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ABSTRACT

Motivation: Patients with identical cancer diagnoses often progress
differently. The disparity we see in disease progression and treatment
response can be attributed to the idea that two histologically similar
cancers may be completely different diseases on the molecular
level. Methods for identifying cancer subtypes associated with
patient survival have the capacity to be powerful instruments for
understanding the biochemical processes that underlie disease
progression as well as providing an initial step toward more
personalized therapy for cancer patients. We propose a method
called semi-supervised recursively partitioned mixture models
(SS-RPMM) that utilizes array-based genetic and patient-level clinical
data for finding cancer subtypes that are associated with patient
survival.
Results: In the proposed SS-RPMM, cancer subtypes are identified
using a selected subset of genes that are associated with survival
time. Since survival information is used in the gene selection
step, this method is semi-supervised. Unlike other semi-supervised
clustering classification methods, SS-RPMM does not require
specification of the number of cancer subtypes, which is often
unknown. In a simulation study, our proposed method compared
favorably with other competing semi-supervised methods, including:
semi-supervised clustering and supervised principal components
analysis. Furthermore, an analysis of mesothelioma cancer data
using SS-RPMM, revealed at least two distinct methylation profiles
that are informative for survival.
Availability: The analyses implemented in this article were carried
out using R (http://www.r.project.org/).
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1 INTRODUCTION
There are approximately 200 known types of cancer, although they
may be overly general as the same type of cancer can have very
different trajectories in different people. For example, it is not
unusual for a tumor to proliferate in one patient and stabilize or
regress in another, even though their tumors are indistinguishable at
a microscopic level. Traditionally, researchers diagnosed and treated
cancer based on an analysis of cell shape and size, a method that
is substantially challenging for closely related cancers. In recent
years, information regarding molecular alterations in cancer has
contributed to defining cancer subtypes based on the underlying
molecular signature of a tumor (Alizadeh et al., 2000; Lapointe et al.,
2004; Sorlie et al., 2003). Such molecular pathology has contributed
to the discovery of subtypes of several different tumor types and has
successfully identified patients with different survival times (Beer
et al., 2002; van de Vijver et al., 2002; van’t Veer et al., 2002). More
recently, there has been substantial interest in the use of methylation
profiling for understanding the effect of epigenetic alterations on
disease susceptibility as well as to characterize cancer subtypes
based on methylation patterns (Ang et al., 2010; Christensen et al.,
2009b, c; Deneberg et al., 2010; Marsit et al., 2009). However,
such associations work best when cancer subtypes based on genetic
profiles are already known. If subtype membership is known,
then a number of different supervised classification procedures
such as support vector machines (SVMs), discriminant analysis,
multinomial logistic regression or ensemble-based procedures, can
be used to build a statistical model to diagnose such cancers in
future patients. In most instances, however, neither the different
subtypes nor patient-specific subtypes are known. Consequently,
attempts have been made to identify cancer subtypes, many of which
use either fully unsupervised learning or fully supervised learning
techniques. Unsupervised analyses for identifying cancer subtypes
is often addressed using hierarchical clustering (Eisen et al., 1998),
where cancer subtypes are identified using only array-based genetic
data. As Bair and Tibshirani (2004) report, hierarchical clustering
can be an effective method for identifying clinically relevant cancer
subtypes, although one major limitation of unsupervised learning
procedures is that they may identify cancer subtypes that are
unrelated to patient survival or other clinical outcomes of interest,
especially when they are applied to high-dimensional data. Since
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unsupervised learning procedures use no clinical data for identifying
cancer subtypes, there is no guarantee that identified subtypes will
strongly predict outcome. An alternative approach to identifying
subtypes is the use of a supervised learning algorithm that explicitly
models survival. However, such approaches often result in models
with limited biological interpretation.

