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Major depressive disorder (MDD) is 
a common and costly disorder which is 
usually associated with severe and per-
sistent symptoms leading to important 
social role impairment and increased 
mortality (1,2). It is one of the most im-
portant causes of disability worldwide 
(3). The high rate of inadequate treat-
ment of the disorder remains a serious 
concern (1). 

This review is aimed at summarizing 
the solid evidence on the etiology and 
pathophysiology of MDD that is likely 
relevant for clinical psychiatry. Neuro-
biological findings are regarded as solid 
when they are consistent and conver-
gent, i.e., they have been confirmed by 
several studies using the same method 
and fit into results from studies using 
different methodological approaches.

Genes and psychosocial stress

Family, twin, and adoption studies 
provide very solid and consistent evi-
dence that MDD is a familial disorder 
and that this familiality is mostly or 
entirely due to genetic factors (4). This 
important finding suggests that parental 
social behavior and other familial en-
vironmental risk factors are not as im-
portant in the pathogenesis of MDD as 
previously assumed and should not be 
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the major focus of the treatment of the 
disorder. 

The above-mentioned studies consis-
tently show that the influence of genetic 
factors is around 30-40% (4). Non-ge-
netic factors, explaining the remaining 
60-70% of the variance in susceptibility 
to MDD, are individual-specific environ-
mental effects (including measurement 
error effects and gene-environment inter-
actions). These effects are mostly adverse 
events in childhood and ongoing or re-
cent stress due to interpersonal adversi-
ties, including childhood sexual abuse, 
other lifetime trauma, low social support, 
marital problems, and divorce (5,6).

These results suggest that there is 
a huge potential in the prevention of 
MDD by means of psychosocial in-
terventions (e.g., in schools, at work-
place). In addition, these results mirror 
the clinical practice of empirically vali-
dated psychotherapies to treat depres-
sion (7-9), including interpersonal, psy-
chodynamic and cognitive behavioral 
psychotherapies and cognitive behav-
ioural analysis system of psychotherapy, 
which all focus directly or indirectly on 
interpersonal difficulties and skills. This 
does not exclude the fact that unidenti-
fied non-genetic, non-psychosocial risk 
factors may also play important roles 
in some patients (e.g., climatic change, 
medical conditions). 

Stress sensitivity in depression is 
partly gender-specific. While men and 
women are, in general, equally sensitive 
to the depressogenic effects of stressful 
life events, their responses vary depend-
ing upon the type of stressor. Specifically, 
men are more likely to have depressive 
episodes following divorce, separation, 
and work difficulties, whereas women are 
more sensitive to events in their proximal 
social network, such as difficulty getting 
along with an individual, serious illness, 
or death (10). These findings point to the 
importance of gender-sensitive psycho-
social approaches in the prevention and 
treatment of MDD.

In contrast to the very solid evidence 
from epidemiological studies on broad 
risk factor domains, there is no solid 
evidence for specific genes and specific 
gene-by-environment interactions in the 
pathogenesis of MDD. Genome-wide 
association studies have indicated that 
many genes with small effects are in-
volved in complex diseases, increasing 
the difficulty in identifying such genes 
(11). While there has been progress in 
the search for risk genes for several com-
plex diseases despite this methodologi-
cal problem (12), psychiatric conditions 
have turned out to be very resistant to 
robust gene identification. For example, 
based on a community-based prospec-
tive study, it has been proposed that a 
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specific genetic variation in the promot-
er region of the serotonin transporter (a 
target of antidepressant drugs) interacts 
with stressful life events in the patho-
genesis of depression (13). Although 
there is high clinical and neurobiological 
plausibility of this interaction, a recent 
meta-analysis yielded no evidence that 
the serotonin transporter gene alone or 
in interaction with psychological stress 
was associated with the risk of depres-
sion (14). 

