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Abstract

The Dot/Icm type IVB secretion system (T4BSS) is a pivotal determinant of Legionella pneumophila pathogenesis. L.
pneumophila translocate more than 100 effector proteins into host cytoplasm using Dot/Icm T4BSS, modulating host
cellular functions to establish a replicative niche within host cells. The T4BSS core complex spanning the inner and outer
membranes is thought to be made up of at least five proteins: DotC, DotD, DotF, DotG and DotH. DotH is the outer
membrane protein; its targeting depends on lipoproteins DotC and DotD. However, the core complex structure and
assembly mechanism are still unknown. Here, we report the crystal structure of DotD at 2.0 Å resolution. The structure of
DotD is distinct from that of VirB7, the outer membrane lipoprotein of the type IVA secretion system. In contrast, the C-
terminal domain of DotD is remarkably similar to the N-terminal subdomain of secretins, the integral outer membrane
proteins that form substrate conduits for the type II and the type III secretion systems (T2SS and T3SS). A short b-segment in
the otherwise disordered N-terminal region, located on the hydrophobic cleft of the C-terminal domain, is essential for outer
membrane targeting of DotH and Dot/Icm T4BSS core complex formation. These findings uncover an intriguing link
between T4BSS and T2SS/T3SS.
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Introduction

Pathogenic bacteria transport functional proteins, such as

effector proteins and exotoxins, across bacterial membranes.

These bacterial proteins interact with host proteins to manipulate

host cellular functions. Therefore, the secretion process plays a

central role in bacterial pathogenesis. To accomplish this, bacteria

have evolved various secretion systems. The type II secretion

system (T2SS) is specialized to export periplasmic protein

substrates, such as cholera toxin of Vibrio cholerae and heat-labile

enterotoxin of enterotoxigenic Escherichia coli (ETEC), across outer

bacterial membranes to the extracellular milieu [1,2,3,4,5]. The

type III secretion system (T3SS) is a protein-transport mechanism

that translocates cytoplasmic substrates directly into the host

cytoplasm. It plays a critical role in pathogenesis for a number of

important bacterial pathogens, including enteropathogenic E. coli

(EPEC) [6]. T3SS is ancestrally related to the bacterial flagellar

system, and its core apparatus has a characteristic structure, often

referred as ‘‘needle complex’’ [7,8]. The type IV secretion system

(T4SS) is related to the conjugation system, and is apparently a

very versatile secretion system for biological macromolecules

[9,10]. For example, the Agrobacterium tumefaciens VirB/VirD

system, one of the best studied T4SSs, is able to transport DNA-

protein complex (T-DNA) into host cells. Bordetella pertussis secretes

periplasmic pertussis holotoxin across outer membrane via the Ptl

T4SS [11,12]. Many intracellular pathogens, including Legionella

pneumophila, translocate a large array of effector proteins to the host

cytosol using T4SSs [13,14].

T4SSs are further divided into two subgroups, type IVA (T4ASS)

and type IVB (T4BSS) [15,16]. These two subgroups of T4SS are

not related to each other at sequence level—with some exceptions,

including secretion ATPases VirB11/DotB [17,18,19]. T4ASS is

related to the conjugation systems of plasmids RP4, R388 and

pKM101, and found in a number of bacterial pathogens, including

plant pathogen A. tumefaciens. T4BSS is related to the conjugation

systems of plasmids ColIb-P9 and R64, and was originally found in

human pathogen L. pneumophila [19,20,21]. L. pneumophila are gram-

negative bacteria ubiquitous in fresh water and soil environments

[22,23]. L. pneumophila infect and replicate within a wide variety of

phagocytic eukaryotic cells, ranging from unicellular amoeba to

human macrophages. In cases of human infection, L. pneumophila

infection can result in a severe form of pneumonia known as

Legionnaires’ disease. Intracellular replication of L. pneumophila

requires functional Dot/Icm T4BSS, irrespectively of host species

[18,19]. It has been well established that L. pneumophila translocate

more than 100 effector proteins into host cytoplasm using the Dot/

Icm T4BSS [13]. The zoonotic pathogen Coxiella burnetii and the

anthropod pathogen Rickettsiella grylli are some of known closest

relatives to Legionella, and both carry T4BSSs closely related to that

of Legionella [21,24,25,26]. A growing body of bacterial genomic

information now suggests that over 20 pathogenic and environ-

mental bacteria carry T4BSSs (Figure S1).
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Recent studies demonstrated that the pKM101 conjugation

