
 Journal of Gerontology: BIOLOGICAL SCIENCES Published by Oxford University Press on behalf of The Gerontological Society of America 2010.
Cite journal as: J Gerontol A Biol Sci Med Sci. 2010 October;65A(10):1028–1041 Advance Access published on June 24, 2010 
 doi:10.1093/gerona/glq113  

1028

            CARDIOVASCULAR diseases are the most common 
cause of death among the elderly patients in the Western 

world. Age-specifi c mortality rates from heart disease and 
stroke increase exponentially with age throughout the later 
years of life, accounting for more than 40% of all deaths 
among people aged 65 – 74 years and almost 60% at age 85 
years and older. It is becoming evident that aging results in 
well-defi ned phenotypic changes, which render the cardio-
vascular system prone to disease even in the absence of tra-
ditional risk factors (eg, hypertension, diabetes, and 
smoking). Moreover, age-related alterations in cellular ho-
meostatic mechanisms also render the aged vasculature more 
susceptible to the damaging effects of the aforementioned 
pathophysiological conditions. Understanding the mecha-
nisms underlying the age-induced vascular pathophysiologi-
cal alterations holds promise for reducing cardiovascular 
mortality in an aging population. In this review, the effect of 
aging on the vascular system is considered in terms of poten-
tial mechanisms involved in vascular dysfunction and age-
related atherosclerosis. The possible benefi ts of emerging 
therapeutic strategies that have the potential to promote car-
diovascular health in the elderly patients are also discussed.  

 M echanisms of  V ascular  A ging   

 Oxidative Stress and Endothelial Dysfunction in Aging 
 Considerable evidence has been published that increased 

production of reactive oxygen species [ROS; at least, in 

part, due to an increased activity of NAD(P)H oxidases 
( 1  –  5 )] leads to endothelial dysfunction in aging both in 
laboratory animals ( 1 , 2 , 6  –  10 ) and in humans ( 4 , 11 ) and that 
oxidative stress promotes the development of coronary ar-
tery disease and stroke in the elderly patients. It is well es-
tablished that nitric oxide (NO) is a crucial factor for the 
health and function of endothelial cells. One of the conse-
quences of increased oxidative stress in aging is a functional 
inactivation of NO by high concentrations of   O2

−  ( 1 , 3 , 6 , 8 ) 
resulting in signifi cant vasomotor dysfunction [recently 
reviewed elsewhere ( 12 )]. In particular, impaired bioavail-
ability of NO due to age-related oxidative stress in the coro-
nary circulation ( 1 ) and other vascular beds ( 6 ) results in a 
severe impairment of fl ow/shear stress – induced vasodila-
tion compromising minute-to-minute adjustments of blood 
fl ow in response to tissue oxygen demand. In addition to 
maintenance of normal organ blood fl ow, endothelium-
derived NO confers signifi cant vasoprotective and cardio-
protective effects, including inhibition of both platelet 
aggregation and infl ammatory cell adhesion to endothelial 
cells, disruption of proinfl ammatory cytokine – induced sig-
naling pathways, inhibition of apoptosis, preservation of 
endothelial progenitor cell (EPC) function, and regulation 
of tissue energy metabolism. Thus   , the severe impairment 
of NO bioavailability in aging ( 13 ), also aggravated by an 
age-related decline in endothelial nitric oxide synthase 
(eNOS) expression ( 1 , 14  –  17 ), reduced availability of 
tetrahydrobiopterin ( 18 ), and/or a decreased intracellular 
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 l -arginine availability ( 19 ), is likely to promote vascular 
infl ammation and atherogenesis and lead to cellular ener-
getic imbalance. Impaired bioavailability of NO was also 
shown to account for dysregulation of myocardial O 2  
consumption in aged rats ( 3 ). The key role of endothelium-
derived NO in protecting the cardiovascular system during 
aging is underscored by the fi ndings that eNOS knockout 
mice exhibit a premature cardiac aging phenotype associ-
ated with early mortality ( 20 ). Recent studies also suggest 
that decreased endothelial NO production in aging promotes 
apoptosis of endothelial cells ( 17 , 21 ) and leads to microvascu-
lar rarefaction. There is also an emerging view that ROS, in 
addition to inactivating NO and causing oxidative macromo-
lecular damage, play important signaling roles in the vascular 
endothelial and smooth muscle cells as well. In particular, 
oxidative stress and the consequent activation of redox-sensi-
tive cellular signaling pathways are thought to be implicated 
in the infl ammatory process in the aged vasculature ( 22 ). 
Many of the adverse consequences of oxidative stress are me-
diated via production of the highly reactive oxidant peroxyni-
trite, the reaction product of NO and superoxide ( 23 , 24 ). There 
is convincing data showing a substantially enhanced cardio-
vascular ONOO  −   formation in aging ( 1 , 3 , 6 , 8 ). The down-
stream targets of peroxynitrite-induced cytotoxicity are likely 
multiple [for a comprehensive review, see reference ( 23 )]. 

 In recent years, a number of longevity genes affecting life 
span and the rate of aging have been identifi ed. In the cases 

where it was studied, life span extension and attenuation of 
cellular ROS production in models of successful aging were 
paralleled by signifi cant improvement of vascular function. 
In contrast, accelerated vascular aging is generally associ-
ated with vascular oxidative stress and endothelial dysfunc-
tion. For example, defects in the Klotho gene in the mouse, 
which is associated with endothelial dysfunction and pre-
mature development of atherosclerosis ( 25 , 26 ), result in an 
accelerated aging phenotype and a short life span. 

