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ABSTRACT

Motivation: Traditional genomic prediction models based on
individual genes suffer from low reproducibility across microarray
studies due to the lack of robustness to expression measurement
noise and gene missingness when they are matched across
platforms. It is common that some of the genes in the prediction
model established in a training study cannot be matched to another
test study because a different platform is applied. The failure of inter-
study predictions has severely hindered the clinical applications of
microarray. To overcome the drawbacks of traditional gene-based
prediction (GBP) models, we propose a module-based prediction
(MBP) strategy via unsupervised gene clustering.
Results: K-means clustering is used to group genes sharing
similar expression profiles into gene modules, and small modules
are merged into their nearest neighbors. Conventional univariate
or multivariate feature selection procedure is applied and a
representative gene from each selected module is identified to
construct the final prediction model. As a result, the prediction model
is portable to any test study as long as partial genes in each module
exist in the test study. We demonstrate that K-means cluster sizes
generally follow a multinomial distribution and the failure probability
of inter-study prediction due to missing genes is diminished by
merging small clusters into their nearest neighbors. By simulation
and applications of real datasets in inter-study predictions, we show
that the proposed MBP provides slightly improved accuracy while is
considerably more robust than traditional GBP.
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1 INTRODUCTION
Microarray technology is a promising methodology for predicting
prognosis and response to treatment for cancer patients. However,
a stable prediction model requires features selected from a large
training dataset (Dobbin and Simon, 2005; Dobbin et al., 2008).
Since microarray analyses and clinical trials are expensive as well
as time and effort intensive, to validate information and to predict
patient outcomes from individual studies, it is crucial to utilize
accumulated inter-study data. For over a decade, microarray data
have been accumulated from different array technologies or different
versions within technologies performed on similar clinical samples.
However, to use a dataset or integrated datasets from one platform
to build a model that robustly and accurately predicts clinical
characteristics of a new dataset or a new sample from another
platform remains a challenge (Park et al., 2004; Tan et al., 2003).

Although current automated microarray assay systems have made
microarray methodology straightforward, accurate use of genomic
information from microarray analysis to classify patients or to
predict patient prognosis is not trivial. To effectively predict clinical
outcomes by genomic data requires careful data preprocessing,
gene selection and model construction based on training data.
The constructed model is then validated on independent test data.
Currently, many prediction models have been developed and cross-
validated within the single study used for the model construction
(Pusztai and Leyland-Jones, 2008). As a result, the developed
prediction models are usually underrepresented or over fitted due
to a lack of heterogeneity of sampling and do not account for cross
platform problems when training data and test data are generated
from different microarray platforms and protocols.

Traditional prediction methods have used a gene-based (GBP)
approach in which individual genes are selected as model
components (Fig. 1A). A common cross platform problem
encountered with such methods involves issues of gene missingness
or gene mismatching. Frequently, genes in the prediction model
based on training data cannot be found in the test data, which
is termed as gene missingness in this article. Occasionally,
genes matched across platforms may contain errors (i.e. gene
mismatching). The need for inter-study prediction across different
platforms is commonly encountered (Supplementary Fig. 1A).
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Fig. 1. Concept of GBP versue MBP methods: (A) the GBP method selects individual genes from training samples to construct a prediction model and uses
the model to predict new samples. (B) The MBP method performs gene clustering a priori to form gene modules and uses these modules to construct a
prediction model (color figure shown in Supplementary Figure 1A).

For example, suppose a pilot study has been performed in an old
Affymetrix U95 platform and an effective prediction model has
been constructed. The test site of another medical center may apply
another commercial system (such as Agilent or Illumina platforms)
or the original medical center may migrate to a newer U133 system.
Many genes in the old training study may not be found in the new
test study. Current cross-platform gene prediction methods use only
those genes common to both training and test datasets (Irizarry et al.,
2005; Shi et al., 2004, 2005). There are two main drawbacks to this
GBP approach. One drawback is that the prediction model must be
reconstructed with each new test dataset. Thus, the model cannot be
created independently of the test data and the model elements must
be adjusted every time different platforms of test data are used for
prediction (Supplementary Fig. 1B). A second drawback involves
the potential loss of important information. By ignoring the genes
in the training dataset that are not found in the test dataset, important
information from the training set may be lost. As a result, the
prediction accuracy of GBP methods is unstable. Further instability
arises because these methods are sensitive to noise in expression
measurements.