system, a T4ASS, has a lantern-shaped core complex composed of

three proteins TraN/VirB7, TraO/VirB9 and TraF/VirB10

[27,28]. This core complex spans both inner and outer

membranes, but its structure is different from other double

membrane-spanning secretion systems in architecture and com-

position. No other double membrane-spanning complex has been

isolated and characterized from both T4ASS and T4BSS.

However, a putative core complex of the Dot/Icm T4BSS has

been suggested through a biochemical study of component

proteins [29]. The complex is supposed to contain two outer

membrane lipoproteins, DotC and DotD [30], two inner

membrane-spanning proteins, DotF and DotG, and one outer

membrane-associated protein, DotH. In the absence of other

components of the Dot/Icm T4BSS DotH remains unassociated

with outer membrane, while lipoproteins DotC and DotD are

targeted to outer membrane ([29] and Figure S2). The outer

membrane targeting of DotH depends on lipoproteins DotC and

DotD, presumably in a manner analogous with the function of

pilotin in targeting secretin inT2SS [29]: the outer membrane

lipoprotein pilotin is required for the stabilization and outer

membrane targeting of the secretin [31,32]. The outer membrane

lipoprotein VirB7 of Agrobacterium T4ASS forms a heterodimer

with a core component, VirB9, and stabilizes several VirB

proteins, including VirB9 [33]; these are thought to be initial

steps in assembling the T4ASS complex [9]. Lately, it has been

demonstrated that the lipidation site cysteine of pKM101 TraN/

VirB7 is essential to the outer membrane association of pKM101

T4ASS core complex, suggesting that TraN/VirB7 has pilotin-like

function in terms of outer membrane targeting of the core complex

[28]. Thus, the outer membrane lipoproteins DotC/DotD of

T4BSS, T2SS pilotins and T4ASS VirB7 seem to play some

overlapping role in the secretion apparatus assembly, although

they are dissimilar in size and amino acid sequences.

To clarify the structure and the molecular mechanism of Dot/

Icm T4BSS, we crystallized DotD without the first 20 amino acids

which contain the signal sequence for secretion across inner

membranes and the lipidation site, Cys20 (DotDDN, Figure 1A),

and determined the structure at 2.0 Å resolution.

Results/Discussion

Structure of DotDDN
DotDDN is composed of the compact C-terminal domain

(DotD domain) and the N-terminal disordered region (Figure 1).

The N-terminal third of DotDDN was invisible in the electron

density map, except for a short b-strand (Ala-37 to Ala-42) that we

call the ‘‘lid.’’ The N-terminal disordering was confirmed with

limited digestion experiments using trypsin or V8 protease (Figure

S3). Sub-stable products of digestion were identified by mass

spectroscopic analysis. All preferential cleavage sites (residues 25,

55, 58 and 61) are found in the N-terminal region, suggesting the

N-terminal region is readily accessible to proteases used in this

analysis. In addition, all three methionine residues of DotDDN are

in the disordered N-terminal region (shown red letters in

Figure 1C). These explain why we were not able to solve the

structure by single-wavelength anomalous dispersion (SAD)

phasing with the SeMet labeled DotDDN crystals. Instead, we

solved the structure using SAD phasing with Os derivative of

DotDDN crystals.