To overcome the limitations of fully unsupervised and fully
supervised approaches, Bair and Tibshirani (2004) proposed a
procedure known as semi-supervised clustering (SS-Clust), which
combines both gene expression data and clinical data to identify
cancer subtypes. First, their procedure identifies a set of genes that
correlate with the clinical variable of interest, then subsequently
applies an unsupervised clustering technique to that set of genes,
forming a prediction rule for cluster assignment. Several variants
of this procedure have been proposed, in particular, supervised
principal components analysis (SPCA). Unlike SS-Clust, SPCA
computes a ‘risk score’ for each patient which is subsequently used
as a continuous predictor of survival. The semi-supervised methods
of Bair and Tibshirani (2004), specifically, SS-Clust and SPCA,
have been used in number of studies for identifying biologically
meaningful cancer subtypes as well as for predicting patient survival
(Bullinger et al., 2004; Hou et al., 2010; Jiang et al., 2008; Yu et al.,
2008; Zhao et al., 2006). Although both procedures have proven
to be successful strategies, they have a number of limitations. In
particular, the performance of SS-Clust is compromised when the
number of clusters is misspecified, specifically in situations in which
there are a large number of subgroups that have considerable overlap.
Moreover, SPCA does not facilitate the attainment of discrete cancer
subtypes, which are often of clinical interest, and inherits the
interpretability issues inherent to PCA. To this end, we propose a
semi-supervised approach, which is similar in spirit to the semi-
supervised strategies of Bair and Tibshirani (2004); however, we
substitute use of PCA or other latent variable methods with the use
of recursively partitioned mixture models (RPMM; Houseman et al.,
2008). RPMM is a model-based hierarchical clustering method that
estimates the number of clusters and produces a reliable solution in
a shorter time than the standard finite mixture model approach with
sequential mixture model fitting attempts using different numbers
of assumed clusters.

The remainder of this article is organized as follows: in Section 3,
we provide overviews of both RPMM and the Bair and Tibshirani
(2004) SS-Clust approach and propose a semi-supervised version of
RPMM. In Section 4, we present simulation results and in Section 5
we demonstrate our method on a mesothelioma cancer dataset. We
follow with a discussion and conclusion in Sections 6 and 7.

2 BACKGROUND
A challenge in clustering problems is the selection of the number
of clusters K (Chen, 1995). Since inference post-clustering is
heavily influenced by the choice K , misspecification of the
number of clusters often leads to misleading or erroneous results.
Hence, reliable and robust methods for choosing K are necessary.
Bayesian solutions to clustering exist (Tadesse et al., 2005) but
are computationally demanding. Computationally efficient, scalable
methods are necessary for routine bioinformatics and molecular
biology research. Houseman et al. (2008) proposed RPMM, an
unsupervised method for model-based clustering of data, which
presents the number of clusters and a dependable solution in

a shorter amount of time than repeated attempts with different
numbers of assumed clusters. The initial description of RPMM
in Houseman et al. (2008) assumed beta-distributed responses,
however, in general, any parametric distribution (univariate or
multivariate) can be used, and for mRNA or miRNA expression
data, a Gaussian response may be more appropriate.

RPMM is similar to the idea of recursive partitioning with
subsequent tree pruning used in hierarchical ordered partitioning
and collapsing hybrid (HOPACH; van der Laan and Pollard, 2003),
in which clusters are recursively partitioned using a non-parametric
algorithm such as partitioning around medoids (PAMs; Kaufman and
Rousseeuw, 1990). However, Houseman et al. (2008) show that the
model-based construction of RPMM can result in superior results.

3 STATISTICAL METHODS

3.1 Overview of RPMM
The reader may refer to Houseman et al. (2008) for a comprehensive
description of RPMM. For each single subject i, we assume class membership
Ci ∈{1,2,...,K}. For assay data Yij from subject i∈{1,2,...,n} at gene or
locus j∈{1,2,...,J}, we assume the distribution f (Yij = y|Ci =k;θ kj) , where
θ kj is a vector of parameters that depends on both class k and locus j.
Houseman et al. (2008) assumed beta-distributed responses, although in
general any parametric distribution can be used. Under the assumption
that Ci = k with probability ηk , where

∑K
k=1ηk = 1, and that expression of

each gene is independent conditional on class membership, the likelihood
contribution from subject i is given by

f (Yi =yi;ς ) =
K∑

k=1

ηk

J∏
j=1

f (Yij =y|Ci =k;θ kj),

where ς = (η1,...,ηK−1,θ11,...,θ1J ,θ21,...,θKJ ) is a vector of parameters.
With observed data D={y1,y2,...,yn}, the conventional mixture model
approach involves maximizing the full-data log-likelihood,

�(ς ) =
n∑

i=1

log[f (Yi =yi;ς )] (1)

with respect to ς . This is easily achieved using an Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). Briefly, we initialize the procedure
with an n×K matrix of weights W = (wik) whose rows sum to one. The rows
represent initial guesses at class membership probabilities for each subject.
For each k, we maximize the quantity

�
(w)
k (ς ) =

n∑
i=1

J∑
j=1

wik log[f (Yij =yij|Ci =k;θ kj)] (2)

to obtain estimates of the parameters corresponding to class k. Reversing the
order of summation in (2) shows that each dimension j can be maximized
separately. We subsequently update the weights as follows:

wik(ς )= ηk
∏J

j=1 f (Yij =y|Ci =k;θ kj)∑K
k=1ηk

∏J
j=1 f (Yij =y|Ci =k;θ kj)

