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SUMMARY

There are many more strategies for early detection of cancer than can be evaluated with randomized trials.
Consequently, model-projected outcomes under different strategies can be useful for developing cancer
control policy provided that the projections are representative of the population. To project population-
representative disease progression outcomes and to demonstrate their value in assessing competing early
detection strategies, we implement a model linking prostate-specific antigen (PSA) levels and prostate
cancer progression and calibrate it to disease incidence in the US population. PSA growth is linear on the
logarithmic scale with a higher slope after disease onset and with random effects on intercepts and slopes;
parameters are estimated using data from the Prostate Cancer Prevention Trial. Disease onset, metastatic
spread, and clinical detection are governed by hazard functions that depend on age or PSA levels; param-
eters are estimated by comparing projected incidence under observed screening and biopsy patterns with
incidence observed in the Surveillance, Epidemiology, and End Results registries. We demonstrate impli-
cations of the model for policy development by projecting early detections, overdiagnoses, and mean lead
times for PSA cutoffs 4.0 and 2.5 ng/mL and for screening ages 50–74 or 50–84. The calibrated model
validates well, quantifies the tradeoffs involved across policies, and indicates that PSA screening with cut-
off 4.0 ng/mL and screening ages 50–74 performs best in terms of overdiagnoses per early detection. The
model produces representative outcomes for selected PSA screening policies and is shown to be useful
for informing the development of sound cancer control policy.
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1. INTRODUCTION

The development of sound cancer control policies requires weighing the costs and benefits of many com-
peting alternatives for disease management. In the case of early detection, decisions must be made about
ages at which to start and stop screening, the frequency of screening tests, and test-positive criteria. In
addition, the subset of newly diagnosed cases requiring treatment must be determined and appropriate
therapies, dose levels, and durations must be selected.

While controlled clinical trials are the preferred basis for policy decisions, there are many more candi-
date strategies than can be evaluated in a clinical trial setting. This is particularly true when a continuous
biomarker is available—such as the prostate-specific antigen (PSA) in prostate cancer screening—since
this generates a large number of potential test-positive rules for recommending biopsy, rules that may or
may not depend on previous tests. The prohibitively expensive nature of cancer screening trials means
that the majority of early detection strategies will never be compared in a controlled experimental setting.

When the needed clinical trial has not been done, inferences that will ultimately form the basis for
policy development must be pieced together from observational data. One approach for doing this is
decision analysis or cost-effectiveness modeling.

Modeling integrates relevant information about the disease and interventions of interest and, ideally,
produces a preference ordering over the candidate policies based on projected costs and benefits. There
are as many types of models as there are modelers; no standard blueprint exists for model development.
Feuerand others(2004) propose a broad taxonomy over the universe of disease models, classifying them
as either “epidemiological” or “biological.” Epidemiological models tend to be tailored toward a set of
specific policies and typically do not depend on latent events in disease progression; biological models
explicitly model the onset and spread of disease and, as a consequence, are often useful in exploring a
potentially wider range of strategies than the set originally specified.

In this article, we focus on early detection in the presence of a continuous, biomarker-based screening
test. This is exactly the problem we face in the PSA setting, where there is continuing controversy over the
threshold for declaring a test result abnormal and how best to incorporate measures such as PSA change
over time. Our central premise is that “policy development in this setting requires a model of disease
progression that projects representative disease outcomes under a wide range of candidate early detection
policies.” More specifically, if the test-positive criteria vary in terms of the biomarker threshold and/or
prior biomarker measurements, then we believe that a biological model of biomarker growth and disease
progression events is needed.

In recent work, we developed a joint model of PSA growth and disease progression in prostate cancer
and fit it to data on PSA growth and stage of disease at detection in a cohort of cancer cases from a
stored-serum study (Inoueand others, 2008). However, this relatively small cohort does not represent the
population of cancer cases, not least because the cases in the cohort were all detected in the absence of
routine PSA screening. It is well known that the majority of prostate cancer cases are latent and remain
undiagnosed without screening (Etzioni and others, 1998). Restricting attention to pre-PSA-era cases
would yield biased results if our goal is to devise a population-representative model.