Structural similarity between the DotD domain and
secretin N0/T3S domains

The DotD domain forms a bab sandwich fold composed of two

a-helices flanked by an antiparallel three-stranded b-sheet on one

side and a mixed three-stranded b-sheet on the other side

(Figure 1B). The DotD domain does not show structural similarity

to T4ASS VirB7 [27,34]. DaliLite database search [35] showed

that the DotD domain has striking structural similarity to the N-

terminal subdomain of secretins, which are outer membrane pore-

forming proteins of T2SS and T3SS (Figure 2). The N0 domain of

the ETEC GspD (the protein database (PDB) ID 3ezj, mol-A), a

T2SS secretin, is superimposable onto the DotD domain with a

root-mean-square deviation (rmsd) of 2.1 Å (Figure 2A). The T3S

(type III-specific) domain of the EPEC EscC (PDB ID 3gr5, mol-

A), a T3SS secretin, is superimposable onto the DotD domain with

a rmsd of 2.5 Å (Figure 2B). Sequence identity between the DotD

domain and N0/T3S domains is only 6.4% and 10.6% for 78 and

75 amino acids, respectively. In fact, these domains have never

been implicated as a conserved domain at the amino acid

sequence level. Thus the DotD domain and the N0/T3S domains

of the type II/III secretins share remarkable structural homology,

although they are poorly related in amino acid sequences.

The DotD lid
The most remarkable difference between DotD and the N0/

T3S domains of secretins is that DotD has a lid that makes b-

strand addition [36] to b-strands b1 and b3. The lid is located on

b1 and covers the hydrophobic cleft formed by a1, a2 and b1

(Figures 3 and S4). The side chains of two hydrophobic residues in

the lid (Ile-39 and Leu-41) stick into the cleft. The hydrophobic

nature of most secretin residues—corresponding to the DotD

residues that form the hydrophobic cleft—is conserved (Figure 2C,

yellow shaded). However, some bulky side-chains (Phe-5, Phe-9,

Asn-23 and Tyr-51 of GspD, Tyr-32, Ile-34, Ile-44 and Asn-51 of

EscC; shown in italics in Figure 2C and in dark blue in Figure S5)

protrude inwards and fill the secretin subdomain clefts. As the

chain connecting the lid to the DotD domain is invisible in the

crystal, it is unclear whether the lid and the DotD domain are in

the same molecule.

The 16 amino-acid segment (Ala-37 to Met-52) containing the

lid is well conserved among DotD orthologs from closely related

bacteria (50% identity, Figure 1C), compared with other segments

in the N-terminal region of DotDDN. To evaluate the biological

Author Summary

Bacterial pathogens deliver virulence factors such as
exotoxins and effector proteins to host cells. To accomplish
this bacteria utilize specialized secretion systems such as
type III and type IV secretion systems. The type IV secretion
systems (T4SS) play a central role in pathogenesis by many
important pathogens including Agrobacterium tumefaciens,
Helicobacter pylori and Legionella pneumophila. T4SS is
ancestrally related to the bacterial conjugation system and
is divided into two subgroups, type IVA (T4ASS) and type
IVB (T4BSS), which are derived from distinct conjugation
systems. In spite of its pivotal role in bacterial pathogenesis,
the structural bases and molecular mechanisms of the type
IVB secretion still remain largely unknown. Here we show
the crystal structure of DotD, one of the core components
of Legionella T4BSS. Surprisingly, the structure of DotD is
not related to those of T4ASS core components. In contrast,
the structure of DotD is remarkably similar to that of a
subdomain of secretin family proteins, which form substrate
conduits for other types of secretion systems. This finding
provides intriguing insights into the nature and the
evolution of bacterial secretion systems essential for
pathogenesis.