, (3)

iterating the maximization of (2) and recalculation of (3) until �(ς ) stays
fixed. The final weight wik represents the posterior probability that subject
i belongs to class k [i.e. wik = P(Ci =k|Y1,...,Yn,ς )]. Since the number of
classes K is typically unknown, we might decide on the number of classes
by fitting mixture models for a range of possible values of K , computing the
Bayesian Information Criterion (BIC) statistic BIC= log(n)(2JK +K −1)−
2�(̂ς ) and selecting the value of K that corresponds to the minimum BIC.
The entire operation has approximate complexity nJK2

max, where Kmax is the
maximum number of classes attempted.
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Houseman et al. (2008) proposed a recursive alternative that has
complexity no more than nJK logK . Consider the following weighted-
likelihood version of (1),

�(ς;ω) =
n∑

i=1

ωi log[f (Yi =yi;ς )]. (4)

When ωi ≡1 for all i, (1) and (4) are equivalent. When 0<ωi <1, subject
i only partially contributes to estimation, and when ωi = 0, subject i is
excluded entirely from consideration. The EM algorithm described above
is easily modified by substituting each wik with ωiwik in (2), where the
interpretation is that the classes under consideration are only a partial set,
and that subject i belongs to one of these classes only with probability ωi.
Thus, the procedure begins by fitting a two-class model to the entire dataset,
where the result is two sets of posterior weights representing the posterior
probabilities of membership in each of the two classes. Under the assumption
that each of these classes can be further split, and that each subject belongs
to the subsequent splits only with probability equal to the weight assigned to
the unsplit class, the weighted-likelihood EM algorithm is applied to obtain
the two classes corresponding to the new split. If the EM algorithm fails
due to insufficient data, then recursion is terminated at that point. However,
if the EM algorithm succeeds, new weights are established and recursion
is continued. As mentioned in Houseman et al. (2008), at each level of
recursion, the weights become smaller; since a mixture model becomes
unstable with small weights (corresponding to small numbers of pseudo-
subjects), the recursion ultimately terminates completely at a set of terminal
or leaf nodes corresponding to unsplit classes. This process is stabilized
by terminating the recursion if the sum of the weights is less than some
prespecified value (e.g. 5). Additionally, recursion can be terminated early if
the split leads to a less parsimonious representation of the data. Houseman
et al. (2008) propose using the BIC, to motivate a criterion for rejecting a
proposed split. In particular, they proposed the following weighted versions
of BIC:

wtdBIC2(r)= (4J +1)log

(
n∑

i=1

ω
(r)
i

)
−2�(w)

(
ς̂

(r)
)
,

wtdBIC1(r)=2J log

(
n∑

i=1

ω
(r)
i

)
−2�(ω)

(
ς̂

�(r)
) (5)

where the first vector of parameters, defining wtdBIC2(r), is obtained
from the two-class mixture model and the second vector of parameters,
defining wtdBIC1(r), is obtained from a one-class model. Note, the effective
sample size is considered to be

∑n
i=1ω

(r)
i . If wtdBIC2(r) is greater than

wtdBIC1(r), the recursion is terminated at node r. After all nodes terminate,
the solution to the clustering problem consists of K classes, with the final
ς̂ assembled from the individual vectors θ kj and the prevalence estimates

η̂r = 1
n

∑n
i=1ω

(r)
i , where ω

(r)
i represents the class probability for subject i for

a recursion sequence r.
Houseman et al. (2008) studied the properties of RPMM via simulation on

realistic datasets motivated by DNA methylation data on normal tissues and
found that RPMM and conventional model-based clustering (e.g. sequential
mixture model fitting with K selected via BIC) had similarly superior
clustering performance relative to several non-parametric alternatives,
including HOPACH (van der Laan and Pollard, 2003) and dynamic tree
cutting (Langfelder et al., 2008), but that RPMM was much faster than
sequential mixture model fitting with different number of assumed classes.