The present study therefore has 2 main objectives. The first is to calibrate our model of PSA growth
and disease progression so it generates disease incidence trends before and after the dissemination of
PSA screening that match those observed in the US population. The second is to illustrate how such a
model may be useful in projecting the likely outcomes of PSA screening policies that are currently being
considered by guidelines groups in prostate cancer.



Calibrating disease progression models using population data 709

2. METHODS

2.1 Overview

Our approach is predicated on the premise that underlying disease progression together with screening
practices in the population yield observed disease incidence. Therefore, given disease incidence trends
and data on population screening, we should be able to make inferences about the underlying disease
progression. A similar method was used byLuebeck and Moolgavkar(2002) to develop a model of colon
cancer carcinogenesis using incidence data from the Surveillance, Epidemiology, and End Results (SEER)
program of the National Cancer Institute. Similarly,Tsodikovand others(2006) used SEER incidence
trends to learn about rates of prostate cancer onset and progression to clinical diagnosis.

Our concept of natural history is multidimensional in that it encapsulates both the biological pro-
gression of the disease from a localized tumor to a metastatic cancer and the growth of a disease-related
biomarker, in this case PSA. However, tumor registries, the primary source of information on disease
incidence, do not provide data on biomarker levels. Therefore, we first estimate biomarker growth and
then, conditional on the estimated biomarker growth curves, we estimate the disease progression param-
eters. The joint model, called the PSA–prostate cancer (PSAPC) model, accounts for the dependence
between PSA growth, disease progression, and clinical detection. A simulated likelihood algorithm is
used to estimate model parameters and then competing screening policies are evaluated conditional on
the resulting parameter estimates. A detailed description of the model and the estimation approach are
available athttp://cisnet.cancer.gov/prostate/profiles.html.

2.2 PSA growth model

The PSA growth model specifies that

log{yi (t)} = β0i + β1i t + β2i (t − toi )I (t > toi ) + ε,

whereyi (t) is the PSA level for individuali at aget , toi denotes his age at onset of a preclinical tumor,
and I (∙) is an indicator function. Timet = 0 is set to correspond to age 35. Here, log PSA levels grow
linearly over time with subject-specific intercepts and slopes given byβki ∼ N(μk, σ

2
k ) for k = 0, 1, 2,

and log PSA noiseε ∼ N(0, τ2). In practice, we use truncated normal distributions for the slopes to
force the expected annual percent change in PSA to be positive; this condition is necessary for coherence
of the joint model. According to this model, mean log PSA growth accelerates fromμ1 to μ1 + μ2 at
disease onset. This linear changepoint formulation for log PSA has been used in a number of prior studies
(Whittemoreand others, 1995; Slate and Cronin, 1997; Inoueand others, 2004).

We estimated preliminary values for the PSA growth model using data from the control arm of the
Prostate Cancer Prevention Trial (PCPT) (Thompsonand others, 2003; Etzioni and others, 2005), a ran-
domized trial of finasteride for the prevention of prostate cancer, which screened 18 882 men for up to
7 years. We estimated pre- and postonset PSA slopes using linear random effects models fit to serial log
PSA measurements separately for men diagnosed with cancer (based on either symptomatic presentation
or end-of-study biopsy) and for men without cancer. For noncancer cases, we used all PSA measurements
but for cancer cases, we used the most recent 3 or 4 PSA measurements before diagnosis to capture, as
best possible, the interval after disease onset. Models were fit using WinBUGS (Medical Research Coun-
cil Biostatistics Unit, Cambridge, UK,http://www.mrc-bsu.cam.ac.uk/bugs). Additional details about this
data set and the estimation method are provided in section2 of the supplementary material available at
Biostatisticsonline. PSA growth was externally validated using test-positive and cancer detection rates
from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial (Andriole and others,
2005).