The limited success of genetic studies 
of depression has been related to use of 
current classification schemas includ-
ing ICD-10 and DSM-IV. These diag-
nostic manuals are based on clusters of 
symptoms and characteristics of clinical 
course that do not necessarily describe 
homogenous disorders but instead re-
flect common final pathways of differ-
ent pathophysiolgical processes (15,16). 
The clinician should be aware that fam-
ily history will continue to be the most 
solid source of information to estimate 
the genetic risk of MDD.

Stress hormones and 
cytokines

Corticotropin-releasing hormone (CRH)  
is released from the hypothalamus in 
response to the perception of psycho-
logical stress by cortical brain regions. 
This hormone induces the secretion of 
pituitary corticotropin, which stimulates 
the adrenal gland to release cortisol into 
the plasma. The physiologic response to 
stress is partly gender-specific: women 
show generally greater stress responsive-
ness than men, which is consistent with 
the greater incidence of major depression 
in women (17). Moreover, men show 
greater cortisol responses to achieve-
ment challenges, whereas women show 
greater cortisol responses to social rejec-
tion challenges (18). 

 Although MDD is considered as a 
stress disorder, most subjects treated for 
MDD have no evidence of dysfunctions 
of the hypothalamic-pituitary-adrenal 
axis (HPA) (19). However, some sub-
jects with MDD do show abnormalities 
of that axis and of the extrahypotha-
lamic CRH system (20). Altered stress 

hormone secretion appeared to be most 
prominent in depressed subjects with 
a history of childhood trauma (21). El-
evated cortisol may act as a mediator be-
tween major depression and its physical 
long-term consequences such as coro-
nary heart disease, type II diabetes, and 
osteoporosis (22). 

The importance of HPA axis dysfunc-
tion for the efficacy of antidepressants is 
a matter of debate (23). This axis is regu-
lated through a dual system of mineralo-
corticoid (MR) and glucocorticoid (GR) 
receptors. Decreased limbic GR receptor 
function (24,25) and increased function-
al activity of the MR system (26) suggest 
an imbalance in the MR/GR ratio in 
stress-related conditions such as MDD. 
Epigenetic regulation of the glucocorti-
coid receptors has been associated with 
childhood abuse (27). Such environ-
mental programming of gene expression 
may represent one possible mechanism 
that links early life stress to abnormal 
HPA axis function and increased risk of 
MDD in adults. 

While the CRH stimulation test (dex/
CRH test) (28) is a sensitive measure of 
the HPA axis dysfunction in depression, 
the specificity of this test for MDD is 
low. However, non-suppression in the 
dex/CRH test has consistently predicted 
increased risk for depressive relapse dur-
ing clinical remission (23). Additionally, 
the measurement of waking salivary cor-
tisol concentration has been shown to be 
a simple and sensitive test for HPA axis 
hyperactivity in depression (29). Hyper-
cortisolemia is almost exclusively found 
in subjects with severe and psychotic 
depression, in whom glucocorticoid an-
tagonists may have some therapeutic ef-
fect (30).

There is convergent evidence for 
CRH to play a major role in the patho-
genesis of certain types of depression. 
Levels of CRH in the cerebrospinal fluid 
are elevated in some depressed subjects 
(31). Post-mortem studies reported an 
increased number of CRH secreting 
neurons in limbic brain regions in de-
pression (32), likely reflecting a com-
pensatory response to increased CRH 
concentrations (33). In addition, CRH 
produces a number of physiological and 
behavioral alterations that resemble the 

symptoms of major depression, includ-
ing decreased appetite, disrupted sleep, 
decreased libido, and psychomotor al-
terations (34). There is also preliminary 
evidence that CRH1 receptor antago-
nists reduce symptoms of depression 
and anxiety (35).