3.2 SS-Clust
Suppose our data consists of n samples on J molecular loci and we assume
that there are several distinct molecular classes relevant to a clinical outcome.
In keeping with Bair and Tibshirani (2004), we a assume a survival outcome,
although a simpler outcome (e.g. binary) could be used as well. The Bair
and Tibshirani (2004) procedure begins by selecting the M �J genes that

are most associated with survival. This can be accomplished by fitting
J Cox-proportional hazards models (one for each of the J genes) and
computing the Cox-scores (i.e. values of |γ̂j|/se(γ̂j) where γ̂j represents the
proportional hazards estimate of the log-hazard ratio for the j-th gene). In
short, the Cox-score is a measure of the association between the gene’s
expression level and patient survival. Using the M genes with the largest
absolute Cox-scores, where M is typically chosen based on cross-validation,
K-means clustering is applied to n observations. Based on the K-means
clustering results, the n observations are then assigned putative class labels.
As described in Bair and Tibshirani (2004), the choice of K for K-means
clustering is typically chosen based on prior biological knowledge, although
they assert that K =2 generally works well for most datasets. Using the
class label assignments for the n observations based on K-means clustering,
the n samples and all J loci are then used to train a nearest shrunken
centroid (NSC) classifier (Tibshirani et al., 2003). One can then use the NSC
classifier to assign future patients to one of the K subgroups. Compared with
competing methodologies, SS-Clust tends to perform very well with respect
to predicting survival and has the distinct advantage of reducing the effective
number of J genes used for clustering and classification.

In addition to selecting a subset of genes based on the largest absolute
Cox-scores, Bair and Tibshirani (2004) also propose selecting a subset of
genes using partial least squares (PLS) to compute corrected Cox-scores.
As described, selecting the genes with the largest absolute corrected Cox-
scores, in some instances, produces better clusters than selecting genes with
the largest raw Cox-scores.

3.3 Semi-supervised RPMM
While SS-clust is an extremely successful strategy, it requires knowledge
of the number of underlying clusters, and does not perform well when
this number is misspecified, specifically in situations where there are a
large number of overlapping classes (Bair and Tibshirani, 2004). Since
RPMM is able to estimate the number of clusters in a robust and
computationally efficient manner, we propose a semi-supervised RPMM
(SS-RPMM) approach, which is similar in spirit to that proposed by Bair
and Tibshirani (2004), but with substitution of LCA, PCA or any other latent
variable method, by RPMM.

We assume that classification of a random variable Z is of interest. This
variable could be a Gaussian response or a binary response, but in this article
we focus on a survival response, both because survival was the focus of Bair
and Tibshirani (2004), and because it represents a relatively complicated
datatype. We assume a proportional hazards model,

h(ti) = exp

{
γ0 +XT

i δ+
K∑

k=2

γkI(Ci = k)

}
h0(t) (6)

where Xi represents any additionally relevant patient-specific information
and I(Ci = k) is an indicator of class membership in the k-th class for the i-th
patient. We take Zi = (Ti,di), where T is the observed failure or censoring
time and d is an indicator of whether or not the event was observed. As in
Bair and Tibshirani (2004), we first fit univariate (e.g. single locus models)
Cox models of the form

h(ti) = exp
{
γ0 +XT

i δ+γjYij

}
h0(t) (7)

where Yij represents the expression of gene j in subject i. Fixing M, we take
the set JM� of the M genes j having the M largest Cox-scores, either raw or
PLS Cox-scores. We then fit an RPMM model to the genes represented by
JM� ; the resulting model provides the latent class structure on the preselected
genes. We then use the latent class assignments to fit (6). Since the RPMM
class assignments are based on posterior class membership probabilities
ω

(k)
i (ς̂ ) = P(Ci = k|Yi,ς̂ ), we can either assign classes based on the highest

posterior membership probability, or else use a weighted Cox model [e.g. as
in Houseman et al. (2006)], to obtain an approximate solution where there
are a large number of imperfectly classified subjects.

Assuming the dataset D can be split randomly into a training set D0 and
a test set D1, we perform the preselection procedure on D0, followed by
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Table 1. Algorithm for determining M, the number of preselected genes with
the largest absolute Cox-score to be used in fitting RPMM

(1) Randomly split the Training set D0 into two sets: D0a and D0b.

(2) Fit RPMM to D0a using the M preselected genes with largest absolute
Cox-scores.

(3) Using the results from the RPMM fit on D0a, predict class membership
Ĉi for the observations in D0b using empirical Bayes and assign
the observations in D0b to the class which has the largest posterior
probability.

(4) Compute and record the P-value for the log-rank test, testing the
hypothesis that the hazard of dying is the same for each of the predicted
classes in D0b.

(5) Repeat steps 2–4 varying M from Mmin to Mmax, where Mmin and Mmax

are thresholds selected by the user.

(6) Repeat steps 1–5 making different splits of D0 into D0a and D0b.

(7) Compute the median P-value for each specification of M across the
different splits of D0.

(8) Set M =M�, where M� is the specification of M that results in the
smallest median P-value.