http://www.mrc-bsu.cam.ac.uk/bugs
http://cisnet.cancer.gov/prostate/profiles.html
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2.3 Disease progression model

Disease progression is driven by age or PSA growth. Specifically, a hazard of disease onset,λ0(t), is
proportional to age, while hazards of metastatic spread and clinical (i.e. nonscreen) detection,λm(t) and
λc(t), are proportional to subject-specific mean PSA at aget :

λo(t) = γot (onset),

λm(t) = γmỹi (t) (metastasis),

λc(t) = γcỹi (t) (clinical diagnosis),

whereỹi (t) = exp{β0i + β1i t + β2i (t − toi )I (t > toi )}.
Under this specification, it can be shown that the expected increase in a man’s PSA from disease

onset to metastasis is(β1i + β2i )/γm. Thus, a higher rate of PSA growth or a lower hazard of progression
to metastasis yields a greater increase in PSA over this interval. A similar result holds for the expected
increase in a man’s PSA from disease onset to clinical detection.

We also consider a variant of the model in which the hazard of clinical detection may differ for
localized and metastatic tumors:

λc(t) =

{
γcỹi (t) (before metastasis),

θcγcỹi (t) (after metastasis).

Another variant specifies a hazard of onset that is exponential in age, that is,λo(t) = γ0 exp(γ1t).

2.4 PSAPC model

The PSAPC model combines the biomarker growth and disease progression models in a microsimulation
framework. We simulate a population that matches observed age- and year-specific male population counts
in the 9 primary SEER registries from 1975 to 2000. Age at death is generated using birth cohort–specific
life tables. Deficits in the population total in any given year are remedied by generating new individuals
entering the SEER areas in that year (immigration) and surpluses are mitigated by dropping the newest
additions (emigration). PSA trajectories are randomly generated for each individual given the PSA growth
model specified earlier. Given an individual’s PSA growth curve, his ages at disease onset, metastasis
(i.e. transition to SEER distant stage), and clinical diagnosis are generated via the probability integral
transform (e.g.Devroye, 1986) corresponding to each hazard function.

For each individual in the population, we also simulate a schedule of PSA screening tests and prostate
biopsies. Screening schedules are generated using a simulation routine developed byMariottoand others
(2007), who combined data on first screens from the 2000 National Health Interview Survey with
information on between-screen intervals from the SEER-Medicare database. We note, however, that since
SEER-Medicare does not provide a reason for PSA testing, it is likely that these screening schedules also
include diagnostic tests.

Biopsy compliance frequencies following a positive PSA test are based on data from the PLCO trial,
which referred to biopsy when PSA exceeded 4.0 ng/mL (Pinskyand others, 2005). These data reflect
compliance rates among men participating in a prospective screening study and do not capture the higher
biopsy frequencies among men with symptomatic or metastatic disease. To reflect this phenomenon in
the model, we assume 100% biopsy compliance and accuracy for individuals who are within 2 years of
transitioning to metastatic disease.

Even if an individual has experienced disease onset, it is not a foregone conclusion that he will have a
positive biopsy. Since prostate biopsies have become more extensive (from 4 cores in the 1980s to 6 cores
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in the 1990s to 10 or more cores currently), biopsy “sensitivity” has been increasing. A number of studies
(Babaianand others, 2000; Prestiand others, 2000) have estimated the sensitivity of the 6-core biopsy
to be between 70% and 80%. Our biopsy sensitivity increases from 53% (two-thirds of 80%) in 1985,
reflecting quadrant biopsy sensitivity, to 80% in 1990 and then linearly from 80% in 1993 to 96% in 2000
based on the advent of more extensive biopsy protocols in the late 1990s (Eichlerand others, 2006).