We propose a module-based prediction (MBP) strategy to
overcome these aforementioned drawbacks. In MBP, groups of
genes sharing similar expression patterns rather than individual
genes are used as the basic elements of the prediction model
(Fig. 1B). Such an approach borrows information from genes’
similarity when genes are absent in test sets. By overcoming
expression measurement noise and avoiding the problem of missing
genes across platforms, the MBP method is hypothesized to yield
robust predictions completely independent of information from the
test data.

Recently, several similar approaches, such as metagene (Huang
et al., 2003; Pittman et al., 2004; Potti et al., 2006; Spang et al., 2002;
Tamayo et al., 2007; West et al., 2001, 2006), supergene (Park et al.,
2007) and gene pathway module (Segal et al., 2004; van Vliet et al.,
2007; Wong et al., 2008) methods, which used unsupervised gene
cluster or supervised gene pathway information instead of individual
gene information as predictors, have been reported and successfully
applied in microarray prediction. However, unlike the MBP method
proposed here, these methods mostly focus on improving prediction
accuracy rather than on the robustness issue in inter-study gene
prediction. Models constructed by most of these methods are still

inevitably voided by gene missingness or expression measurement
noise in the test study.

In this article, we will explore properties of the MBP strategy
and compare them to those of the GBP approach. We will show, by
simulation and applications to real microarray datasets, that MBP is
more robust to gene missingness and expression measurement noise
while not sacrificing prediction accuracy. We evaluate univariate
gene/module filter selection in three popular classification methods,
including k-nearest neighbor (KNN), linear discriminant analysis
(LDA) and support vector machines (SVM). We also investigate an
embedded method [prediction analysis of microarray (PAM)] and a
multivariate gene/module selection method (R-SVM). Conceptually,
the module-based approach can generally be applied to extend any
existing classification method.

2 METHODS

2.1 Datasets and gene matching
Seven publicly available datasets were used to check the validity and
adequacy of the MBP method (Supplementary Table 1). Four prostate cancer
datasets, Luo (Luo et al., 2001), Yu (Yu et al., 2004), Welsh (Welsh et al.,
2001) and Dhan (Dhanasekaran et al., 2001) were downloaded from the
public domain. The malignant prostate cancer and its matched adjacent
prostate tissue samples from Yu and Welsh datasets, and the malignant
prostate cancer and its matched donor samples from Luo and Dhan datasets,
were used for two sets of pairwise cross-platform analyses. Three lung cancer
datasets, Beer (Beer et al., 2002), Bhat (Bhattacharjee et al., 2001) and
Garber (Garber et al., 2001), were downloaded from publicly accessible
information supporting the published manuscripts. Only the normal and the
adenocarcinoma samples were used for analysis. All three datasets were
from different platforms or different versions, and pairwise cross-platform
analyses were performed. For matching genes across platforms, Entrez ID
was used to match Affymetrix datasets using the R package ‘annotate’ (Kuhn
et al., 2008), and a web-based match tool, MatchMiner, was used for cDNA
datasets (Bussey et al., 2003). The genes sharing the same Entrez ID were
averaged for their expression.

2.2 Module-based prediction
The MBP algorithm was developed under the rationale that genes
sharing similar expression profiles could be grouped together and that a
representative gene can be selected from the group of genes for prediction
model construction. The disadvantages of GBP and motivation of MBP is
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illustrated in Supplementary Figure 1. An MBP schema compared with GBP
is shown in Figure 1. The MBP algorithm involves five major steps: gene
clustering, module merging, module selection, representative gene selection
and model construction. More detailed mathematical notations and algorithm
are shown in Supplementary Section A.