RPMM on D0 using the M preselected genes. Using the RPMM solution
from D0, we construct empirical Bayes estimates Ĉi of class assignments on
the test set D1 and assign subjects to the class that has the largest predicted
posterior probability, Ĉi = maxkωik(ς̂ ). We subsequently fit (6) to D1 using
the class assignments Ĉi. We can then assess the prediction performance
using pseudo R2 (Schemper, 1990). Since M is a tuning parameter, it should
be selected with care. As in Bair and Tibshirani (2004), M can be determined
using cross-validation. Table 1 presents a variant of this algorithm.

4 IMPLEMENTATION
We conducted simulations to compare both SS-Clust and SPCA to
SS-RPMM. The simulated datasets were generated in a similar way
to that described in Bair and Tibshirani (2004). Training and testing
datasets each consisted of 3000 gene expression measurements for
250 samples, which were distributed among five classes each of
which contained 50 samples. For the first class, genes 1–50 were
generated from a normal distribution with mean 0.25 and SD 0.15;
for the second class, genes 1–50 were generated from a normal
distribution with mean 0.40 and SD 0.15; for the third class, genes
1–50 were generated from a normal distribution with mean 0.55
and SD 0.15; for the fourth class, genes 1–50 were generated from
a normal distribution with mean 0.70 and SD 0.15; and for the
fifth class, genes 1–50 were generated from a normal distribution
with mean 0.85 and SD 0.15. As in Bair and Tibshirani (2004),
we introduced several additional genes which were unrelated to
the clinical variable of interest; we randomly selected 40% of the
samples to have a mean of 0.4 and SD of 0.15 for genes 51–250; 50%
of the samples to have a mean 0.5 and SD 0.15 for genes 251–450;
and 70% of the samples to have a mean 0.7 and SD 0.15 for genes
451–650. The other 60, 50 and 30% of samples for genes 51–250,
251–450 and 451–650, respectively, were sampled from a normal
distribution with mean 0 and SD 0.35. Additionally, the remaining
genes 651–3000, were generated from a normal distribution with
mean 0 and SD 0.35 for each of the 250 samples.

The survival times for the first class were generated from a
normal distribution with mean 30 and SD 4; for the second class

survival times were generated from a normal distribution with mean
33 and SD 4; for the third class, survival times were generated
from a normal distribution with mean 36 and SD 4; for the fourth
class, survival times were generated from a normal distribution with
mean 39 and SD 4; and for the fifth class, survival times were
generated from a normal distribution with mean 42 and SD 4.
For each of the 250 samples, the survival times were assumed
to have been observed, thus censoring was not present in our
simulations.

For each method, PLS Cox-scores were calculated to assess
the association between gene expression across samples and the
clinical variable of interest, which in our simulations was survival
time. Since there were 50 genes that differentiated between classes
with respect to survival time, we investigated several choices for
M, M ∈{15,25,50,75}, the number of genes selected on the basis
of the largest PLS Cox-score. Furthermore, we also considered
several different choices for the number of assumed clusters K ,
K ∈{2,3,4,5,6} to be used in the K-means clustering step of the
SS-Clust algorithm. There is no dependency on the value of K
assumed for the SS-RPMM and SPCA approaches. We considered
100 simulations for each level of M and K . Under the SS-
Clust framework, class memberships for the observations in the
testing data were determined by fitting a NSC classifier on the
training data using the putative class labels assigned via K-means
clustering and applying this classifier to testing data to obtain class
memberships for each observation. Similarly, under the SS-RPMM
framework, class memberships for the observations in the testing
data were determined by fitting a normally distributed RPMM on
the training data, followed by empirical Bayes using the obtained
parameter estimates, which provided posterior probabilities of class
membership for each class for each observation in the testing data.
Each observation in the testing data was then assigned to the class for
which the posterior class membership probability was the highest.
For the SPCA procedure, PCA was implemented on the training
data using only the M genes with the largest absolute PLS Cox-
scores. The resulting solution was used to approximate the principal
components for the testing data. We used the Rand Index (Rand,
1971), which provides a measure of similarity between the true class
membership and the predicted class membership, to assess how SS-
RPMM compared with SS-Clust in terms of correctly classifying
the observations in the testing data. Additionally, we used pseudo-
R2 to assess the predictive ability of SS-RPMM, SS-Clust and
SPCA. For SS-RPMM and SS-Clust, the pseudo-R2 was calculated
by fitting a Cox-proportional hazards model to the testing data,
using the predicted class memberships as factors in the model. For
SPCA, the pseudo-R2 was calculated by fitting a Cox-proportional
hazards model to the testing data using the approximated principal
components.