Structure of a T4BSS Core Component DotD
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function of the lid, we constructed a lid mutant (DotDAA), carrying

alanine substitutions of both Ile-39 and Leu-41 residues, the side

chains which stick into the cleft. The mutant protein was expressed

at a level similar to that of wild-type protein in culture-grown L.

pneumophila, and was equally targeted to bacterial outer membrane

(Figure 4A). Similarly, the expression and the localization of

another lipoprotein, DotC, were not affected by the DotD

mutation (Figure 4A). In contrast, outer membrane targeting of

DotH was abrogated in L. pneumophila producing the DotDAA

mutant as much as in the DotD deletion strain (Figure 4A). L.

pneumophila strains producing single mutants DotDI39A or Dot-

DL41A behaved like isogenic wild-type strain (Figure S6),

suggesting that alanine substitutions of both residues are required

for the defect. Furthermore, immunoprecipitation analyses

Figure 1. Structure of DotDDN. (A) Domain structure of DotD. The green and orange boxes denotes the DotD domain and the Lid, respectively,
which were visible in the electron density map. The black box denotes the signal sequence. Trypsin and V8 protease preferential cleavage sites are
shown by black and grey arrows, respectively. (B) Crystal structure of DotDDN. (C) Multiple alignment of DotD orthologs from closely related bacterial
pathogens, with structural annotation gained from the DotD structure. DotD sequences were obtained from blast nonredundant protein database
(nr). Lp: Legionella pneumophila (strains Philadelphia-1, Paris, Lens), Rgrylli: Rickettsiella grylli, Cb: Coxiella burnetii (strains Dugway 5J108-111, RSA 331).
Conserved and similar residues were black and grey shaded, respectively. The lipidation site cysteins are red shaded. Tripsin/V8 sites are shows as in
panel A.
doi:10.1371/journal.ppat.1001129.g001

Structure of a T4BSS Core Component DotD
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indicate that all interactions between putative core components

DotC, DotD, DotF, DotG and DotH were severely impaired in

the L. pneumophila producing the mutant DotDAA (Figure 4B). It

should be noted that the apparent difference in mobility in SDS

gel between the wild-type and the mutant DotD proteins is due to

the intrinsic property of these proteins, because the purified

mutant protein from overexpressing E. coli showed the same

anomaly in the gel motility.

These data indicate that the lid plays a significant role in the

assembly process of the core complex of the Dot/Icm T4BSS.

However, it remains unclear whether the lid functions directly

through interaction with the DotD domain, or with other partners

such as DotC and DotH, or indirectly through opening the cleft in

the DotD domain.

Periplasmic ring models of DotD
Secretins form a protein family that participates in several

macromolecule translocation processes across bacterial outer

membranes [37,38], including type II and type III secretion, type

IV pilus biogenesis and filamentous phage extrusion. Secretins

extracted from membranes are multimeric and have a stacked-ring

structure of cylindrical shape. Cryo-electron microscopic analyses of

various secretins suggest that secretin rings have 12- or 14-fold

rotational symmetry [39,40,41]. Their protease-resistant C-terminal

domains contain single well-conserved secretin domains (red boxes

in Figure 5A), which embed in bacterial outer membranes. The N-

terminal region of secretins extends into the periplasm and may

interact with inner membrane partner proteins as well as substrates

[42,43]. The N-terminal region is less conserved and always

Figure 2. Comparison of DotDDN with secretin periplasmic subdomains. (A) DotD (green) superimposed onto the N0 domain of ETEC
secretin GspD (residue 43 to 120; PDB accession 3ezj) from the type II secretion system (blue). (B) DotD (green) superimposed onto the T3S domain of
EPEC secretin EscC (residue 21 to 103; PDB accession 3gr5) from the type III secretion system (light blue). (C) Structure-based sequence alignment of
the DotD domain, GspD and EscC. Conserved residues are colored. See text for explanations for yellow shaded residues and residues shown in italics.
doi:10.1371/journal.ppat.1001129.g002

Figure 3. Interaction between the DotD domain and the lid. Stereo view of the interface between the DotD domain (a1 and a2 helices in
green, b1 strand in yellow) and the lid (in orange).
doi:10.1371/journal.ppat.1001129.g003

Structure of a T4BSS Core Component DotD
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contains one N-terminal domain, which is related to the TonB-

dependent outer membrane receptor domain, followed by one or

more repeats of domains with the so-called ‘‘KH-fold’’ (green and

blue boxes in Figure 5A). The N0/T3S domains are the secretin

subdomain closest to the N-terminal that follow the signal sequences

for secretion across inner membranes via the Sec machinery.