 Recent studies suggest that mitochondrial oxidative stress 
has an important role in aging-induced vascular dysfunction 
( 10 , 27 ). Importantly   , mitochondria-derived H 2 O 2  is thought 
to contribute to the activation of nuclear factor- k B, resulting 
in a proinfl ammatory shift in endothelial gene expression 
profi le ( 10 ) ( Figure 1 ). Another important link between mi-
tochondrial ROS production and vascular aging is the in-
duction of apoptosis. The    underlying mechanisms for mito-
chondrial oxidative stress in aged endothelial cells are likely 
multifaceted and may include peroxynitrite-mediated nitra-
tion and inhibition of MnSOD ( 2 ), decline in reduced gluta-
thione content ( 28 ), and a dysfunctional electron transport 
chain ( 27 ). There is increasing evidence that with age, mi-
tochondrial biogenesis is impaired in endothelial cells 
both in conduit arteries ( 27 ) and in the capillaries ( 29 , 30 ), 
which is likely to increase mitochondrial ROS production. 
Recent studies demonstrated that the mitochondrial enzyme 
p66  Shc   has an important role in regulation of mitochondrial 

    

 Figure 1.        Proposed    scheme for pathways contributing to cellular oxidative stress and NF- k B activation in aged endothelial cells. In aged endothelial cells, in-
creased levels of   O2

−  generated by the electron transport chain are dismutated to H 2 O 2 , which can penetrate the mitochondrial membrane increasing cytoplasmic H 2 O 2  
levels. H 2 O 2  contributes to the activation of NF- k B, resulting in a proinfl ammatory shift in endothelial gene expression profi le. Aging is also associated with upregu-
lated expression of membrane-bound tumor necrosis factor-alpha (TNF a ), which increases soluble TNF a  levels in the vascular wall due to the action of TNF a -
converting enzyme (TACE). In aged endothelial cells, increased levels of   O2

−  generated by NAD(P)H oxidases (stimulated by elevated TNF a  levels and/or by the 
activated local renin – angiotensin system [RAS] in the vascular wall) decrease the bioavailability of NO by forming ONOO   −  . Lack of NO leads to vasodilator dys-
function and promotes endothelial apoptosis, whereas nitrative stress and increased H 2 O 2  levels lead to poly(ADP-ribose) polymerase (PARP)-1 activation, which 
contributes to NF- k B-dependent gene transcription. Increased oxidative stress and chronic low-grade vascular infl ammation increase the risk for the development of 
vascular diseases in the elderly patients.    
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ROS generation, linking oxidative stress to apoptosis ( 31 ). 
Mice lacking p66  Shc   exhibit reduced production of ROS, 
which is associated with a 30% increase in life span and 
improved endothelial function ( 8 , 32 , 33 ). Although recent 
large randomized clinical trials have shown no signifi cant 
benefi t when antioxidants such as vitamin E were given to 
patients with a high-risk coronary arterial disease profi le, at 
present, it is unknown whether systemic administration of 
mitochondria-targeted antioxidants would affect progres-
sion of cardiovascular diseases in elderly patients.       

 Vascular Infl ammation in Aging 
 Abundant experimental and clinical data show that aging 

is associated with chronic low-grade infl ammation ( 34 ), 
which predisposes the vasculature to the development of 
atherosclerosis [recently reviewed elsewhere ( 22 )]. Recent 
studies have uncovered an important cross talk between 
infl ammatory processes, generation of ROS, and endothe-
lial dysfunction in the pathogenesis of cardiovascular 
aging ( 22 ). First, ROS per se can act as signaling mole-
cules activating pathways regulating infl ammatory pro-
cesses ( 10 ), including endothelial activation and secretion of 
infl ammatory mediators. Second, oxidatively damaged mol-
ecules can induce infl ammatory processes. Third, infl amma-
tion itself promotes cellular oxidative stress (eg, by 
cytokine-mediated activation of NAD(P)H oxidases). 
Fourth, metabolic status may infl uence both aging-related 
vascular oxidative stress and infl ammation ( 35 ). In addi-
tion, environmental infl ammatory factors [eg, infections 
and environmental infl ammogens such as particulate expo-
sure ( 36 )] can also affect vascular aging by promoting vas-
cular oxidative stress and infl ammation. 

 There is growing evidence that age-associated low-grade 
infl ammation accelerates the incidence of chronic diseases, 
including atherosclerosis. Even    in normal healthy aging, 
there is a proinfl ammatory shift in vascular gene expression 
profi le, including an upregulation of infl ammatory cytok-
ines, chemokines, adhesion molecules, and inducible nitric 
oxide synthase both in laboratory rodents and in primates 
( 1 , 10 , 21 , 35 , 37  –  39 ). In    humans, plasma concentrations of 
several infl ammatory markers (eg, tumor necrosis factor-alpha 
[TNF a ], sVCAM-1, sE-selectin, interleukin [IL]-6, IL-18, 
and MCP-1) are positively correlated with age, independent 
of other cardiovascular risk factors ( 40 , 41 ). High levels of 
infl ammatory cytokines contribute to a proinfl ammatory 
microenvironment that facilitates both the development of 
vascular dysfunction ( 42 , 43 ) and promotes endothelial 
apoptosis in aging ( 21 , 42 ). 

 Previous studies have shown that endothelial activation 
and proinfl ammatory gene expression in aging is promoted, 
at least in part, by an increased NF- k B activation 
( 4 , 10 , 44 , 45 ). Chronic activation of NF- k B and endothelial 
activation is known to predispose arteries to atherosclerosis 
( 46 ). Increased NF- k B binding in aging is likely responsible 

for the increased expression of adhesion inducible nitric ox-
ide synthase found in aged coronary vessels ( 1 ), carotid 
arteries, and aortas ( 10 , 38 ), which is a major source of vas-
cular peroxynitrite production. The fi nding that scavenging 
of mitochondria-derived H 2 O 2  attenuates NF- k B activation 
in aged vessels ( 10 ) suggests a role for mitochondrial oxida-
tive stress in regulation of endothelial NF- k B activity in ag-
ing. These observations suggest that the age-related decline 
in mitochondrial function is, at least in part, responsible for 
vascular infl ammation in aging ( 10 ). Recent studies have 
shown that in aging mice, overexpression of human cata-
lase in the mitochondria (MCAT) delays cardiac pathology 
and attenuates age-related oxidative stress ( 47 ). Future stud-
ies should determine whether infl ammatory gene expres-
sion is also attenuated in the cardiovascular system of 
MCAT mice.   