2.5 Disease progression estimation

Given the PSA growth parameters, we estimate disease progression parameters and in the process calibrate
the PSAPC model to the US population using a log Poisson likelihood. The likelihood compares observed
and expected counts of cases by age, year, and stage at diagnosis:

`(γo, γm, γc) =
∑

i jk

{
Oi jk

(
1 + log

Ei j k

Oi jk

)
− Ei jk

}
,

whereOi jk denotes the observed (SEER) number of cases,Ei jk = f (γo, γm, γc) denotes the expected
(PSAPC) number of cases as a function of the disease progression parameters,i indexes ages 50, . . . , 84,
j indexes years 1975, . . . , 2000, andk indexes SEER stages local-regional and distant.

The expected counts for a given age, year, and stage are the sum of the screen and clinical detections
produced by the model. The observed counts are corresponding values in SEER; we assume that cases
with missing stage in SEER have data missing completely at random and impute stage based on the
observed stage distribution for each age and year. Since the expected counts are simulation based, this is
a simulated likelihood.Chia and others(2004) used simulated maximum likelihood to estimate natural
history in breast cancer.Draismaand others(2003) used it in a prostate cancer application, andLuebeck
and Moolgavkar(2002) used this approach in colorectal cancer.

We use a modified Nelder–Mead simplex algorithm (Nelder and Mead, 1965; Spall, 2003) to estimate
the disease progression parameters. We account for uncertainty in the disease progression parameters due
to the simulation framework by reestimating parameters for each of 20 random seeds. Additional details
about estimating the disease progression parameters are given in section3 of the supplementary material
available atBiostatisticsonline.

2.6 Model validation and recalibration

Although the PCPT data represent the most extensive, population-based information on PSA growth in
men with and without prostate cancer, 2 of the population-level growth parameters—the mean preonset
intercept (μ0) and slope (μ1)—are still subject to considerable uncertainty. This is because the PCPT
only included men over the age of 55, whereas the preonset intercept pertains to men aged 35. Moreover,
the preonset slope, which represents the PSA growth rate in men without prostate cancer, is likely to be
highly age dependent because this is related to the presence of benign prostatic hyperplasia, the incidence
of which increases substantially as men age. It is likely that the parametersμ0 andμ1 as estimated from
the PCPT do not capture the characteristics of PSA growth for younger men. Therefore, we further tuned
these parameters so that a version of the model developed to emulate the PLCO trial produced test-
positive and cancer detection rates comparable to those reported for the first round of screening (Andriole
and others, 2005). We then reestimated the disease progression parameters based on the recalibrated PSA
growth parameters. Additional details about recalibrating the mean preonset PSA growth parameters are
given in section4 of the supplementary material available atBiostatisticsonline.
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2.7 Projecting outcomes for screening policies: proof-of-principle analysis

The ultimate goal of any screening and/or treatment policy is to detect as many progressive cases as early
as possible while identifying as few nonprogressive cases as possible. By “progressive,” we mean disease
that would advance in the absence of treatment, becoming metastatic or fatal within the lifetime of the
patient. By “nonprogressive,” we mean disease that would not present clinically within the lifetime of
the patient in the absence of screening. The problem of identifying nonprogressive cases is well known
in PSA screening, where it is also termed overdiagnosis. The conflict between the competing goals of
maximizing early detection of progressive cases and minimizing detection of nonprogressive cases is a
major cause of the ongoing controversies about prostate cancer screening.

The value of a natural history model that links biomarker growth and disease progression is that it
can be used to project outcomes of screening policies that vary not only screening ages and intervals
but also PSA-based test-positive rules. Naturally, there are many potential outcomes—both positive and
negative—of interest. In this article, we focus on 2 main outcomes: detections of progressive cases in
a local-regional stage (early detections) and detections of nonprogressive cases (overdiagnoses). As an
additional measure of benefit, we also examine mean lead times among nonoverdiagnosed cases, which
enable us to capture the benefits of within-stage early detections.