Crystal structures of the periplasmic regions of GspD [44] and EscC

[45] secretins, spanning the N0/T3S and the Secretin_N domains,

were not captured as multimers of cylindrical shape. However,

taken together with available electron micrographic data, it has

been suggested that these domains of secretins form periplasmic

rings underneath the outer membrane rings. These findings imply

that the DotD domain may form a periplasmic ring that is a part of a

higher order complex spanning the outer membrane, plausibly

composed of DotC, DotD and DotH (Figure 5B).

Our attempts to biochemically isolate a complex containing

DotD has not succeeded yet, whereas it is possible to explore the

propensity of DotD to form ring using DotD atomic coordinates

obtained by this study and an in silico approach. To this end we

used SymmDock, an algorithm for prediction of complexes with

rotation symmetry by geometry based docking [46,47] Similar

approach using SymmDock has been used for constructing the

Figure 4. The lid mutation adversely affected core assembly. (A) The lid mutant is defective in outer membrane targeting of DotH. Total
membranes were isolated from whole cell lysates of L. pneumophila strains producing wild-type, the lid mutant (DotDAA) or no DotD. Inner and outer
membranes were separated by isopycnic sucrose density gradient centrifugation as described in Materials and Methods. Whole cell lysates (Whole
cell), soluble fractions (Soluble), total membranes (Membrane) and the separated membrane fractions were analyzed by Western immunoblotting
using indicated antibodies. DotA and Momp were used as inner and outer membrane control, respectively. (B) Adverse effects of the lid mutation on
interactions between DotC, DotD, DotF, DotG and DotH. L. pneumophila strains producing wild-type, the lid mutant (DotDAA) or no DotD were
treated with cleavable crosslinker (0.08 mM DSP) before lysate preparation. All L. pneumophila strains used in this experiment encode M45 epitope-
tagged dotF on the chromosome for immunoprecipitation and detection of DotF. Cleared lysates were subjected to immunoprecipitation with
antibodies against indicated proteins (IP: DotC, DotD, DotG and DotH) or anti-M45 epitope (IP: DotF) as described in Materials and Methods.
Immunoprecipitants were treated with SDS-PAGE sample buffer containing reducing agent to cleave crosslinks, and were subjected to western
immunoblotting analyses with antibodies against indicated proteins (IB: DotC, DotD, DotG and DotH) or anti-M45 epitope (IB: DotF). Boxed panels
(IP:DotC/IB:DotC, IP:DotD/IB:DotD IP:DotF/IB:DotF, and IP:DotG/IB:DotG) show efficiency of immunoprecitation in this experimental condition. The
loading amounts onto the SDS gels of these samples were reduced by 10-fold compared to other samples which show the efficiency of co-
immunoprecipitation. Detection of DotH by immunoprecipitation followed by western immunoblotting was technically difficult because its mobility
in the gel was similar to that of immunoglobulin heavy chain, and thus was not carried out.
doi:10.1371/journal.ppat.1001129.g004

Structure of a T4BSS Core Component DotD
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ring model for GspD periplasmic domain[44]. SymmDock

predicted reasonable ring structures of the DotD domain (without

the lid), irrespective of the assumption of rotation symmetry, C12

or C14 (Figure 5C and 5D, respectively). These ring models look

alike in terms of monomer arrangement in the complexes. The

analysis of amino acid conservation pattern using the ConSurf

server [48] showed that many conserved residues of both ring

models are found at the inner surface and the monomer interface

of the DotD domain, while most variable residues are found at the

outer surface of the ring (Figure S7). The cleft, the lid-associating

site of the DotD domain, comes near the periplasmic surface in the

ring models (Figure S8). Therefore, it may affect the interactions

between DotD and inner membrane components of the Dot/Icm

T4BSS or its substrates. Alternatively, the lid may not be in place

and extend towards the outer membrane when the ring is formed.