 Increased Arterial Stiffness in Aging 
 In addition to impaired endothelial function and chronic 

low-grade vascular infl ammation, increased arterial stiffness 
is also a clinically important phenotype associated with vas-
cular aging in humans. As the large conduit arteries stiffen, 
aortic pulse wave velocity and pulse pressure also increase. 
Increased aortic pulse wave velocity results in early return 
of the refl ected pressure wave, which produces signifi cant 
systolic pressure augmentation and a decrease in diastolic 
pressure. Decreased diastolic pressure results in decreased 
coronary artery blood fl ow. The sequelae of increases in sys-
tolic hypertension result in left ventricular remodeling, dia-
stolic dysfunction, and accelerated development of 
atherosclerotic lesions, all of which constitute a potential 
risk factor for increased cardiovascular mortality in the el-
derly patients. Because the aorta and major elastic arteries 
also tend to dilate with age, vascular wall tension signifi -
cantly increases. The resulting alterations in mechanosensi-
tive gene expression are likely to contribute to age-related 
vascular remodeling, oxidative stress, and proatherogenic 
phenotypic changes in the vascular wall. 

 Recent studies called attention to the association of an up-
regulated tissue renin – angiotensin system with intimal thick-
ening and remodeling in large arteries of aged animals and 
humans ( 39 , 48  –  50 ). Angiotensin II signaling, including acti-
vation of calpain-1 and matrix metalloproteinase type II, has 
been linked to an age-associated increase in migration capac-
ity of vascular smooth muscle cells ( 51 ), which is central to 
the arterial remodeling that accompanies advancing age. Ac-
cordingly, there is evidence demonstrating that inhibition of 
ACE activity can reduce arterial stiffness in aged animals 
and elderly humans independent of changes in blood pres-
sure ( 52 , 53 ). In    that regard, it is signifi cant that infusion of 
angiotensin II into young rats increases carotid arterial 
MMP2 activation resulting in carotid media thickening and 
intima infi ltration by vascular smooth muscle cells, mimick-
ing the vascular aging phenotype ( 50 ). Upregulation of 
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renin – angiotensin system may also contribute to chronic low-
grade vascular infl ammation and oxidative stress, enhancing 
the vascular response to injury and rendering the aged vascu-
lar wall susceptible to the development of atherosclerosis. 

 Recent population-based studies suggest that a relation-
ship exists between elevated levels of advanced glycation 
end products and increased arterial stiffness in elderly hu-
mans ( 54 ). These fi ndings are consistent with the results of 
experimental studies, showing that treatment with amin-
oguanidine (an inhibitor of advanced glycation end product 
production) attenuates age-related arterial stiffening in lab-
oratory rodents ( 55 ). Aminoguandinin was effective in pre-
vention of arterial stiffening without altering collagen and 
elastin content in the vascular wall, suggesting that its effects 
are related to a decrease in the advanced glycation end prod-
uct – mediated cross-linking of the extracellular matrix ( 55 ). 
Interventions to lower levels of advanced glycation end prod-
ucts, in combination with inhibitors of renin – angiotensin 
system, warrant further studies as putative novel strategies to 
lower arterial stiffness in elderly humans as well ( 56 ).   

 Role of Endothelial Replicative Senescence in 
Vascular Aging 

 Mitotically competent mammalian cells, including 
endothelial cells, can react to diverse endogenous and exoge-
nous stressors (including oxidative stress, dysfunctional te-
lomeres, DNA damage, paracrine signals) by permanently 
withdrawing from the cell cycle, a response termed  cellular 
senescence  [for an excellent recent review, see reference 
( 57 )]. The relationship between aging and cellular senes-
cence is currently hotly debated. The view has emerged that 
the senescence response may be antagonistically pleiotro-
pic, promoting early-life survival by curtailing the develop-
ment of cancer in mitotic tissues but eventually contributing 
to development of age-related diseases as dysfunctional se-
nescent cells accumulate ( 58 ). Apart from the alterations 
related to the block in cell replication, senescent cells ac-
quire distinct phenotypic changes, termed the  senescence-
associated secretory phenotype  ( 59 ), which were suggested 
to contribute to aging and age-related diseases, by impairing 
the function of neighboring cells via the secretion of para-
crine mediators and altering the extracellular matrix envi-
ronment. Some of these phenotypic changes may be 
potentially important in affecting the regenerative and 
angiogenic capacity of the vascular endothelium and the de-
velopment of atherosclerosis during aging ( 57 ). Studies on 
cultured endothelial cells suggest that oxidative stress is a 
major stimulus for the induction of senescence ( 57 ). Never-
theless, a controversy exists regarding the exact pathophysi-
ological role and the signifi cance of senescence in vascular 
aging. For example, the number of senescent endothelial 
cells appears to be low in aged laboratory rodents ( 10 ). It is 
quite possible that the biological function of senescence 
may differ in cells of short-lived laboratory rodents and 

long-lived primates ( 60 ), despite the many similarities in 
their vascular aging phenotypes. Future studies using a com-
bination of novel markers of senescence and a detailed anal-
ysis of the cellular secretome are needed to better understand 
the role of endothelial senescence in vascular aging.   

 Role of Endothelial Apoptosis and Microvascular 
Rarefaction in Aging 

 Apoptosis is an attractive hypothesis to account for aging 
of specifi c organs ( 61 ) and the genesis of cardiovascular pa-
thologies. Yet, the relationship between vascular aging and 
apoptosis remains unclear. In laboratory rodents, the per-
centage of apoptotic endothelial cells signifi cantly increases 
with age ( 21 , 35 , 42 ). The available data suggest that im-
paired bioavailability of NO, upregulation of TNF a , and/or 
mitochondrial oxidative stress are likely to contribute to this 
phenomenon ( 21 , 42 ). Aging is also associated with en-
hanced endothelial apoptosis in peripheral arteries of non-
human primates ( 62 ). Yet, in humans, no signifi cant 
correlation was found between age and number of apoptotic 
cells in the coronary arteries ( 63 ). 