The average Rand Index was compared between the SS-Clust
and SS-RPMM methods across the different settings of M and
K , Supplementary Figure S1. For a fixed M, the average Rand
Index obtained for the SS-Clust approach tended to increase as the
number of assumed clusters K increased toward the true number of
classes. Moreover, for a fixed K , the average Rand Index for both
SS-Clust and SS-RPMM, tended to be higher as M was increased
toward the true number of genes that differentiated between classes
relative to survival. Similar trends were seen with respect to the
average pseudo-R2, Figure 1. Most notably, however, SS-RPMM
and SPCA(2) had comparable performance with SS-RPMM having
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Fig. 1. Average pseudo-R2 between SS-RPMM, SS-Clust, SPCA using the
first principal component only SPCA(1), and using the first and second
principal components SPCA(2), for different settings of M and K . Results
are based on 100 simulations.

a slightly larger average pseudo-R2 for each M among the three
methods.

The results from this simulation study show that, with respect
to classification performance, SS-RPMM tends to outperform SS-
Clust, the extent to which depended on the degree of misspecification
of the number of assumed clusters K . Moreover, SS-RPMM
explained more variability in survival compared with SS-Clust
and explained a similar amount of variability compared with
SPCA. A number of additional simulations were implemented to
access the classification and prediction performance of SS-RPMM
relative to SS-Clust and SPCA under model misspecification. We
evaluated the performance of the three methods where the genetic
data for the training and testing sets were sampled from a t-
distribution with low degrees of freedom and a normally distributed
RPMM was assumed (Supplementary Figs S3–S4). Since RPMM
assumes class conditional independence of genes/loci, we also
implemented a simulation study comparing the classification and
prediction performance of the three methods where we imposed
within-class correlation between genes (Supplementary Figs S5–
S8). The full description and results of these simulations are
provided in the Supplementary Material. Briefly, however, SS-
RPMM outperformed SS-Clust with respect to both classification
and prediction performance and had similar performance compared
with SPCA in terms of prediction performance. In the presence of
within-class correlation, RPMM tended to overestimate the number
of classes; this phenomenon is similar to that found by Lindsay et al.
(1991).

We also considered a simulation study where M was
selected based on cross-validation (Supplementary Table S1). The
description and results of this simulation study can be found in

the Supplementary Material. Briefly, the results of this simulation
study showed better prediction and classification performance of SS-
RPMM over SS-Clust and similar prediction performance between
SS-RPMM and SPCA. Lastly, we implemented a simulation study
where we used a modified version of the SS-Clust algorithm.
Specifically, instead of fitting the NSC using all genes, we used
only those M genes that were used in the K-means clustering
step. The results of this simulation are provided in Supplementary
Figure S9 and show that, with respect to Rand Index and pseudo-
R2, SS-RPMM and SS-Clust tended to perform similarly when the
number of assumed clusters K was correctly specified, with SS-Clust
performing slightly better than SS-RPMM. This is likely due to the
fact that SS-RPMM incurs a cost for estimating K , while SS-Clust
receives the benefit of having K ‘known’. Similar to our previous
simulations, however, when K was misspecified, SS-RPMM tended
to outperform SS-Clust, the magnitude to which depended on the
degree of misspecification.

As demonstrated in our simulations, SS-RPMM tended to
outperform SS-Clust with respect to survival prediction and
classification performance. Furthermore, the prediction performance
was comparable between SS-RPMM and SPCA. Although
RPMM relies on distributional assumptions and class conditional
independence, additional simulation studies have indicated
favorable performance of SS-RPMM over SS-Clust and SPCA even
when these assumptions are violated (Supplementary Figs S3–S8).

5 MESOTHELIOMA CANCER EXAMPLE
The mesothelioma dataset consisted of 158 tumor samples derived
from two, independent series of mesothelioma cases (Christensen
et al., 2009c). The aim of this study was to identify risk factors
associated with an increased mortality from mesothelioma.