We emphasize that comparison of selected PSA screening strategies based on only these outcomes is a
simplification and would be insufficient for informed policy making in practice. A complete picture of the
benefits and harms associated with screening strategies would include PSA tests performed, PSA test false
positives, biopsies performed, biopsy false positives, types and durations of treatments received, economic
costs, quality of life measures, and survival outcomes. We concentrate on these outcomes because they
follow directly from our incidence model and because they satisfactorily illustrate our proof of principle.

For purposes of this illustration, we consider 2 PSA cutoffs discussed in the literature: 2.5 and
4.0 ng/mL. The 4.0 ng/mL cutoff is the default policy imposed on our simulated population since we
believe that to be most representative of population practice during the time interval considered. We also
consider the same population under a policy that uses a 2.5 ng/mL cutoff and project outcomes assuming
that this lower cutoff was used between 1990 and 2000. In practice, we assume that the biopsy frequency
for men with PSA between 2.5 and 4.0 ng/mL is the same as that for men with a PSA between 4.0 and
7.0 ng/mL—approximately 40% (Pinskyand others, 2005). Consequently, if the true compliance rate is
lower, our results may overstate early detections, overdiagnoses, and mean lead times under the lower
cutoff. Nevertheless, this example clearly demonstrates how the model enables comparison of competing
PSA-based criteria for biopsy referral. In addition, in light of recent changes to guidelines issued by the
US Preventive Service Task Force(2008), we examine these cutoffs with or without PSA screening after
age 75.

3. RESULTS

To estimate preliminary PSA growth parameters, we analyzed PCPT data from 1022 cancer cases (414
interim cases and 608 diagnosed by end-of-study biopsy ) and 7058 subjects who did not have prostate
cancer by the end of the follow-up period. When the resulting PSA growth estimates were combined with
preliminary disease progression estimates, we found that model-projected age-adjusted test-positive and
cancer detection rates (25% and 31%) did not validate well with corresponding values reported in the ini-
tial screening round of the PLCO (8% and 44%) (Andrioleand others, 2005). Investigating this lack-of-fit,
we found that several combinations ofμ0 andμ1 led to equally good incidence projections but that some
more closely approximated reported PLCO results. Our final selected values of these parameters yield
model-projected test-positive and cancer detection rates of 11% and 57%. Note that we expect projected
values to be at least modestly higher than corresponding trial values because we are simulatingde novo
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screening, while many trial participants had in fact undergone previous screens (Andriole and others,
2005).

Table1 presents preliminary and final PSA growth estimates. The estimated mean intercept (i.e. PSA
at age 35) across subjects is 0.2 ng/mL, smaller than prior median estimates of 0.6 for men aged 40–49
(Andersonand others, 1995; Lein and others, 1998), and the estimated mean preonset slope corresponds
to an average increase in PSA of approximately 2% per year, which is consistent with several studies
(Oesterlingand others, 1993; Whittemoreand others, 1995; Ellis and others, 2001; Inoueand others,
2004). After disease onset, mean PSA growth accelerates to an annual percent change of approximately
14%. This is considerably lower than the PSA growth rates among cases in previously published stored-
serum studies (Whittemoreand others, 1995; Inoueand others, 2004), but the cohorts of cases in these
studies included many pre-PSA-era patients; in contrast, the PCPT case cohort was identified under a
screening and end-of-study biopsy program. Indeed, the majority of the PCPT cases were diagnosed in
the absence of elevated PSA levels. The between-subject variability is considerably lower than the within-
subject variability, which is similar for cancer cases and noncancer cases.