2.2.1 Data preprocessing The training data are preprocessed using
standard data filtering by eliminating genes with low expressions and genes
not varying sufficiently across the training samples. The data are standardized
using first column-wise and then row-wise standardization by subtracting
column or row means and dividing by the corresponding column or row
standard deviations.

2.2.2 Gene clustering The processed data are clustered into K gene
clusters by the classical K-means method (Hartigan and Wong, 1979). The
clusters are defined as gene modules. Normally we choose K = 100 and we
also tested K = 150 and 200 to show robustness of this selection. Many
recent articles have discussed the issue of scattered genes that should not
be clustered in gene clustering (Thalamuthu et al., 2006; Tseng and Wong,
2005). We have tested the penalized K-means approach (Tseng, 2007) and did
not find improved performance over K-means, likely because the modules
are already robust and including a small number of scattered genes in
modules (clusters) does not deteriorate the prediction performance. We will
use K-means algorithm to generate unsupervised modules throughout the
article.

2.2.3 Module merging (δ-merge) When the number of genes within a
module is less than a given threshold δ, the small module is merged into
its nearest neighboring module based on the minimum distance between
module centroids. The selection of δ is determined by a probabilistic model
described below to avoid missing genes of the entire module in the test study
with high probability.

2.2.4 Module selection Although the dimensionality has been reduced
from several thousand genes to hundreds of modules in the MBP approach,
the dimensionality is still high and proper feature (module) selection is
needed to achieve better performance. In this article, we explore both
univariate and multivariate feature selection methods. For univariate feature
selection, the top M modules are selected according to their ranks of average
absolute value of moderated t statistics (Tibshirani et al., 2002).

2.2.5 Representative gene selection For each selected module, we use the
‘median gene’, that has the smallest sum of distances to other genes in the
gene module, as the representative gene vector. These representative genes
are used to construct the prediction model.

2.2.6 Model construction For univariate feature selection methods, we
examine three classical classification methods: LDA (Mardia et al., 1979),
KNN (Dasarathy, 1991) and SVM (Cristianini and Shawe-Taylor, 2000). For
embedded methods or multivariate feature selection, PAM (Tibshirani et al.,
2002) and R-SVM (Zhang et al., 2006) are explored. Details of software
and parameter setting of these methods are described in Supplementary
Section B.

2.3 Estimate δ

One of the motivations to develop the MBP method is to build a prediction
model solely on the training data, independent of test data and portable
across studies with different microarray platforms. A necessary condition for
the MBP procedure to succeed is that the test study should contain one or
more genes in each gene cluster module in order to identify the representative
genes in the prediction model. Below we provide a simplified probabilistic
model to estimate the smallest δ needed to achieve the goal in the ‘module
merging’ step. Assume π is the probability for a gene in the training study
that is missing in the test study and the missingness of genes is independent

Fig. 2. Q–Q plots: x-axis represents distribution of cluster sizes (i.e. number
of genes in each cluster) generated by k-means clustering method and y-axis
represents cluster sizes simulated by multinomial distribution. The linear
trend in each plot shows good fitness of multinomial distribution.

of each other. The probability that the MBP method obtains no less than N
matched genes in all of the K modules in the test study is

p̃(G̃K ;π,N)=Pr
(
all modules have no less than N genes in the test study
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depends only on the gene missing probability π and the module sizes, n(Gtr
k ).

In our analysis of the seven datasets used in this article, we found
that the cluster sizes generated by K-means clustering follow multinomial
distributions very well (see Q–Q plots in Fig. 2); that is

G̃K =(n(Gtr
1 ),...,n(Gtr

K )
)∼Multinomial

(
n(Gtr )/

K,...,n(Gtr )/
K

)
. (2)

Thus, the probability of each module in the test study to have no less than N
genes (without δ-merge) becomes

P=Pr(all modules have no less than N genes in the test study)

=
∫

P(all modules have no less than N genes in the test study|G̃k )·p(G̃k ) dG̃k

=
∑
G̃k

p̃(G̃K ;π,N)·p(G̃k ).