 It is thought that increased apoptotic cell death contrib-
utes to the age-related microvascular rarefaction that has 
been observed in multiple organ systems, including the 
heart ( 64 ), kidney ( 65 ), and skin ( 66 ). Importantly, as the 
nervous system ages, there is also a rarefaction of the micro-
vasculature in certain regions of the brain, including the 
hippocampus, as well as alterations in the structure of the 
remaining vessels, which may contribute to cognitive dys-
function in the absence of or preceding neurodegeneration 
in the elderly patients ( 67  –  69 ). Another mechanism that 
likely contributes to microvascular rarefaction is an age-
related impairment of angiogenesis ( 70 ). Age-related mi-
crovascular rarefaction contributes to a decline in cerebral 
blood fl ow that reduces metabolic support for neural signal-
ing, especially when neuronal activity is high. In addition, 
aging reduces microvascular plasticity and the ability of the 
cerebral circulation to respond appropriately to changes in 
metabolic demand. The age-related loss of microvascular 
plasticity has signifi cance beyond metabolic support for 
neuronal signaling because neurogenesis in the adult brain 
is regulated coordinately with capillary growth ( 69 ). Recent 
studies demonstrate that growth hormone (GH) supplemen-
tation substantially increases cortical vascular density in 
older rats ( 67 ), which was accompanied by a signifi cant im-
provement of cognitive function ( 68 , 71  –  75 ). Further studies 
are needed to demonstrate that similar benefi cial effects can 
be reached by GH supplementation or by other pharmaco-
logical treatments targeting the microcirculation in elderly 
humans.   

 Impaired Endothelial Progenitor Cell Function in Aging 
 The link between mammalian aging and a decline in the 

replicative function of somatic stem cells is controversial. 
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From recent studies, the general theme emerges that, al-
though overt stem cell failure does not frequently occur in 
self-renewing organs, the cardiovascular repair system in 
particular exhibits age-related functional impairment ( 76 ). 
Importantly, advanced age is known to impair neovascular-
ization, a process known to depend on the function of highly 
proliferative EPCs. Although there are contradicting data 
whether aging affects total EPC number in humans and 
laboratory animals ( 77  –  79 ), previous studies clearly dem-
onstrated that aging impairs the function of circulating 
EPCs ( 78 , 80 ). Recent studies identifi ed a pool of resident 
coronary vascular progenitor cells in human and canine 
hearts, which appear to be able to regenerate large, interme-
diate, and small coronary arteries and capillaries ( 81 ). Ad-
ditional studies are needed to determine how aging affects 
the function of these cell populations. 

 The age-related loss of EPC function is likely mediated 
partly by an imbalance between factors promoting growth, 
migration, and survival and factors enhancing oxidative 
stress and promoting senescence. For example, EPC traf-
fi cking to sites of ischemia is thought to be impaired in ag-
ing due to the failure of aged tissues to activate the 
HIF-1 a -mediated hypoxia response ( 77 ). Chronic low-
grade infl ammation in aging is also likely to contribute to 
impaired EPC function. Vascular aging is associated with 
upregulation of TNF a  ( 1 , 21 , 37 , 42 ), which can induce 
premature senescence in highly proliferative EPCs ( 82 ). 
Angiotensin II was also shown to accelerate EPC senes-
cence ( 83 ), and aging is associated with upregulation of 
tissue renin – angiotensin system ( 49 , 50 ). Inhibition of 
angiotensin II function signifi cantly decreases cardiovascu-
lar mortality in humans, but the role of EPCs in this protec-
tive effect remains to be determined. The insulin-like growth 
factor-1 (IGF-1)/IGF-1R system is thought to exert benefi -
cial effects on the function of progenitor cells in the cardio-
vascular system, including antioxidant effects, upregulation 
of telomerase activity, delaying replicative senescence, and 
increasing the pool of functionally competent progenitor 
cells ( 84 ). The synthesis of IGF-1 is attenuated in aging, 
likely diminishing the ability of IGF-1 to activate cell 
growth and promote the survival of EPCs ( 85 ). 

 Recent advances suggest that an intrinsic timekeeping 
system, located within the hypothalamic suprachiasmatic 
nuclei, plays a fundamental role in synchronizing various 
biological processes within an organism. Studies using mice 
defi cient in components of the circadian system suggest that 
in addition to their role in timing of a wide variety of circa-
dian processes, some of the components of the circadian 
system are involved in modulation of cellular stress re-
sponses and the aging process itself. Recent fi ndings pro-
vide a mechanistic link between dysregulation of the 
circadian system and age-related vascular pathologies. Ac-
cordingly, mutation of  Per2 , a circadian gene, was shown to 
cause Akt-dependent senescence and impair ischemia-
induced revascularization through the alteration of EPC 

function ( 86 ). Bmal1-knockout and Clock mutant mice, 
which also exhibit aberrant circadian rhythms, are also char-
acterized by endothelial dysfunction, increased pathological 
remodeling, and vascular injury ( 87 ). Taken together, these 
fi ndings raise the interesting possibility that an ineluctable 
genetic clock directly modulates EPC function and thereby 
cardiovascular decline during aging. 

 Whether age-related EPC dysfunction is reversible is a 
matter of current debate. In that regard, it is signifi cant that 
regular aerobic exercise was recently reported to increase 
both the number and the migratory activity of EPCs in pre-
viously sedentary older men ( 88 ). Recent studies also 
showed that the presence of sera from young rats in the cul-
ture medium improves the function of EPCs isolated from 
aged rats ( 89 ). These fi ndings raise the possibility that age-
related alterations in endocrine or neuroendocrine factors 
adversely affect the function of EPCs and that normaliza-
tion of these alterations would exert benefi cial effects on the 
regenerative capacity of the cardiovascular system in the el-
derly patients. Indeed, recent studies demonstrated that in 
humans, an increase in IGF-1 in response to GH treatment 
reverses age-related EPC dysfunction ( 90 ). These fi ndings 
are consistent with previous observations that the IGF-1/
IGF-1R pathway preserves telomere length and promotes 
cardiac progenitor cell growth and survival ( 84 ) and that 
injection of IGF-1 in the damaged heart promotes the mi-
gration and homing of cardiac stem cells and facilitates neo-
vascularization ( 91 ). Other    pharmacological strategies to 
interfere with age-related EPC dysfunction may include 
statins and peroxisome proliferator-activated receptor 
gamma agonists, which act, at least in part, via increasing 
bioavailability of NO in EPCs ( 92 ).    