We assessed incidence projections of model variants based on how well they captured broad patterns
in observed incidence. We paid particularly close attention to the peak in local-regional stage incidence
and the decline in distant stage incidence. This assessment indicated that a clinical detection hazard that
depends on stage outperforms the baseline specification, a linear onset hazard outperforms an exponential
onset hazard, and a diagnostic testing interval of 2 years is reasonably consistent with observed incidence.
We integrated these findings into a final model and reestimated the disease progression parameters across
20 random seeds. Parameter estimates are reported in the lower panel of Table1, where we see that the
greatest uncertainty is associated with the multiplier for the clinical detection hazard for distant stage
cancers (θc). This parameter is difficult to estimate precisely since a small increase whenθc is already

Table 1. Log PSA growth parameter estimates (upper panel) obtained via separate linear fits to PCPT
cancer and noncancer cases. Preliminary preonset intercept and slope means were fine-tuned based on
test-positive and cancer detection rates in the initial round of the Prostate, Lung, Colorectal, and Ovarian
Cancer Screening Trial. Disease progression parameter estimates (lower panel) obtained via Nelder–

Mead simplex calibration to incidence data from the SEER program across randomseeds

Log PSA growthparameters
Parameter Description Posterior mean Posterior 95%CI

μ0 Preonset intercept mean (preliminary) −1.2720 (−0.8047)–(−1.7393)
μ1 Preonset slope mean (preliminary) 0.0443 0.0431–0.0455
μ0 Preonset intercept mean (final) −1.6094 (−1.1421)–(−2.0767)
μ1 Preonset slope mean (final) 0.0200 0.0188–0.0212
μ2 Postonset slope increment mean 0.1094 0.0919–0.1269
σ2

0 Preonset intercept variance 0.0568 0.0480–0.0656
σ2

1 Preonset slope variance 0.0019 0.0018–0.0020
σ2

2 Postonset slope increment variance 0.0237 0.0202–0.0272
τ2 Within-individual variance 0.0829 0.0817–0.0841

Disease progressionparameters
Parameter Description Simplex mean Simplex 95%CI
γ0 Hazard of disease onset 0.0005 0.0004–0.0005
γm Hazard of transition to metastatic disease 0.0004 0.0004–0.0005
γc Hazard of clinical diagnosis 0.0015 0.0013–0.0017
θc Multiplier for hazard of clinical diagnosis 19.1334 4.2105–24.0563
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large advances clinical diagnosis of a distant stage cancer a matter of days and so corresponds to only a
small impact on the likelihood.

Figure1 illustrates observed and model-projected age-adjusted incidence curves averaged across ran-
dom seeds by disease stage in the presence of PSA screening. Confidence interval (CI) estimates are shown
in each year based on uncertainty due to the random seed. The figure also shows model-projected age-
adjusted incidence had there been no PSA screening, that is, the model’s best estimate of the secular trend
in stage-specific disease incidence in the absence of PSA screening. Projected incidence in the absence of
PSA is more or less constant at about the level observed in 1985 for both local-regional and distant stage
disease. In the presence of PSA screening, model projections match the general shape of observed stage-
specific incidence trends fairly closely, though the model overprojects in the late 1970s for both stages and
underprojects (overprojects) in the late 1990s for local-regional (distant) stage. The difficulty with cap-
turing the distant stage incidence decline observed since 1990 was observed byEtzioniand others(2008)
under a completely different model, leading them to suggest that alternative explanations (e.g. changes in
public awareness of prostate cancer during the PSA era or use of PSA as a diagnostic test in symptomatic
patients) likely contributed to producing a decline beyond that due solely to PSA screening.

Table2 reports mean times between natural history and clinical or screen detection events based on the
parameter estimates in Table1. The measures are generally consistent with previously published studies.
For example, the model indicates that the age-adjusted mean sojourn time is approximately 13.5 years,
which is similar to the estimate inEtzioniand others(1998). Mean lead times are longer for younger men
than for older men; this is a consequence of our definition of lead time, which applies to the subset of
cases with clinical diagnosis in their lifetimes. Naturally, as men age and their remaining life expectancy
declines, the range of plausible intervals until any event such as clinical diagnosis narrows. The mean
lead times are slightly higher than some previously published studies (Gannand others, 1995; Telesca
and others, 2008) but are lower than others (Draismaand others, 2003; Tornblom and others, 2004).
Note, however, that estimates based on data from the European screening trial differ in important ways
from the US population setting, and these cannot, strictly speaking, be compared (Draismaand others,
2009).