Each of the 158 tumor samples were profiled for the methylation
status at 1505 CpG loci associated with 803 cancer-related
genes simultaneously using the Illumina GoldenGate® methylation
bead arrays. Sample preparation has been described previously
(Christensen et al., 2009a, c). As discussed in Houseman et al.
(2008), the result of the array is a sequence of ‘beta’ values between
zero and one, one for each of the 1505 CpG loci. A total of 1497
passed QA/QC procedures (median detection P < 0.05), and of
these, 1413 autosomal loci were used in subsequent analysis. In
addition to methylation profiles for each of the 1505 CpG loci, the
mesothelioma dataset consists of information on time to death after
diagnosis, as well as various demographic and clinical covariates.
Among the 158 samples, there were 107 deaths with a median
survival time of 17 months. The full dataset was used to generate
training (N0 = 79) and testing (N1 = 79) sets. Training and testing
sets were obtained by randomly sampling within tumor histology.
There were no significant differences between the training and
testing sets with respect to relevant covariates (e.g. gender, smoking
status, age, etc.) Furthermore, there was no significant difference
between the training and testing sets with respect to survival (log-
rank test P = 0.862). The training data were used to identify CpG loci
that are associated with survival time. A series of Cox-proportional
hazards models, stratified by tumor histology and controlling for age
and gender, were fit for each of the 1413 loci. Using the R package
(http://www.r.project.org/) RPMM version 1.05, a RPMM assuming
beta distributed responses, was fit to the training set using the M CpG
loci with the largest absolute Cox-scores, where M was determined
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Table 2. Results obtained from fitting a Cox-proportional hazards model to
the testing data using class membership assignment as factor, stratifying by
tumor histology and controlling for age and gender

Covariate HR estimate 95 % CI for HR

RR versus L 0.35 [0.17, 0.73]
RL versus RR 1.81 [0.78, 4.30]
RL versus L 0.64 [0.31, 1.30]

Gender 0.56 [0.28, 1.13]
Age 1.03 [1.00, 1.06]

Gender = Male was used as the reference group. The estimates provided in the table
below represent the hazard ratio (HR) estimates.

using the algorithm described in Table 1. After fitting RPMM to the
training data using the M CpG loci with the largest Cox-scores, we
used the model to predict class membership for each observation
in the testing set by assigning the class with the largest posterior
probability. To determine whether the predicted classes in the testing
set were associated with survival, we fit a Cox-proportional hazards
model stratified by tumor histology controlling for age and gender,
where predicted class membership in testing set was treated as a
factor. Using the nested cross-validation procedure described in
Table 1, we determined that M =41. Subsequently, fitting RPMM
to the training data using the 41 CpG loci with the largest absolute
Cox-scores resulted in three classes.

There were 36 observations assigned to class L, 22 observations
assigned to class RL, and 21 observations assigned to class
RR. The results obtained from fitting a Cox-proportional hazards
model to the testing data are given in Table 2. Class RR had
a significantly lower hazard of dying (95 % CI for the hazard
ratio; [0.17,0.73]), compared with class L. Class RL did not have
a significantly different hazard of dying compared with class RR
(95 % CI for the hazard ratio; [0.78,4.30]). The pseudo-R2 and
Akiake information criterion (AIC) were found to be 0.194 and
315, respectively. The pseudo-R2 and AIC obtained from fitting a
model using the predicted posterior weights instead of assigning
classes based on largest predicted posterior probability, were found
to be 0.198 and 315, respectively. A heatmap (Fig. 2) applied to
the observations in the testing set demonstrates the variability of
average beta values between the predicted classes. Note that RPMM
clusters based on the first and second moments. See Supplementary
Figure S12 for a heatmap that depicts standardized data, wherein
biochemical ranges of the assay are factored out. The Kaplan–Meier
survival curves (Supplementary Fig. S13) estimated for each of
the predicted classes in testing set illustrate the differing survival
profiles for classes L, RL and RR. An analysis of the mesothelioma
data using SS-Clust, assuming two classes, revealed a significant
difference in survival among the predicted classes in the testing
set (95 % CI for the hazard ratio; [ 0.28, 0.93]), stratifying by
tumor histology and controlling for age and gender. Among the
23 observations assigned to the high-risk group based on SS-
Clust, 22 overlapped with the highest risk class, class rL, derived
from SS-RPMM. Moreover, 75% of observations assigned to the
low-risk group based on SS-Clust overlapped with the low-risk
classes, classes RR and RL obtained from SS-RPMM. The pseudo-
R2 and AIC were found to be 0.15 and 318, respectively. Using
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Fig. 2. Heatmap of predicted class memberships for the observations in
the testing set using the average beta values for the 41 loci with largest
absolute Cox-scores. Observations within predicted class as well the 41 loci
were clustered using hierarchical clustering with Ward linkage and Euclidean
distance metric.

the cross-validation procedure described in Bair and Tibshirani
(2004), the optimal solution resulted in the use of 44 loci.
Among these 44 loci, 27 overlapped with the 41 loci used in
SS-RPMM.