“Sickness behavior” as a result of an 
activation of the inflammatory response 
system shares many symptoms with de-
pression, including fatigue, anhedonia, 
psychomotor retardation, and cogni-
tive impairment. Sickness is mediated 
by pro-inflammatory cytokines such as 
interleukin-1α, tumor necrosis factor-α, 
and interleukin-6, which activate the 
HPA axis and impair the central sero-
tonin system (36). The prevalence of de-
pression as an unwanted effect of recom-
binant interferons is around 30% (37). 
In animals, blocking pro-inflammatory 
cytokine-mediated signaling produces 
antidepressant-like effects (38). Clinical 
data suggest that cytokines may play a 
role in the pathophysiology of a sub-
group of depressed subjects, particularly 
those with comorbid physical conditions 
(36). The antidepressant enhancing ef-
fect of acetylsalicylic acid (39) points to 
the possible clinical relevance of psy-
choneuroimmunology in clinical depres-
sion research.

Taken together, the laboratory tests 
with the highest potential to be clini-
cally useful in the care of depressed in-
dividuals are based on abnormalities of 
the neuroendocrine and neuroimmune 
systems. Despite the large amount of 
basic science data suggesting that the 
HPA axis is importantly involved in the 
pathophysiology of depression, the ef-
fect of pharmacological modulation of 
this neuroendocrine system as antide-
pressant therapy has been disappoint-
ing. The link between childhood trauma 
and a permanently altered physiologic 
stress system points to the use of specific 
psychotherapies in the treatment of de-
pressed patients with a history of early 
life trauma (40).

The mediating role  
of monoamines

Most of the serotonergic, noradren-
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ergic and dopaminergic neurons are 
located in midbrain and brainstem nu-
clei and project to large areas of the en-
tire brain. This anatomy suggests that 
monoaminergic systems are involved in 
the regulation of a broad range of brain 
functions, including mood, attention, 
reward processing, sleep, appetite, and 
cognition. Almost every compound that 
inhibits monoamine reuptake, leading 
to an increased concentration of mono-
amines in the synaptic cleft, has been 
proven to be a clinically effective anti-
depressant (19). Inhibiting the enzyme 
monoamine oxidase, which induces an 
increased availability of monoamines 
in presynaptic neurons, also has antide-
pressant effects. These observations led 
to the pharmacologically most relevant 
theory of depression, referred to as the 
monoamine-deficiency hypothesis. 

The monoamine-deficiency theory 
posits that the underlying pathophysio-
logical basis of depression is a depletion 
of the neurotransmitters serotonin, nor-
epinephrine or dopamine in the central 
nervous system. 

Serotonin is the most extensively stud-
ied neurotransmitter in depression. The 
most direct evidence for an abnormally 
reduced function of central serotonergic 
system comes from studies using trypto-
phan depletion, which reduces central 
serotonin synthesis. Such a reduction 
leads to the development of depressive 
symptoms in subjects at increased risk 
of depression (subjects with MDD in full 
remission, healthy subjects with a family 
history of depression) (41,42), possibly 
mediated by increased brain metabolism 
in the ventromedial prefrontal cortex 
and subcortical brain regions (42). Ex-
perimentally reduced central serotonin 
has been associated with mood congru-
ent memory bias, altered reward-related 
behaviors, and disruption of inhibitory 
affective processing (16), all of which 
add to the clinical plausibility of the sero-
tonin deficiency hypothesis. There is also 
evidence for abnormalities of serotonin 
receptors in depression, with the most 
solid evidence pointing to the serotonin-
1A receptor, which regulates serotonin 
function. Decreased availability of this 
receptor has been found in multiple 
brain areas of patients with MDD (43), 

although this abnormality is not highly 
specific for MDD and has been found 
in patients with panic disorder (44) and 
temporal lobe epilepsy (45), possibly con-
tributing to the considerable comorbidity 
among these conditions. However, there 
is no explanation for the mechanism of 
serotonin loss in depressed patients, and 
studies of serotonin metabolites in plas-
ma, urine and cerebrospinal fluid, as well 
as post-mortem research on the seroton-
ergic system in depression, have yielded 
inconsistent results. There is preliminary 
evidence that an increased availability 
of the brain monoamine oxidase, which 
metabolizes serotonin, may cause sero-
tonin deficiency (46). In addition, loss-
of-function mutations in the gene coding 
for the brain-specific enzyme tryptophan 
hydroxylase-2 may explain the loss of se-
rotonin production as a rare risk factor 
for depression (47).