With δ-merge algorithm, we require the probability of all modules
containing no less than N genes in the test study to be greater than α = 99.9%.
To estimate the minimal δ required in the module merge procedure, we
perform the following simulation to calculate the probability after δ-merge:

(1) Suppose n(Gtr ), K , π, δ are given. Simulate G̃K from

Multinomial
(

n(Gtr )/
K,...,n(Gtr )/

K

)
in Equation (2).

(2) Given δ, merge clusters with less than δ genes into a random cluster
(since size of the nearest neighbor cluster in a real application is not
known). Suppose the resulting cluster sizes become G̃′

K ′ (K ′ ≤K).

(3) Compute the conditional probability, p̃(π,G̃′
K ′ ) from Equation (1).

(4) Repeat step 1–3 B times (B = 10 000 in this article). The probability
of successful application to the test study can be estimated by

p(δ;n(Gtr ),K,π,N)=P(all modules have no less than N genes in test study|δ-merge)

= 1

B

B∑
b=1

p̃(G̃′ (b)
K ′ ;π,N)

(5) Repeat step 1–4. For different δ, increasingly from 1, 2, 3 … until
finding the smallest δ such that p(δ;n(Gtr ),K,π,N)≥0.999.

2588



[14:42 29/9/2010 Bioinformatics-btq472.tex] Page: 2589 2586–2593

MBP approach

The advantage of our probabilistic model is that the estimation of minimal
δ only depends on the total number of genes in the training data (n(Gtr )),
the number of clusters K used in K-means and the probability of gene
missingness in the test study. It does not depend on the observed data and
a table can be computed for a rapid decision in future applications (see
Supplementary Table 2). For example, when we use a training data with
3000 genes to build a prediction model using 150 K-means modules and
expect a gene missing probability to be 30% in the test data, we require
δ=13 in δ-merge to guarantee 99.9% success probability of application of
MBP in the inter-study prediction.

2.4 Simulations
2.4.1 Simulation with varying gene measurement variability To determine
whether the MBP approach creates a model that is robust in the presence
of expression measurement noise, we randomly added white noise to the
Luo dataset. The added noises were randomly assigned across all data
points in the expression intensity matrix and the noises followed a Gaussian
distribution with mean µ = 0 and standard deviation σ = σ0 × average
expression intensity. Variable magnitudes of noise (σ0 = 0, 0.1, 0.5, 1) were
applied to various different proportions of the entire data (P = 10, 20, 50 and
70% of all data entries) and the leave-one-out cross-validation (LOOCV)
prediction accuracies were compared between the MBP and GBP methods.
In each iteration of LOOCV, a sample is left out as test data. Only the
remaining samples, as training data, are used to perform the entire MBP
model construction in Section 2.2. The exclusion of test sample from the
entire model construction steps guarantees an unbiased estimate of prediction
accuracy.

2.4.2 Simulation with gene missingness in cross-platform scenarios The
robustness for gene missingness across platforms was evaluated by randomly
splitting the Luo dataset into a training dataset and a test dataset by a 1:1 ratio,
and randomly deleting various proportions (π = 0.1–0.7) of genes from the
test dataset to create missing genes. The prediction accuracies and prediction
success rate (PSR), defined as the number of successful predictions (i.e. the
inter-study prediction can be successfully implemented under the effect of
missing genes) divided by the total number of prediction attempts, were
compared between the MBP and GBP methods.

2.4.3 Simulation with gene mismatching To examine robustness of
prediction methods against erroneous gene matching, we randomly split the
Luo dataset into equal size of training and testing datasets, selected a portion
of genes (1–70%) and swapped their gene names in the test study. Although
erroneous gene matching is not expected to be as high as 70%, we perform
the simulation with this wide range to observe the empirical impacts.

2.5 Evaluations in real data
2.5.1 MBP versus GBP in within-study prediction Prediction accuracies
were assessed for every dataset using a LOOCV approach. For every dataset,
the accuracy was calculated as the number of samples correctly predicted
divided by the total number of samples in the dataset. Since there were
random factors in K-means algorithm in the MBP method, the LOOCV
procedure was run 30 times. The means and standard deviations of accuracies
from the MBP methods were calculated and compared with the accuracies
obtained from the traditional GBP method. The result demonstrates whether
or not MBP provides better prediction accuracy than GBP in within-study
cross validation.