 T herapeutic  S trategies to  D elay  V ascular  
A ging   

 Novel Anti-infl ammatory Treatments 
 As noted previously, vascular aging is characterized by 

low-grade chronic vascular infl ammation. In particular, it is 
well established that vascular aging is associated with dys-
regulation of TNF a  expression ( 1 , 21 , 37 , 42 , 93 ). With its 
implication as the master regulator of other infl ammatory 
cytokines, chemokines, adhesion molecules, and redox reg-
ulation in the vascular wall, TNF a  emerged as a key player 
in the pathophysiology of atherosclerosis. Plasma levels of 
TNF a  ( 41 ) increase in aging and correlate with morbidity 
and mortality in the elderly patients ( 94 ). It is signifi cant that 
chronic anti-TNF a  treatment (eg, etanercept, which binds 
and inactivates TNF a ) exerts multifaceted vasculoprotective 
effects, including a signifi cant reduction in endothelial apop-
tosis, downregulation of NAD(P)H oxidases, and an im-
provement in endothelial function in aged rats ( 42 , 43 , 95 ). 
Whether anti-TNF a  treatments can confer similar vasopro-
tective effects in  “ healthy ”  aging in humans is still unclear. 
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 Inhibition of the endocannabinoid anandamide metabo-
lizing enzyme, a fatty acid amide hydrolase (FAAH), is also 
emerging as a promising novel approach for the treatment 
of various infl ammatory disorders. It    is signifi cant that the 
age-associated decline in cardiac function and increased 
myocardial gene expression of TNF a , inducible nitric oxide 
synthase, and gp91  phox  ; increased nitrotyrosine formation; 
and enhanced apoptotic cell death observed in aged FAAH +/+  
mice are largely attenuated in FAAH  − / −   mice ( 93 ). In addi-
tion, targeting of cannabinoid-2 receptors with selective 
agonists in vitro was shown to disrupt TNF a -induced proin-
fl ammatory signaling pathways in endothelial cells ( 96 ). 
Thus, cannabinoid-2 receptor antagonists may also offer a 
novel therapeutic target to inhibit TNF a -induced cardiovas-
cular infl ammation and to convey vasoprotection in aging. 

 Pharmacological inhibition of the poly(ADP-ribose) 
polymerase (PARP) pathway also represents a novel thera-
peutic target to improve aging-associated cardiovascular 
dysfunction. PARP-1 belongs to the DNA damage surveil-
lance network, and its catalytic activity is likely increased in 
aging due to an increased presence of peroxynitrite-mediated 
DNA strand interruptions ( 97  –  99 ). Upon activation, PARP-1 
transfers 50 – 200 molecules of ADP-ribose to various nu-
clear proteins, including transcription factors and histones. 
As a result, PARP-1 activation has been shown to modulate 
the transcriptional regulation of various infl ammatory genes 
( 100 , 101 ). Important for vascular aging are the fi ndings that 
PARP-1 can regulate NF- k B activation ( 102  –  104 ). PARP-1, 
similar to SIRT1, is an NAD +  utilizing enzyme. Thus, an 
increased PARP-1 activity can negatively affect substrate 
availability for SIRT1 decreasing its activity, which may 
represent an additional mechanism by which PARP-1 over-
activation can promote vascular dysfunction in aging. The 
available evidence suggests that inhibition of PARP-1 acti-
vation may confer cardiovascular protective effects in aging 
( 98 , 99 , 105  –  107 ). Future studies should elucidate the exact 
molecular mechanisms by which PARP-1 inhibition attenu-
ates vascular infl ammation in aging and determine whether 
the aforementioned experimental fi ndings can be recipro-
cated in elderly humans.   

 GH/IGF-1 Supplementation 
 Increasing evidence suggests the existence of a relation-

ship between declining levels of GH and IGF-1 (the synthe-
sis of which is regulated by GH) and the age-related 
functional decline in many organ systems ( 68 , 72 ). In par-
ticular, there is strong evidence that IGF-1 is an important 
protective factor in the cardiovascular system ( Figure 2 ). 
Accordingly, epidemiological studies clearly indicate that 
in humans, GH and IGF-I defi ciency is associated with pre-
mature atherosclerosis and elevated cardiovascular disease 
mortality ( 108 ). Cardiovascular disease risk is even elevated 
among apparently healthy individuals who have serum 
IGF-1 levels in the low normal range ( 109 ).     

 Despite the compelling human data on the cardiovascular 
protective role of IGF-1 during aging, previous studies on 
model organisms created signifi cant controversy regarding 
the role of IGF-1 signaling in determination of life span and 
healthspan. Experimental disruption of IGF-1 signaling in 
 Caenorhabditis elegans  results in a quiescent state of dia-
pause (dauer form), which is associated with extended lon-
gevity ( 110 ). Yet, because of the inherent limitations of 
these model systems (eg, the lack of a cardiovascular sys-
tem) and the interspecies differences in the main cause-of-
death (bacterial invasion in the gut in  C elegans , whereas 
cardiovascular diseases and cancer are prevalent in humans) 
the conclusions drawn from these studies regarding the role 
of IGF-1 in regulation of life span and healthspan cannot be 
generalized. There have been several attempts to reconcile 
the invertebrate data and the human observations using var-
ious mammalian models of lifelong defi ciency of GH and/
or IGF-1 [reviewed in reference ( 111 )]. From these studies, 
the view has emerged that low IGF-1 levels signifi cantly 
decrease cancer risk, and because the main cause of death in 
laboratory rodents is cancer, the net result of lowering IGF-1 
levels is a tendency for increased average life span in many 
[eg, Ames ( 112 ) and Snell dwarf mice ( 111 , 113 )], but not 
all, rodent models of defective IGF-1 signaling [male mice 
heterozygous for the deletion of the IGF-1 receptor ( 114 ), 
genetically GH/IGF-1-defi cient Lewis dwarf rats ( 115 )]. 
Meta-analysis of multiple human studies indicates that there 
is also a signifi cant association between the concentration 