Dysfunction of the central noradren-
ergic system has been hypothesized 
to play a role in the pathophysiology 
of MDD, based upon evidence of de-
creased norepinephrine metabolism, in-
creased activity of tyrosine hydroxylase, 
and decreased density of norepineph-
rine transporter in the locus coeruleus 
in depressed patients (48). In addition, 
decreased neuronal counts in the locus 
coeruleus, increased alpha-2 adrenergic 
receptor density, and decreased alpha-1 
adrenergic receptor density have been 
found in the brains of depressed suicide 
victims post-mortem (49). Since there is 
no method to selectively deplete central 
norepinephrine and no imaging tool to 
study the central norepinephrine system, 
solid evidence for abnormalities of this 
system in depression is lacking. 

While the classical theories of the 
neurobiology of depression mainly fo-
cused on serotonin and norepinephrine, 
there is increasing interest in the role 
of dopamine (50). Dopamine reuptake 
inhibitors (e.g., nomifensine) and dop-
amine receptor agonists (e.g., pramipex-
ole) had antidepressant effects in place-
bo-controlled studies of MDD (51). In 
the cerebrospinal fluid and jugular vein 
plasma, levels of dopamine metabolites 
were consistently reduced in depression, 
suggesting decreased dopamine turnover 
(52). Striatal dopamine transporter bind-

ing and dopamine uptake were reduced 
in MDD, consistent with a reduction 
in dopamine neurotransmission (53). 
Degeneration of dopamine projections 
to the striatum in Parkinson’s disease 
was associated with a major depressive 
syndrome in about one half of cases, 
which usually preceded the appearance 
of motor signs (54). Experimentally re-
duced dopaminergic transmission into 
the accumbens has been associated with 
anhedonic symptoms and performance 
deficits on a reward processing task in 
subjects at increased risk of depression 
(55,56). These findings are consistent 
with the clinical observation that de-
pressed patients have a blunted reaction 
to positive reinforcers and an abnormal 
response to negative feedback (57). 

Almost all established antidepressants 
target the monoamine systems (58). How-
ever, full and partial resistance to these 
drugs and their delayed onset of action 
suggest that dysfunctions of monoamin-
ergic neurotransmitter systems found in 
MDD represent the downstream effects 
of other, more primary abnormalities. 
Despite this limitation, the monoamine-
deficiency hypothesis has proved to be 
the most clinically relevant neurobiologi-
cal theory of depression. New findings 
on the role of dopamine in depression 
emphasize the scientific potential of this 
theory, and promising reports of antide-
pressant effects of drugs that modulate the 
dopaminergic system (e.g., pramipexole, 
modafinil) in difficult-to-treat depression 
underline its clinical relevance (51,59).

The neuroimaging  
of depression

Although many historical attempts 
to localize mental functions have failed, 
they have considerably contributed to a 
modern neuroscientific understanding of 
mental disorders (60). The development 
of neuroimaging techniques has opened 
up the potential to investigate structural 
and functional abnormalities in living 
depressed patients. Unfortunately, the 
diversity of imaging techniques used, the 
relatively small and heterogeneous study 
samples studied, and the limited over-
lap of results across imaging paradigms 
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(61) make it difficult to reliably identify 
neuronal regions or networks with con-
sistently abnormal structure or function 
in MDD. 