Figure 2 presents comparisons of outcomes for the 4 candidate PSA screening policies. It can be
clearly seen in Panel (a) that, irrespective of the screening age cap, lowering the PSA test-positive threshold
from 4.0 to 2.5 ng/mL incurs a large number of additional overdiagnoses while moving only a hand-
ful of potentially fatal cases to a presumably more curable stage. Specifically, on average, lowering the
test cutoff when screening men aged 50–84 generates 150 (95% CI due to the random seed [95–199])

Fig. 1. Observed and mean model-projected age-adjusted local-regional (a) and distant (b) stage prostate cancer
incidence in the presence and in the absence of PSA screening. Superimposed are 95% CIs reflecting uncertainty due
to the random seed.
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Table 2. Mean years from screen detection to clinical detection by age at screen detection among men who
would have been clinically diagnosed in their lifetimes (lead), mean years from onset to clinical detection
by age at onset among men who would have been clinically diagnosed in their lifetimes (sojourn), and
mean years from onset to metastasis by age at onset among men who would have developed metastatic

disease in their lifetimes(local)

Age group Lead Sojourn Local

50–54 7.8 18.5 21.7
55–59 8.0 16.4 19.4
60–64 7.7 14.2 17.0
65–69 7.0 12.0 14.5
70–74 6.2 9.7 11.8
75–79 5.4 7.4 9.0
80–84 3.2 5.2 6.2

Age-adjusted mean 7.0 13.5 16.1
Age-adjusted 95% CI 6.7–7.2 13.2–13.7 15.9–16.2

Fig. 2. Comparisons of model-projected benefits and harms across random seeds corresponding to PSA test-positive
cutoffs 2.5 or 4.0 ng/mL for screening ages 50–74 or 50–84 and for years 1990–2000 in the SEER 9 population.
In both panels, line segments, shaded for screening ages, connect projections for the 2 cutoffs from corresponding
random seeds. Panel (a) presents counts of overdiagnoses (in thousands) and early detections (in thousands) and Panel
(b) presents overdiagnosis rates (as percentages of PSA detections) versus mean lead times (in years). Note that due
to relative insensitivity to the random seed when quantifying the tradeoff in Panel (b), the line segments and projected
points overlap considerably.

additional overdiagnoses for each additional early detection and when screening men aged 50–74 gener-
ates 101 (95% CI:68–154) additional overdiagnoses for each additional early detection.

Complementing this tradeoff, Panel (b) presents overdiagnosis rates (as percentages of PSA detec-
tions) versus mean lead times (in years) projected for the 4 PSA screening policies. From this perspective,
we see that, irrespective of the screening age cap, lowering the PSA test-positive threshold from 4.0 to 2.5
ng/mL increases both the overdiagnosis rate and the mean lead time. Specifically, on average, lowering
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the test cutoff when screening men aged 50–84 increases the overdiagnosis rate by 5.0% (95% CI [4.7–
5.3]) while extending the mean lead time 0.75 (95% CI [0.72–0.77]) years and when screening men aged
50–74 increases the overdiagnosis rate by 6.8% (95% CI [6.4–7.4]) while extending the mean lead time
0.93 (95% CI [0.90–0.96]) years. The value of this tradeoff will depend on the benefit associated with
early detection of disease within the same broad SEER stage. To quantify this would require modeling
of disease-specific survival under population treatment patterns, which is beyond the scope of the present
study.

Finally, to demonstrate model rankings, we consider total overdiagnoses per total early detections. The
model ranks the 4 policies as follows: screening ages 50–74 with cutoff 4.0 ng/mL (4.3, 95% CI [3.9–4.7]),
screening ages 50–84 with cutoff 4.0 ng/mL (5.0, 95% CI [4.5–5.4]), screening ages 50–74 with cutoff 2.5
ng/mL (5.8, 95% CI [5.4–6.3]), and screening ages 50–84 with cutoff 2.5 ng/mL (6.8, 95% CI [6.3–7.4]).
Interestingly, while the interpretation is less straightforward, considering overdiagnosis percentages per
year of expected lead time yields the same ranking. While these metrics represent a small number of the
great many possible systems for developing policy rankings, it is worth noting that these rankings for
these policies are consistent with updated recommendations by theUS Preventive Service Task Force
(2008).

