymmetric estimate was used in the real data example discussed in
Section6.

Figure3 shows the results of 100 simulations under H1 and under H0 of the caseN = 100,K = 200
and P = 3450 for which the expected log10 Bayes factor is±5. Figure3(a) shows the log Bayes factor
calculated by ignoring the correlation between variables against the correct values which use the known
correlation structure. Although, as expected, the mean log Bayes factor remains approximately at±5 (see
Appendix), individual values can be seriously misestimated. Figure3(b) shows the effect of estimating

Fig. 3. Effect of correlation between variables. This figure shows the results of 100 simulations under each of H0 and
H1 for binomial data withN = 100, K = 200 andP = 3450 when the variables are intercorrelated according to
an AR(1) model with lag 1 correlations 0.5. (a) No correction for correlation. (b) Correction using estimated inverse
correlation matrix from a sample of size 200. (c) Correction using a sample of size 500. (d) Correction using a sample
of size 1000.
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the correlation structure, as described above, using an additional sample of size 200, while in Figures
3(c) and (d), the additional sample size is 500 and 1000, respectively. The LAR calculations were carried
out in the R lars package, allowing up to 10 steps and picking the solution with the smallestCp statistic.
This performed well although, when the sample size for estimation of the partial correlations was small,
there was a tendency for Bayes factors to be biased downward, particularly in the H0 simulations. This
is presumably a consequence of the bias in the estimates of the partial correlations, which will be more
pronounced at smaller sample sizes.

6. A REAL EXAMPLE

The data from this example were drawn from the Wellcome Trust Case Control Consortium study
(Wellcome Trust Case Control Consortium, 2007). The sample allelefrequencies,x concern theN = 145
subjects from the British Birth Cohort (BBC), who were resident in Scotland, and the reference sample
consisted of theK = 1455 National Blood Service controls drawn from throughout Great Britain. This
reference sample provides both a prior estimate,m, of the population allele frequencies and an estimate of
the inverse correlation matrix between SNPs. Only data for theP = 4743 SNPs on chromosome 20 which
have call rates of at least 97.5% and minor allele frequencies of at least 10% were used. For these values
of N, K , andP, the expected values of the log10 Bayes factor are approximately±6.5 so that this chro-
mosome 20 data should be adequate, most of the time, to determine whether an individual observation,x,
was or was not drawn from the 145 Scottish subjects. To test this, 50 subjects were drawn at random from
the Scottish BBC subjects and a further 50 were drawn the BBC subjects who were resident in the rest of
Great Britain.

The distribution of log10 Bayes factors for the 2 groups of subjects are shown in Figure4(a). Mean
log10 Bayes factors were +5.91 and−6.21 in the 2 groups of subjects, which agrees reasonably closely
with expectation. This suggests that the reference sample was not seriously nonrepresentative, despite
the fact that it was drawn from all over Great Britain rather than from Scotland. A pessimistic scenario
was also investigated, takingFST = 0.003, which corresponds with the value found byHeathand others
(2008) for the FST between Russia and the United Kingdom. This has the effect of rendering the effective
reference sample size to be only 270.5 and the expected log10 Bayes factors to be±4.6. Figure4(b)
compares the 2 sets of Bayes factors. The allowance for a seriously unrepresentative prior has, as expected,
made it rather more difficult to identify individuals as belonging to the summarized sample. The mean
log10 Bayes factors in the 2 groups, at+3.03 and−5.62, were some way from expectation indicating that
this prior was not well specified.

Finally, Figure4(c) shows the effect of ignoring linkage disequilibrium. As before, the mean values
of the log10 Bayes factors was not seriously affected although individual values could be changed
substantially.