Functional imaging studies have pro-
vided the most limited overlap of findings. 
This may be due to methodological limi-
tations and/or the complexity of neurocir-
cuitry involved in MDD. A recent meta-
analytic study found the best evidence for 
abnormal brain activity in MDD in lateral 
frontal and temporal cortices, insula, and 
cerebellum. In these brain regions activity 
was decreased at rest, they showed a rela-
tive lack of activation during induction of 
negative emotions, and an increase in ac-
tivity following treatment with serotonin 
reuptake inhibitors. Opposite changes 
may exist in ventromedial frontal areas, 
striatum and possibly other subcortical 
brain regions (61). 

More solid evidence has been pro-
vided by structural imaging and post-
mortem studies. A recent meta-analytic 
study on brain volume abnormalities in 
MDD revealed relatively large volume 
reductions in the ventromedial prefron-
tal cortex, particularly in the left anterior 
cingulate and in the orbitofrontal cor-
tex. Moderate volume reductions were 
found in the lateral prefrontal cortex, 
hippocampus and striatum (62). Post-
mortem studies consistently identified 
a reduction in glia cell density in dorsal, 
orbital and subgenual prefrontal corti-
ces, as well as in the amygdala (63,64).

Overall, functional, structural and 
post-mortem studies suggest that struc-
tural and functional abnormalities in the 
left subgenual cingulate cortex are the 
most solid neuroanatomical finding in 
MDD. Volume reduction in this region 
was found early in illness and in young 
adults at high familial risk for MDD (65), 
suggesting a primary neurobiological ab-
normality associated with the etiology 
of the illness. Humans with lesions that 
include the subgenual prefrontal cortex 
showed abnormal autonomic responses 
to social stimuli (66), and rats with left-
sided lesions in this region had increased 
sympathetic arousal and corticosterone 
responses to restraint stress (67). Most 
importantly, chronic deep brain stimu-
lation to reduce the potentially elevated 
activity in the subgenual cingulated cor-

tex produced clinical benefits in patients 
with treatment-resistant depression (68).

In summary, despite the considerable 
heterogeneity of findings from neuroim-
aging studies, there is convergent evi-
dence for the presence of abnormalities 
in the subgenual prefrontal cortex in 
some patients with MDD. Neuroana-
tomical research in depression is of great 
clinical interest, since novel antidepres-
sant treatments such as deep brain stim-
ulation can target specific brain regions. 
In addition, there are promising leads 
for neuroimaging findings to predict the 
likelihood of responses to specific treat-
ments (69).

The neurotrophic hypothesis 
of depression

Risk factors for depressive episodes 
change during the course of the illness. 
The first depressive episode is usually 
“reactive”, i.e., triggered by important 
psychosocial stressors, while subsequent 
episodes become increasingly “endog-
enous”, i.e., triggered by minor stressors 
or occurring spontaneously (70). There 
is consistent evidence that the volume 
loss of the hippocampus and other brain 
regions is related to the duration of de-
pression (71), suggesting that untreated 
depression leads to hippocampal vol-
ume loss, possibly resulting in increased 
stress sensitivity (72) and increased risk 
of recurrence (73). 

Glucocorticoid neurotoxicity, gluta-
matergic toxicity, decreased neurotrophic 
factors, and decreased neurogenesis 
have been proposed as possible mecha-
nisms explaining brain volume loss in 
depression. There is no solid evidence 
on any of these mechanisms, since there 
are no imaging tools to directly examine 
neurotoxic and neurotrophic processes 
in vivo. Brain derived neurotrophic fac-
tor (BDNF) has attracted considerable 
interest. Specifically, preclinical studies 
have shown correlations between stress-
induced depressive-like behaviors and 
decreases in hippocampal BDNF levels, 
as well as enhanced expression of BDNF 
following antidepressant treatment (74). 
The clinician should be aware of the 
potentially brain-damaging effect of de-

pression and treat depressed patients as 
early and effectively as possible.