  

 Figure 2.        Proposed scheme for the mechanisms by which insulin-like 
growth factor-1 (IGF-1) confers antioxidative and anti-infl ammatory vasopro-
tective effects in aging. During aging, increased mitochondria-derived reactive 
oxygen species (ROS) production enhances NF- k B activation, which promotes 
infl ammatory cytokine and chemokine expression, microvascular endothelial 
activation, leukocyte adhesion, and extravasation. The ensuing infl ammatory 
response contributes to the age-related decline of organ function (eg, heart fail-
ure and cognitive decline). The model predicts that IGF-1, via upregulating 
antioxidant enzymes and exerting mitochondrial protective effects, signifi -
cantly attenuates mitochondrial oxidative stress in aging, resulting in inhibition 
of endothelial activation and vascular infl ammation. IGF-1 also promotes pro-
genitor cell function, improves NO bioavailability, and limits apoptotic cell 
death, which contributes to its microvascular protective effects. GH = growth 
hormone.    
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of IGF-I and development of premenopausal breast, pros-
tatic, and colon cancer in humans as well ( 116 ). Experimen-
tal fi ndings obtained in laboratory rodents regarding the role 
of IGF-1 on cardiovascular health also accord with the hu-
man observations. For example, mice with hypopituitary 
dwarfi sm (Ames dwarf) have low plasma IGF-1 levels, and 
their aortas exhibit increased endothelial ROS generation, 
mitochondrial oxidative stress, and downregulation of ma-
jor antioxidant enzymes as compared with vessels from 
wild-type mice ( 117 ). The available data support the con-
clusion that supplementation of IGF-1 may exert vasculo-
protective effects in aging ( 118 , 119 ), improving cardiac 
diastolic function ( 120 ), and preventing hippocampal mi-
crovascular rarefaction ( 67 , 68 , 121 ). IGF-1 was also shown 
to protect cardiac myocytes from apoptotic cell death 
( 122  –  124 ) and to promote cardiac stem cell survival and 
proliferation ( 84 , 91 ). Moreover, in cultured coronary arte-
rial endothelial cells, administration of recombinant IGF-1 
signifi cantly attenuates cellular   O2

−  and H 2 O 2  production 
and ROS generation by mitochondria and upregulates ex-
pression of antioxidant enzymes and eNOS ( 117 ). The fi nd-
ing that cardiac overexpression of IGF-1 signifi cantly 
improves cardiomyocyte contractile function in old mice 
( 125 ) supports the view that IGF-1 signaling exerts a pro-
tective role in the cardiovascular system and that loss of 
IGF-1 contributes to the development of the cardiovascular 
aging phenotype. In that regard, it should also be noted that 
the physiological effects of circulating IGF-1 and the local 
IGF-1 system may not be identical. For example, previous 
studies by Delaughter et al. ( 126 ) suggest that long-term 
overexpression of local IGF-1 in the myocardium may have 
unwanted side effects, promoting cardiac hypertrophy. 
Taken together, modulation of the circulating GH/IGF-1 
axis by therapeutic interventions may represent a potential 
novel strategy to delay the onset of age-related decline of 
cardiovascular function. 

 In the aging brain upregulation of proinfl ammatory 
cytokines is known to impair behavioral and neural pro-
cesses and promote neuroinfl ammation. Age-associated mi-
crovascular infl ammation is thought to contribute to this 
increase in neuroinfl ammation, which is likely to be a key 
pathophysiological factor in the development of Alzheim-
er ’ s disease in the elderly patients. In cultured endothelial 
cells, IGF-1 attenuates mitochondrial oxidative stress, up-
regulates key components of cellular antioxidant systems, 
and exerts anti-infl ammatory effects ( 117 ). Recent studies 
also have demonstrated that GH/IGF-1-defi cient dwarf 
mice exhibit a pro-oxidative vascular phenotype that resem-
bles accelerated vascular aging ( 117 ). However, studies on 
the links between GH/IGF-1, cerebrovascular oxidative 
stress, and neuroinfl ammation in aging have received little 
attention. Future studies should determine whether treat-
ment with GH/IGF-1 or GH secretagogues, in addition to 
the prevention of microvascular rarefaction and exerting 
benefi cial neuronal and cardiac effects ( 67 , 71 , 127  –  130 ), 

protects the cerebrovasculature from the deleterious effects 
of oxidative stress and infl ammation associated with aging.   

 Vasoprotection by Regular Exercise in Aging 
 Habitual physical activity is proving to strongly benefi t 

health and longevity in humans, including a reduced risk of 
cardiovascular disease, likely due, at least in part, to its di-
rect vasoprotective effects. For example, in the Harvard 
Alumni Health Study, men who participated in some form of 
regular moderate physical activity had about one-third lower 
mortality risk and a signifi cantly decreased incidence of 
stroke ( 131 ). The mechanisms of vasoprotection conferred 
by exercise are likely complex but includes a signifi cant im-
provement of endothelial function, possibly by augmenting 
NO bioavailability and attenuating oxidative stress ( 18 , 132  –
  136 ). The mechanisms by which exercise exerts its benefi -
cial endothelial effects include temporary increases in shear 
stress, which are known to modulate gene expression in 
endothelial cells. Other vasoprotective actions of regular 
aerobic exercise include benefi cial effects of increased 
systemic metabolism, for example, increased insulin sensi-
tivity, decreased fat content, and attenuation of hyperlipi-
demia. Furthermore, exercise confers anti-infl ammatory 
actions, such as suppression of TNF a , and thereby may of-
fer protection against TNF a -induced vascular impairment. 
Regular exercise also promotes mitochondrial health, in-
duces mitochondrial biogenesis, and upregulates mitochon-
drial antioxidant systems, which also may contribute to its 
vasoprotective properties during aging. Finally, there is evi-
dence that exercise exerts a positive infl uence on the number 
and/or function of EPCs.   