4. CONCLUSIONS

This manuscript is the first step in the development of what we believe will ultimately be a vitally impor-
tant tool in the development of PSA-based screening policies. The future usefulness of the model rests
on 3 critical features: (1) it is calibrated to the population and therefore likely to be representative of ex-
pected population outcomes, (2) it explicitly links key disease progression events with biomarker growth,
and (3) it is designed to quantify both the positive and the negative outcomes that are most clinically
relevant in making informed policy decisions.

All models have limitations and the present example is no exception. Perhaps the main limitation
of the model is that the disease progression estimates are conditional on a number of inputs that are
themselves estimated from a variety of sources. First, the PSA growth curve and its variance components
are derived from studies of the PSA distribution in younger men and the PCPT. Each of these data sources
is population representative and fairly extensive, so that the statistical error in the resulting parameter
estimates appears to be relatively low. In addition, the inputs relating to the practice of PSA screening in
the population have all been estimated or retrospectively inferred based on observational data or published
studies. The disease progression estimates in Table1 are all conditional on the frequency of PSA use, the
likelihood of a biopsy, and the biopsy sensitivity, which is closely tied to the number of biopsy cores.
Since these quantities are almost certainly estimated with some error, we are understating the noise in
the model results. While we do not believe that this will have a material effect on the relative ranking
of candidate policies, it will affect how certain we are about the size of the differences between policies,
and this must be borne in mind, particularly when deciding between competing polices that yield similar
outcomes.

There are structural decisions that must be taken into account when developing a model, and these are
also subject to uncertainty. For example, we have specified that the risks of metastasis and clinical diag-
nosis depend on PSA (instead of, say, log PSA), that subject-specific PSA slopes have truncated normal
distributions (instead of, say, gamma distributions), and that random draws determining compliance at
consecutive PSA screens are independent (instead of, say, correlated with a specific correlation structure);
while we considered many more model variants than we have reported here, there is no guarantee that our
final model structure is the best of a class.

We recognize that there are still a number of important steps that must be taken before the model is
ready for use in practice. Future work will explicitly account for disease grade, which is associated with
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PSA growth, disease progression, and survival. In addition, we plan to decompose the local-regional stage
into locally advanced and nonadvanced disease. Further outcomes, including PSA tests performed, PSA
test false positives, biopsies performed, biopsy false positive, types and durations of treatments received,
economic costs, and, perhaps most importantly, mortality, will be added so that the full range of outcomes
that must be considered by policy makers can be evaluated.

The incorporation of mortality as an endpoint will require extending the model to project disease-
specific survival times given disease characteristics at diagnosis. Data on disease-specific survival are
available from numerous sources in addition to SEER, but outcomes generally depend on the initial treat-
ment received. The question of whether and how best to treat newly diagnosed prostate cancer is critically
important and continues to generate a great deal of controversy even as active surveillance approaches
are gaining traction in some practices. The extended model will enable us to consider treatment policies
jointly with screening policies, which should advance our progress toward our goal of comprehensive
policy development via modeling.

Our vision is to produce a comprehensive model of prostate cancer natural history and response to
interventions, calibrated to the general population, to inform cancer control policy by projecting realistic
multidimensional outcomes. In the absence of definitive population-based randomized controlled trials,
these projections will be critical to assessing the comparative effectiveness of competing screening and
treatment policies. The work described in this paper represents the first step toward developing this struc-
tured framework for policy development and should ultimately be useful for informing biomarker-based
screening and treatment policies for any progressive disease.

SUPPLEMENTARY MATERIALS

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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