Altered glutamatergic and 
GABAergic neurotransmission

A series of magnetic resonance spec-
troscopy studies consistently showed 
reductions in total gamma-aminobutyric 
acid (GABA) concentrations in the pre-
frontal and occipital cortex in acute de-
pression (75). This may reflect acute stress 
effects, since psychological stress seems 
to induce presynaptic down-regulation 
of prefrontal GABAergic neurotransmis-
sion (76). Alternatively, low total GABA 
concentration may reflect reduction in the 
density and size of GABAergic interneu-
rons (77). In addition, chronic stress may 
reduce GABA-A receptor function, possi-
bly through changes in neuroactive steroid 
synthesis (78). Contradictory evidence of 
the GABA hypothesis of depression in-
cludes the lack of effects of GABAergic 
drugs on core depressive symptoms (79) 
and normal prefrontal GABA concentra-
tion in subjects with remitted MDD (80).

Several lines of evidence suggest a dys-
function of the glutamate neurotransmit-
ter system in MDD: a single dose of the 
glutamate N-methyl-D-aspartate (NMDA) 
receptor antagonist ketamine produced 
rapid and large antidepressant effects in 
patients with treatment-resistant MDD 
(81); inhibitors of glutamate release (e.g., 
lamotrigine, riluzole) demonstrated an-
tidepressant properties (82); abnormal 
glutamate levels were found in depressed 
subjects as determined by magnetic res-
onance spectroscopy (75); and there is 
evidence for abnormal NMDA signaling 
in post-mortem tissue preparations (83). 
Since glutamate is the major excitatory 
neurotransmitter involved in almost ev-
ery brain activity, the characterization of 
the specific role of glutamate in depres-
sion deserves further investigation (e.g., 
there are promising leads that the me-
tabotropic glutamate receptor 5 is spe-
cifically involved in MDD (84)).

Circadian rhythms

Sleep disturbances and daytime fa-
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tigue are diagnostic criteria for MDD, 
suggesting impaired sleep-wake regula-
tion in depressed patients. In addition, 
some depressive symptoms may show 
diurnal variations (mood, psychomo-
tor activity, accessibility of memories of 
positive and negative experiences), and 
a subgroup of patients with MDD may 
have a circadian rhythm disorder (85). 
In healthy young subjects, moderate 
changes in the timing of the sleep-wake 
cycle had specific effects on subsequent 
mood (86). In depressed patients, ma-
nipulations of circadian rhythms (light 
therapy, sleep deprivation, phase ad-
vance treatment) can have antidepres-
sant efficacy.

Based on these findings, circadian 
abnormalities have been hypothesized 
to be etiologically associated with MDD 
(16). The association between phase ad-
vance of the sleep-wake cycle and phase 
advances in nocturnal cortisol secretion; 
shortened REM latency in some subjects 
with MDD; and the effect of antidepres-
sants on circadian rhythms of behavior, 
physiology, and endocrinology contrib-
ute to the biological foundation of this 
hypothesis (85,87,88). Despite of the 
many promising findings, the molecular 
and genetic underpinnings of this hy-
pothesis are largely unknown. It remains 
to be determined whether antidepres-

sant effects of new therapeutics such as 
agomelatine directly relate to normaliza-
tion of circadian rhythms (87).

ConclusionS

The main strengths and weaknesses 
of the various neurobiological hypoth-
eses of depression are summarized in 
Table 1. The many theories of depres-
sion and the relatively low response rate 
of all available antidepressant treatments 
clearly argue against a “unified hypoth-
esis of depression” and suggest that de-
pression is a clinically and etiologically 
heterogeneous disorder. 

This encourages research on predic-
tors of the response to therapeutic in-
terventions using biomarkers such as 
neuroimaging and neuroendocrine tests 
in combination with genotyping for in-
ter-individual variability with respect to 
stress sensitivity and antidepressant drug 
action. 

The identification of reliable predic-
tors of therapeutic outcomes will allow 
for the development of personalized 
medicine that has the potential to indi-
vidually tailor interventions and to open 
up new pathways in the evaluation of 
novel therapeutic approaches.
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