 Caloric Restriction 
 Caloric restriction (CR) is a dietary regimen, which im-

proves health and slows the aging process in evolutionarily 
distant organisms by limiting dietary energy intake ( 137  –  140 ). 
There is increasing epidemiological and experimental 
evidence that CR confers vasoprotection in aging and in 
pathological conditions associated with accelerated vascu-
lar aging [recently reviewed elsewhere ( 141 );  Figure 3 ]. The 
mechanisms underlying the benefi cial cardiovascular ef-
fects of CR are undoubtedly multifaceted and may include 
improvement of systemic risk factors for atherosclerosis, 
such as decreases in serum cholesterol, triglycerides, fast-
ing glucose and fasting insulin levels, and reduction of sys-
tolic and diastolic blood pressure as well as direct antiaging 
effects exerted on the vasculature per se ( 141 ). In this over-
view, we will focus on cell-autonomous effects (eg, upregu-
lation of NO, changes in mitochondrial function), changes 
in paracrine regulation (altered cytokine microenvironment, 
low-grade infl ammation), and the effects mediated by neu-
roendocrine factors.     

 The molecular mechanism by which CR promotes a 
youthful endothelial phenotype includes upregulation and 
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activation of eNOS, which results in increased bioavailabil-
ity of NO and improves endothelial function in aged ani-
mals ( 141  –  144 ) and perhaps humans ( 145  –  148 ). Because 
endothelium-derived NO plays a fundamental role in regu-
lation of tissue metabolism [eg, by inducing mitochondrial 
biogenesis ( 143 )], CR-induced improvement of endothelial 
health and the resulting increased NO bioavailability may 
be directly involved in the extension of life span in mam-
mals. This idea is supported by the fi ndings that eNOS  − / −  -
defi cient mice exhibit an accelerated aging phenotype 
associated with premature cardiac failure, mitochondrial 
dysfunction, and increased mortality ( 20 , 149 ). Finally, be-
cause mitochondriopathy in the vasculature per se repre-
sents an early manifestation of endothelial dysfunction 
( 150 ), improved NO bioavailability by CR may prevent vas-
cular energetic dysfunction ( 151 ), which is likely to contrib-
ute to vascular functional alterations in aging ( 152 ). 

 Attenuation of the age-associated increase in oxidative 
stress also is thought to contribute to the antiaging action of 
CR ( 153 , 154 ). Indeed, recent data clearly demonstrate that 
CR effectively decreases vascular production of ROS in 
aged laboratory rodents ( 141 ). This fi nding is consistent 
with the observations that endothelial cells obtained from 
CR mice exhibit decreased ROS production compared with 
those obtained from mice fed ad libitum ( 155 ). Previous 
studies also demonstrated that CR signifi cantly attenuates 
oxidative DNA damage ( 156 ) and normalizes markers of 
lipid peroxidation in aortas of aged rats ( 157 ). 

 As noted previously, vascular aging is characterized by 
chronic low-grade infl ammation. In this regard, it is sig-
nifi cant that CR appears to attenuate vascular NF- k B in-
duction and endothelial activation in aged rats ( 44 , 158 ). 
CR can also disrupt other proinfl ammatory signaling path-
ways as well, including JNK and P38 activation and AP-1 

DNA-binding activity ( 157 ). It is signifi cant that even 
short-term CR may confer anti-infl ammatory effects ( 159 ), 
suggesting that some form of adult-onset CR may play a 
role in the therapeutic paradigm for cardiovascular dis-
eases. The observation that CR in humans decreases circu-
lating CRP and TNF a  ( 145 ) provides preliminary evidence 
that CR may also reduce chronic low-grade infl ammation 
in humans. 

 A key role of circulating factors in phenotypic responses 
due to CR was fi rst indicated by the observations that in 
vitro treatment of cultured hepatocytes with sera from CR 
animals mimics phenotypic effects observed in vivo during 
CR ( 160 ). Neuroendocrine mediators present in the circula-
tion reach endothelial cells and elicit a variety of responses, 
and we have good reason to believe that these circulating 
factors confer vasoprotective effects during CR. In support 
of this point of view, recent data show that sera of CR ani-
mals convey signifi cant anti-infl ammatory effects in cul-
tured endothelial cells, including inhibition of TNF a -induced 
NF- k B activation, which mimic the vascular phenotypic 
changes induced in animals by CR in vivo ( 28 ). The actual 
circulating factor(s) by which the vasoprotective effects of 
CR are mediated are presently unknown. One potential can-
didate is adiponectin, whose serum level is known to be in-
creased by CR, both in laboratory animals ( 161  –  163 ) and in 
humans ( 147 , 164 ). Recent evidence suggests that CR pro-
motes skeletal muscle revascularization in response to isch-
emia via an AMPK-eNOS-dependent mechanism that is 
mediated by adiponectin ( 144 ). Adiponectin in vitro also 
can inhibit NF- k B activation ( 165 ) and induce mitochon-
drial biogenesis ( 166 ), mimicking the effects of CR. Thus, 
future studies are needed to further elucidate the role 
of adiponectin in the antiaging vascular effects of CR in 
aging. 