2.5.2 MBP versus GBP in inter-study prediction Cross-study prediction
was performed by the standard MBP algorithm stated above. The test data
used in the pairwise cross platform analyses were three lung cancer datasets
(Bhat, Beer and Garber), two prostate cancer datasets matched with adjacent
tissues as controls (Yu and Welsh) and two prostate cancer datasets using
donors’ samples as controls (Dhan and Luo). The results were compared

with those of the GBP method, which only used genes common to both
training and test datasets.

2.5.3 Comparison to metagene approach We compared the traditional
GBP and our proposed MBP to a popular metagene approach using non-
negative matrix factorization (NMF) techniques (Tamayo et al., 2007).
NMF is performed to identify gene clusters (modules) in the data and the
prediction analysis is performed based on the gene modules by the factorized
metagenes. Unlike MBP, the metagene approach adopts weighted averaging
gene signatures similar to singular value decomposition and cannot address
the issue of non-overlapping genes between training and testing studies.

3 RESULTS

3.1 Estimation of minimum cluster size
To estimate the minimum cluster size for δ-merge, one needs to
know the distribution of the cluster sizes generated by K-means.
The cluster sizes (G̃′

K ) differ by datasets and can be viewed as a
random vector. We examined the seven datasets used in this article
by conditional Poisson distributions and multinomial distributions
to fit the distribution of G̃′

K . The conditional Poisson distribution did
not perform well (data not shown), while all datasets fitted well under
multinomial distributions in Q–Q plots (Fig. 2). This finding justifies
the first step of δ-merge by simulating G̃′

K using Equation (2).
As a key parameter of the MBP model, δ was used to control

or minimize prediction failure due to missing genes when genes
in a model built on a training set did not exist in a test set. When
a cluster size was smaller than δ, the cluster was merged into its
nearest cluster to minimize the probability of prediction failure. The
simulated results are listed in Supplementary Table 2. The threshold
δ increased when K , π and N increased or when Gtr decreased.

3.2 Simulation: robustness to expression measurement
noise, gene missingness and gene mismatching

3.2.1 Robustness to expression measurement noise To determine
the stability of the prediction accuracy in the MBP method, white
noise were added to the Luo dataset and prediction accuracies
were evaluated using LOOCV and the three classifiers: LDA, KNN
and SVM. The added noise followed N(0, (σ0 × mean intensity)2)
(with σ0 = 0, 0.1, 0.5 and 1) at serial proportions of 10, 20, 50
and 70% noise in the data. The results in Figure 3 show that
prediction accuracies of the MBP approach were robust across
varying amounts of noise added to the data (Fig. 3 top and middle
panels; accuracies >90% for both K = 100 and K = 150), whereas
the prediction accuracies of GBP dropped to around 80% when up
to 1-fold of variation was added (Fig. 3 bottom panel).

3.2.2 Robustness to inter-study gene missingness It is common
that many genes appearing in one platform may be missing in
another, causing difficulties in applying the GBP method to inter-
platform predictions. To evaluate whether the MBP method is
robust when genes are missing in the test data, the prediction
accuracies were evaluated by splitting an array dataset, Luo, into
a training set and a test set and randomly deleting genes from
the test set at different proportions (π), from 10% to 70%. The
procedure was repeated 100 times and the prediction accuracies
were averaged. Among the 100 simulations, we also recorded
the percentage of successful inter-study prediction implementation
(PSR). For example, if any gene or module in the prediction model of
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Fig. 3. Prediction accuracies in the simulation of added white noise in
the Luo data. Top: MBP approach with K = 100 and δ = 20. Middle: MBP
approach with K = 150 and δ = 20. Bottom: GBP approach.