We also analyzed the mesothelioma cancer data using SPCA.
Using the cross-validation procedure described in Bair and
Tibshirani (2004), the number of loci with the largest absolute
Cox-score to be used by SPCA was determined to be 54. Using
the approximated first principal component for the observations in
the testing data and controlling for age and gender and stratifying
by tumor histology, the pseudo-R2 and AIC were determined to
be 0.199 and 313, respectively. Similarly, using approximated first
and second principal components for the observations in the testing
data, the pseudo-R2 and AIC were determined to be 0.214 and 313,
respectively. Among the 54 loci used in the SPCA procedure, there
were 41 loci that overlapped with the 41 loci used by the SS-RPMM
procedure.

The results reported thus far were based on a single random split
of the full mesothelioma dataset into training and testing sets. To
gain an understanding of the performance on average as well as
the variability in performance of SS-RPMM, SS-Clust and SPCA,
we considered 10 additional random splits of the full dataset into
training and testing sets. The description and results of this analysis
are summarized in Supplementary Figure S14. Briefly, among the
10 random splits of the mesothelioma data into training and testing
sets, the mean number of classes estimated by SS-RPMM was 3.5.
Furthermore, the mean number of loci with the largest absolute
Cox-score to be used in fitting SS-RPMM, SS-Clust, SPCA(1)
and SPCA(2) were 25, 98, 56, and 56, respectively. The mean
pseudo-R2 across the 10 random splits of the full data into training
and testing sets for SS-RPMM, SS-Clust, SPCA(1) and SPCA(2)
were 0.210, 0.106, 0.116, and 0.161, respectively. The mean AIC
across the 10 random splits for SS-RPMM, SS-Clust, SPCA(1)
and SPCA(2) were 303, 310, 312 and 310, respectively. Thus, our
original split was, unluckily, a relatively extreme and conservative
case.
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6 DISCUSSION
Motivated by the SS-Clust approach of Bair and Tibshirani
(2004), SS-RPMM utilizes array-based genetic data and patient-
level clinical information to identify biologically and clinically
meaningful cancer subtypes. We begin our procedure by pre-
screening array-based genetic data to identify loci that are associated
with the primary outcome of interest, with the idea of guiding
the subsequent clustering algorithm toward a solution that is
prognostically relevant. We then develop a classifier that can be used
to predict cancer outcome for future patients. While the originally
proposed version of SS-Clust requires specification of the number
of assumed classes K , our proposed method estimates this number
directly. Since the number of classes is often not known, SS-RPMM
can be viewed as an improvement upon the SS-Clust approach. It
should be pointed out that when the assumption that the expression of
each gene or loci is independent conditional on class membership is
satisfied, RPMM and the model-based clustering algorithm of Fraley
and Raftery (2002) tend to produce identical results. However,
the latter method sequentially fits mixture models for different
numbers of assumed classes and consequently is computationally
less efficient than the corresponding RPMM solution (Houseman
et al., 2008).

The analysis of the mesothelioma data using SS-RPMM revealed
promising results. Using <3% (41 out of 1413 available) of the loci
available in the mesothelioma dataset, we were able to find two
distinct survival profiles among the three classes predicted in our
testing set. A number of the loci identified (Supplementary Table S2)
as demonstrating altered DNA methylation related to survival in
mesothelioma are involved in processes known to be critical in
carcinogenesis and to effect patient outcome. These include a
number of genes considered oncogenic growth factors or growth
factor receptors such as FGR, MET, IFNGR2, FGF8, GRB10, PLG
and FGFR3, as well as tumor suppressor genes involved in cell-
cycle control (P16INK4A, S100A2), apoptosis (CASP10) and DNA
repair (TDG). Also identified as a critical predictor of survival was
SFRP1, which has been previously shown to be downregulated in
mesothelioma and to be associated with more aggressive disease
(Lee et al., 2004). Thus, there is strong biologic plausibility to the
genes identified in the SS-RPMM methodology.

Using an additional 10 random splits of the full mesothelioma
data into training and testing sets we were able to gain insight
into the performance on average as well as the variability in
performance of SS-RPMM, SS-Clust and SPCA. Despite using a
fewer number of loci on average, SS-RPMM outperformed SS-
Clust and showed a modest improvement compared with SPCA in
discovering methylation profiles that are informative for survival,
as evidenced through a larger average pseudo-R2 and smaller
average AIC. This finding is significant in that SS-RPMM identifies
discrete cancer subtypes, which are often of interest from both
a biological and clinical perspective, with no loss in predictive
accuracy compared with SPCA.

7 CONCLUSION
In summary, SS-RPMM appears to be a promising method for
identifying cancer subtypes relevant to patient survival. Our
approach combines the strengths of the semi-supervised approaches
of Bair and Tibshirani (2004) with the ability of RPMM to determine

the number of clusters in a robust and computationally efficient
manner.
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