    

 Figure 3.        Proposed scheme for the mechanisms by which caloric restriction and the caloric restriction mimetic resveratrol confers vasoprotection. In aging, calo-
rie restriction and resveratrol induce/activate SIRT1 and upregulate eNOS in the endothelial cells promoting mitochondrial biogenesis, restoring cellular energetics, 
attenuating mitochondrial oxidative stress, improving endothelial function, attenuating apoptotic cell death, and inhibiting NF- k B. Caloric restriction and/or resvera-
trol may also activate Nrf2 (NF-E2-related factor 2). Nrf2 is translocated to the nucleus and binds to the antioxidant response element, which upregulates antioxidant 
enzymes, increases glutathione synthesis (upregulating  g -glutamylcysteine synthetase), and induces the NQO1-dependent transplasma membrane – associated redox 
system. The model predicts that there is an interaction between SIRT1 and activation of Nrf2-dependent ROS detoxifi cation pathways.    
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 There is increasing evidence that the evolutionarily highly 
conserved NAD + -dependent protein deacetylase SIRT1 
contributes to the protective effects of CR ( 167 , 168 ). SIRT1 
is abundantly expressed in the cardiovascular system 
( 142 , 161 , 169 ) and is induced by CR ( 161 ). It is signifi cant 
that sera from both CR animals and humans induce SIRT1 in 
cultured cells ( 168 , 170 ), including cultured human coronary 
arterial endothelial cells ( 28 ), suggesting that SIRT1 activa-
tion contributes to the vasoprotective effects conveyed by 
circulating factors. This concept is further supported by the 
results of recent studies indicating that pharmacological 
SIRT1 activation or SIRT1 overexpression confers signifi -
cant antioxidative and anti-infl ammatory effects in cultured 
endothelial cells ( 169 ). Moreover, endothelium-specifi c over-
expression of SIRT1 effectively attenuates development of 
atherosclerosis in ApoE-defi cient mice ( 171 ). 

 More recent studies provided convincing evidence that 
genes regulated by Nrf2 (NF-E2-related factor 2) are in-
volved in the regulation of the aging process in model or-
ganisms ( 172 ) and may contribute to the protective effects 
of CR in mammals ( 173 ). Nrf2    is a transcription factor that 
binds to the antioxidant response element of target genes 
and increases the transcription of a variety of proteins in-
volved in oxidative stress resistance and detoxifi cation of 
free radicals (such as glutathione S-transferase, NQO1, and 
the antioxidant enzymes glutathione reductase, glutathione 
peroxidase, and catalase). The aforementioned Nrf2-depen-
dent ROS detoxifi cation systems are expressed and func-
tional in the vasculature. Previous studies demonstrate that 
atheroprotective laminar fl ow regulates antioxidant response 
element-mediated genes through an Nrf2-dependent mech-
anism ( 174  –  177 ). Induction of Nrf2 was also shown to sup-
press endothelial activation ( 176 ). In aged rats, there is a 
signifi cant decline in transcriptional activity of Nrf2, which 
causes age-related loss of glutathione synthesis ( 178 ), pro-
moting cellular oxidative stress. Our recent studies demon-
strate that CR is associated with induction of Nrf2-regulated 
genes, which contributes to the anticarcinogenic effects of 
CR ( 173 ). Thus, further studies are warranted to understand 
how aging and CR affect Nrf2 transcriptional activity in the 
vascular endothelial and smooth muscle cells.   

 Vasoprotection by Resveratrol 
 Resveratrol (3,5,4 ′ -trihydroxystilbene), a diet-derived 

polyphenol, is a prototype of a new class of drugs referred 
to as CR mimetics ( 179 ), which are being developed to 
reverse organ pathologies associated with aging and meta-
bolic diseases. Resveratrol was reported to mimic many 
aspects of CR ( 35 , 180  –  182 ), and recent studies have pro-
vided evidence that resveratrol treatment exerts vasopro-
tective effects in aged mice ( 35 ) and rats ( 10 ), attenuating 
oxidative stress, improving endothelial function, inhibiting 
vascular infl ammation, and decreasing the rate of endothe-
lial apoptosis ( Figure 3 ). In vitro studies in endothelial 

cells suggest that the molecular mechanisms of resvera-
trol-mediated vasoprotection involve a direct inhibition of 
NF- k B, upregulation of eNOS and antioxidant enzymes, in-
duction of mitochondrial biogenesis, and prevention of 
oxidative stress – induced apoptosis ( 169 , 183  –  185 ). Epide-
miological studies indicate that Mediterranean diets are 
rich in resveratrol and are associated with signifi cantly re-
duced risk of cardiovascular disease in humans ( 186 , 187 ). 
These studies raise the possibility that resveratrol supple-
mentation may confer signifi cant vasoprotection in elderly 
humans. 

 Pathways that regulate mitochondrial biogenesis have re-
cently emerged as potential therapeutic targets for the ame-
lioration of endothelial and vascular dysfunction observed 
in metabolic diseases ( 188 ). Our recent studies showed that 
resveratrol induces mitochondrial biogenesis both in cul-
tured endothelial cells and in endothelia of mice with 
accelerated vascular aging ( 183 ). Formation of new mito-
chondria was associated with activation of SIRT1, upregu-
lation of eNOS, and induction of specifi c mitochondrial 
biogenesis factors ( 183 ). Induction of mitochondrial bio-
genesis by resveratrol also signifi cantly attenuates both 
basal and stimulated mitochondrial   O2

−  generation in en-
dothelial cells ( 169 ). Thus, further studies are evidently 
needed to determine whether induction of mitochondrial 
biogenesis contributes to the vasoprotective action of CR 
mimetics in the elderly patients.    

 F uture  D irections  
 Although signifi cant progress has been achieved in de-

scribing age-related alterations in vascular function and 
phenotype, the specifi c roles for cell-autonomous (eg, mi-
tochondrial alterations) and noncell-autonomous mecha-
nisms (eg, hormonal effects) need to be elucidated further. 
There is reasonable consensus that oxidative stress has 
a key role in the pathogenesis of atherosclerosis and 
redox-sensitive molecular pathways (eg, NF- k B-mediated 
infl ammatory processes), and these pathways are under in-
tense investigation as the common denominators of the 
pathophysiology of several cardiovascular risk factors. In 
this view, the concept that evolutionarily conserved path-
ways (such as SIRT, Nrf2/antioxidant response element) 
control the aging process in mammals, regulating ROS pro-
duction, and determining cellular and organismal sensitiv-
ity to oxidative stress raises the question of whether 
pharmacological or nutritional modulation of these path-
ways may be effective in delaying the onset of age-depen-
dent vascular disease. Thus, research efforts should persist 
in these directions to fully elucidate the specifi c relation-
ship between age-related alterations in ROS production 
and the pathways involved in cellular oxidative stress resis-
tance and their interaction with other risk factors, which 
lead to the increased cardiovascular morbidity and mortal-
ity in the elderly patients.   
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