Fig. 4. (A): PSR of MBP versus GBP. MBP can be successfully applied
in the presence of gene missingness across studies (up to π = 70%). GBP
fails with >95% probability even when π = 10%. (B): Prediction accuracy
of MBP averaged over successful inter-study prediction. (π = 10%, … ,70%
on the x-axis).

a training study is missing in the test study, the inter-study prediction
fails. In Figure 4A, the result shows that MBP was robust to gene
missingness with PSR = 100% up to π = 70%. GBP was deemed to
fail even when π = 10–20%. In Figure 4B, the prediction accuracy
of MBP remained stable even when π increased to 60–70%.

3.2.3 Robustness to inter-study gene mismatching MBP and GBP
are evaluated for robustness by simulation when erroneous gene
matching or annotation occurred in the training and test data. In 100
simulations, the results are shown in Supplementary Figure 2. As
expected, MBP is generally more robust than GBP, particularly for
high erroneous gene matching.

3.3 Prediction accuracies within studies
Although the motivation of MBP is to overcome the deficiency of
the GBP approach in inter-study prediction, it is of interest to first

Fig. 5. LOOCV within-study prediction accuracy of MBP (K = 100 and
δ = 20) versus GBP for LDA, KNN and SVM classifiers with M = 10, 20
and 30 features in seven studies.

compare their performances in LOOCV prediction within a study.
Figure 5 shows the within-study prediction results. In the three lung
cancer studies (Beer, Bhat and Garber), MBP and GBP had similarly
high prediction accuracies. For the four prostate cancer studies, MBP
usually had higher accuracy than GBP with a few exceptions. We
applied a paired t-test and Wilcoxon signed rank test on the nine pairs
of prediction accuracies (3 classifiers × 3 feature numbers) in each
study and derived the two-sided test P-values. In two of the three
lung cancer studies (Bhat and Garber), GBP’s accuracy was better
than MBP’s with statistical significance but with a very small margin.
In two out of the four prostate cancer studies, MBP outperformed
GBP with statistical significance and with a large margin. Thus, MBP
not only provides robustness for inter-study prediction (that will be
shown below) but also performs similarly or outperforms GBP in
cross-validated prediction within a study. Better performance by a
multi-gene pooled decision has been reported previously (Park et al.,
2007).

3.4 Prediction accuracies across studies
3.4.1 Lung and prostate cancer studies Cross platform prediction
was performed to evaluate MBP and GBP. Three sets of inter-study
prediction analyses are outlined in Table 1 and the numbers of
common genes across each pair of studies are shown. The minimal
δ calculated from Section 2.3 for each pair of inter-study prediction
is shown. The prediction results are shown in Figure 6 with similar
presentation as in Figure 5. The prediction accuracies of MBP versus
GBP for LDA, KNN and SVM classifiers with 10, 20 and 30 features
in 10 inter-study predictions are demonstrated. In the inter-study
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Table 1. Common genes across studies and required δ

Training Gtr (genes Test Gte Gtr ∩Gte (genes π δ

study used by MBP) study used by GBP)

Beer 4467 Bhat 4107 2493 0.44 1
Bhat 4107 Beer 4467 2493 0.39 1
Garber 3399 Beer 4467 1594 0.53 20
Beer 4467 Garber 3399 1594 0.64 29
Bhat 4107 Garber 3399 1493 0.64 33
Garber 3399 Bhat 4107 1493 0.56 25
Welsh 9494 Yu 9109 2521 0.73 1
Yu 9109 Welsh 9494 2521 0.72 1
Dhan 7784 Luo 3673 2352 0.70 1
Luo 3673 Dhan 7784 2352 0.36 1

Fig. 6. Pairwise inter-study prediction accuracies of MBP and GBP. MBP
used all genes in training data in model construction while GBP only
used intersected genes across training and testing data. The evaluation was
performed in three sets of studies (I: Beer, Bhat and Garber in the top three
rows; II: Dhan and Luo in the fourth row; III: Welsh and Yu in the fifth row).
LDA, KNN and SVM were evaluated and the top M = 10, 20, 30 features
were used in the univariate feature selection (K = 100 and δ = 20).

prediction by MBP, the prediction model was built upon the entire
gene list in the training study (i.e. the second column of Table 1). For
GBP, it was, however, based on the common gene list of training and
test studies (i.e. the fifth column of Table 1). In general, the MBP

approach generated better inter-study prediction accuracy than did
GBP (see two-sided test P-values in Beer => Garber, Bhat => Beer,
Bhat => Garber, Luo => Dhan in Fig. 6).