7. DISCUSSION

A question often asked is whether the difficulty identified by Homerand othersextends to widespread
dissemination of other study results, in particular to publication of test statistics for case/control com-
parisons. That it does, at least in some circumstances can be demonstrated by a simple extension of the
Gaussian problem set out in Section2. Suppose that vectors of means for 2 samples of sizeN1 and N2
have been compared, using a vector ofz-tests,z = (x1 − x2)/

√
1/N1 + 1/N2, and also suppose that we

have a test observation,x. Givenz and an estimate of the population meanμ, can we determine whether
x was part of Sample 1, Sample 2, or neither?
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Fig. 4. A real example using chromosome 20 data drawn from the Wellcome Trust Case Control Consortium
(N = 145, P = 4743 andK = 1455). The ordinate in (b) is calculated under the assumption of a nonrepresen-
tative reference sample (FST = 0.003), while that in (c) ignores linkage disequilibrium. Otherwise Bayes factors
are calculated on the assumption that the reference sample is representative and allowing for linkage disequilibrium
between SNPs.

The methods described here can readily be adapted to this problem. Ifx is in neither sample,(x − μ)
is uncorrelated withz. However, if it is in either sample,

E{(x − μ)z} =
N2

N1(N1 + N2)
x ∈ Sample 1,

=
N1

N2(N1 + N2)
x ∈ Sample 2.
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Thus, 2 Bayes factors can be calculated using similar arguments to those developed above. Note, however,
that the chi-squared tests,z2, could not be used in this way since the loss of sign destroys the correlations
which provide the information for discrimination between hypotheses. This also applies top-values cal-
culated from the tests.

It could be argued that scenarios in which an individual might be identified in this manner are some-
what improbable—particularly when so many SNPs would be needed that linkage disequilibrium could
not be ignored (so that any potential invader of privacy would also require access to an individual-level
data set from which to estimate the linkage disequilibrium structure). However, this is usually not relevant;
in agreeing to take part in a study, subjects will have been assured that data which would allow them to
be identified would not be made public. It is now clear that publication of summary data could, in some
circumstances, violate this assurance.

Homerand othersalso considered the case in which raw allele intensity measures are available for
an individual and for a pooled DNA sample. The problem is to determine whether or not the individual
contributed to the pool. The details of their treatment of allele signal intensities from high-density SNP
genotyping chips are beyond the scope of this paper but result in a continuous measure for each SNP
which they are able to assume to be approximately Gaussian; these are essentially the signals which are
converted by genotype scoring algorithms into a 3-level discrete genotype code. The methods described
here are potentially applicable to such intensity data, although additional work might be necessary to
ensure outlier resistance. However, as pointed out by Homerand others, N is replaced by the reciprocal of
the proportion of the DNA in the pool which could derive from the individual of interest and, particularly
in forensic applications, this will usually be unknown. In such cases, it will be necessary to extend the
Bayesian treatment to incorporate a prior dstribution forN.
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APPENDIX: THE EXPECTATION OF THE LOGBAYES FACTOR

The distributions ofx andx under H0 and H1, conditional upon the vector of meansμ, have been set out
in Section2. Further, the prior distribution ofμ has been assumed to be N(m, I P/K ). In this section, the
expectation of the log Bayes factor (2.4) over the joint distribution ofx, x, andμ is derived.

It is easily shown that the elements of(x − x) have zero mean and variances(N + 1)/N under H0 and
(N − 1)/N under H1. We can express(x − μ̃) as

(x − μ̃) =
(N + K )(x − μ) − N(x − μ) + K (μ − m)

N + K + 1
.
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It follows that the elements of(x − μ̃) also have zero mean and variances(N + K )/(N + K + 1) under
H0 and(N + K )(N + K − 1)/(N + K + 1)2 under H1. From these results, it follows that

E

{
N

N − 1
(x − x)T(x − x) −

N + K + 1

N + K
(x − μ̃)T(x − μ̃)

}
=

2P

N − 1
under H0,

=
2P

N + K + 1
under H1.

For largeN, K these become, approximately, 2P/N and 2P/(N + K ), respectively, and

loge
N(N + K + 1)

(N − 1)(N + K )
≈

1

N
+

1

N + K
.

The approximate expectation (2.5) follows directly from these results.
Note that this argument makes it clear that the expectation of (2.4) is unaffected by any correlation

between elements within(x−x) and between elements within(x−μ̃) although, in these circumstances, the
correct log Bayes factors are given by (4.1). This explains the results of Figure3(a). A minor extension
of the argument outlined above shows that the expectation of the correct log Bayes factor (4.1) is also
approximated by (2.5).
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