One may argue that MBP’s better performance may come from
its accessibility to more genes than GBP. We performed an identical
analysis of Figure 6 but forcing MBP to utilize only the intersected
genes as in GBP. The result presented in Supplementary Figure 3 is
similar to Figure 6, confirming that the improved accuracy of MBP
does not come from availability of more genes.

3.4.2 Multivariate feature selection methods and penalized
K-means From the above simulation and application results, the
MBP method showed an advantage over GBP in terms of accuracy
and had a clear advantage over GBP with respect to prediction
robustness, particularly in the presence of missing genes in inter-
study prediction or increased measurement variability. The above
evaluations were, however, based on univariate feature selection
by selecting the top M features using moderated t-statistics. In the
literature, there have been debates on whether multivariate feature
selection improves upon univariate filtering-based feature selection
in prediction accuracy (Guyon et al., 2002; Lai et al., 2006).
Theoretically, multivariate feature selection considers interaction
among genes and should perform better, while applications in
some datasets have shown the opposite results as multivariate
feature selection may add additional redundancy or may cause over-
fitting. We tested a multivariate feature selection method in this
category—R-SVM (Zhang et al., 2006) (an improved version of
famous SVM-RFE)—and an embedded feature selection method,
PAM (Tibshirani et al., 2002). We then compared them to their
univariate filtering counterparts (i.e. SVM and nearest centroid
method). The results are shown in Supplementary Figures 4.1
and 4.2. In general, multivariate feature selection or embedded
methods did not necessarily improve univariate approaches. When
comparing MBP and GBP, both results in PAM (Supplementary
Fig. 4.1) and in SVM (Supplementary Fig. 4.2) did not show
either method to have better accuracy than the other one when
combining both univariate and multivariate feature selection
methods.

An important factor that affects the performance of MBP is
the quality of unsupervised modules (i.e. clusters). Given that the
K-means method forces all genes into K clusters, many scattered
genes are forced into clusters and may dilute the prediction
power of the module. We examined a modified K-means method,
penalized K-means (Tseng, 2007), and tested whether unsupervised
modules generated by penalized K-means can outperform classical
K-means. The results (shown in Supplementary Fig. 5) showed
a negative conclusion. Better quality of clusters generated by
penalized K-means does not further improve performance in MBP.
The result suggests that robustness provided by MBP is probably
strong enough to offset the effect of a small number of scattered
genes in the modules.

3.4.3 Comparison to metagene approach We compared GBP and
MBP to a popular metagene approach. Although this approach
is module based, its weighted averaging gene signatures do not
address the non-overlapping gene issue between training and testing
studies in inter-study prediction. The method has to be applied to
the intersected gene set as GBP does. In Supplementary Figure 6,
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the performance of metagene approach is inferior to GBP and MBP
in most of the inter-study predictions evaluated.

4 DISCUSSION
An ideal prediction model should be highly accurate, robust and
simple for clinical utility. To pursue these standards, we developed
the MBP method, which takes advantage of information from genes
sharing similar expression patterns. The results of the current study
show that the prediction accuracies of the MBP method are slightly
better than those of the GBP method in both within-study and
inter-study predictions. Furthermore, the MBP method is superior
to the GBP method in being robust to gene missingness and to
experimental noise. The results show great potential for MBP to
improve inter-study prediction in microarray studies and enhance
the application of this technology to clinical practice.

In the literature, it has been shown that multiple completely
different prediction models may generate equally high prediction
accuracy. For example, the well-known 70-gene signature to predict
breast cancer patient survival was first proposed (van’t Veer et al.,
2002). Other investigators derived an additional six classifiers
that performed as well as the 70-gene signature using the same
dataset (Ein-Dor et al., 2005). Also, disparity in using different
gene signatures to predict similar outcomes in different studies has
been reported (Ramaswamy et al., 2003; Sorlie et al., 2001; van’t
Veer et al., 2002). It is important to allow reasonable inter-study
prediction validations in relevant published studies. The stability
of the MBP method observed in the present study is the result of
grouping genes sharing a similar expression pattern and selecting a
gene that can represent the group of genes. It has been postulated
that using a cluster average would yield a higher prediction accuracy
under certain conditions (Park et al., 2007). Although the MBP
method only slightly outperforms the GBP method in prediction
accuracy, the prediction robustness of MBP remains its major
advantage.

The clinical utility of a genomic prediction model relies heavily
on the model’s simplicity and reproducibility. Recent cross-platform
analyses used intersection genes across datasets (Bhanot et al., 2005;
Bloom et al., 2004; Bosotti et al., 2007; Cheadle et al., 2007;
Nilsson et al., 2006), an approach that required information from
all datasets involved in the analysis. This approach is appropriate
for meta-analysis of biomarker detection but is inadequate for cross-
platform prediction. There are two elements needed for a prediction:
(i) a selected gene signature and (ii) a prediction model. When the
construction of a prediction model requires the common genes of
training and test studies, the selected prediction signature must be
readjusted whenever a different platform of the test study is applied,
making it inconvenient to validate and for clinical use. Furthermore,
loss of training data information by including only intersection genes
to build the prediction model makes this approach less desirable.
MBP is a natural solution to these hurdles.

A lack of reproducibility hinders the application of genomic
prediction models. Many factors may affect model reproducibility.
The MBP method focuses on two factors to increase model
reproducibility: gene missingness and experimental noise. The
robustness of the MBP method toward missing genes was provided
by grouped decision in modules and the rare probability of model
failure is controlled by merging small modules to nearest modules
in our algorithm. The robustness of the method regarding expression

measurement noise was assessed by testing on the Luo dataset.
Although the MBP method was robust to added noise, the pattern of
noise added may not adequately represent experimental variations
in real data. Further study will focus on evaluating real data or
introducing variation other than Gaussian noise.

In addition to demonstrating the clinical applicability of MBP,
this study demonstrated some novel approaches in the algorithm.
First, this is the first time that cluster sizes generated by K-means are
demonstrated to consistently follow a multinomial distribution and
a cluster merging procedure is proposed to avoid model prediction
failure due to gene missingness. Second, we used a representative
gene with the closest summed distance to all other genes within
a module (similar to ‘sample median’ concept in estimating mean
parameter) to summarize the module information, which is an actual
gene with better annotation and interpretation rather than using a
pseudo-gene such as eigen-gene or averaged gene vector used in
many methods. Although we do not have enough evidence to prove
or argue the superiority of adopting median representative genes,
this procedure is conceptually more robust to accidental noises
and has better interpretability. Third, MBP reduced redundant gene
features by summarizing similar gene expression profiles within
each module, diminishing gene collinearity and adding a novel
technique for data reduction.

One limitation of the MBP method is the lack of correlation and
interpretation of each module to known biological pathways. Further
investigation will be made to integrate pathways from biological
databases as supervised modules to improve the performance. Proper
normalization across studies is another key to successful inter-
study predictions. Our recent publication (Cheng et al., 2009)
has discussed the issue of genewise normalization in addition to
commonly practiced sample-wise normalization. MBP proposed in
this article focuses on robust inter-study prediction from another
angle and can potentially be combined with these advanced
normalization methods to enhance prediction accuracy.

Recently, deep sequencing technology is emerging as an attractive
alternative to microarrays for genotyping, analysis of methylation
patterns, identification of transcription factor binding sites and
quantification of gene expression. The digital quantification is far
more precise than microarray although its widespread applicability
is still now limited by its high cost. As the price goes down in
the near future, we expect increased popularity of this technology.
Our proposed MBP method can be extended to analyze deep
sequencing data, where the feature dimensionality is even higher
than microarray data. The fast algorithm of K-means clustering and
the advantage of rapidly reducing dimensionality by gene modules
make MBP a perfect tool for such type of extremely high-throughput
technology.
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