This would be a reasonable possibility given that the N-terminal

residue of the DotD domain (Ser-66) is situated at the outer

membrane surface of the ring models and the N-terminus of DotD

must be anchored in the outer membrane. The crystal structure of

the outer membrane complex of the pKM101 T4ASS, containing

full-length TraN/VirB7, was recently reported [27]. The TraN/

VirB7 in the complex takes an extended conformation and wraps

around the outer membrane complex. Mature TraN/VirB7 is a

small peptide, 33 residues long, comparable in size to the N-

terminal disordered region of DotD (46 amino acids). Along these

lines, the N-terminal disordered region of DotD, which contains

the lid and the conserved segment (Ala-37 to Met-52), may

interact with outer membrane components such as DotC and

DotH.

In summary the DotD domain might have the propensity to

form a ring like the EscC T3S and the GspD N0 domains;

however, the ring models must be validated by future experimen-

tal confirmation.

Links between T2SS and T4BSS
There are several intriguing parallels between secretins and

DotC, DotD and DotH, aside from being outer membrane

components essential for bacterial secretion systems. The protease-

resistant C-terminal domain, representing about two thirds of

DotH, is predicted to be rich in b strands using PHDsec [49] (NN

and HN, unpublished), which is commonly true of integral outer

membrane proteins such as secretins. Lipoproteins DotC and

DotD are required for the outer membrane targeting of DotH;

likewise pilotins are required for the outer membrane targeting of

cognate secretins. Together with the remarkable structural

similarity between DotD and a periplasmic subdomain of

secretins, it is possible that the putative complex of DotC, DotD

and DotH is a secretin counterpart of T4BSS (Figure 5B).

Moreover, there is another link between the secretion ATPases

of T4BSS and T2SS. Unlike other T4BSS components, secretion

ATPase DotB shares sequence-level similarity with ATPases of

T2SS, T4ASS, and the type IV pilus biogenesis system (T4PBS)

which is closely related to T2SS. Phylogenetic analysis of these

ATPases showed DotB to be closely related to the T4PBS ATPase,

PilT [17]. In fact, DotB was found in the major group consisting of

T2SS and T4PBS ATPases in the phylogenetic tree inferred for

secretion ATPases. Importantly, this group is distinct from the

major group in which T4ASS ATPases (VirB11) are found.

Collectively, the data from structural and phylogenetic analyses

raise the rather unexpected possibility that the architecture of

T4BSS machinery shares similarity with T2SS to a certain extent,

and can be significantly different from T4ASS.

In conclusion, the present study revealed that the structurally

conserved DotD/N0/T3S domain is widely spread throughout

outer membrane complexes of even distantly related secretion

systems, including T2SS, T3SS and T4BSS. Although the DotD

ring models must be validated by future experimental studies, the

finding raised the possibility that transport machinery of T4BSS

may adopt mosaic architectures of T4ASS and T2SS/T3SS.

Future elucidation of structures and functions of bacterial secretion

apparatus will give new insights into the molecular mechanism of

protein transport across membranes—a central process essential

for bacterial pathogenesis.

Materials and Methods

Bacterial strains, plasmids and antibodies
Bacterial strains and plasmids used in this study are provided in

Table S1. L. pneumophila strains defective in dotD as well as L.

pneumophila strains carrying the M45 epitope tagged dotF or the

dotDAA (I39AL41A) mutation were constructed by allelic exchange

Figure 5. Periplasmic ring models of DotD. (A) Domain
organizations of DotD, EscC and GspD. Green boxes: DotD/T3S/N0
domain; Blue boxes: Secretin_N domain (protein family database Pfam
PF03958); Red boxes: Secretin domain (Pfam PF00263). (B) Schematic
drawings of the type II/III secretin and a putative outer membrane
complex containing DotD. Red, blue and green torus represents
domains schematically drawn in panel A. (C) Ring models of the DotD
domain having 12- and 14-fold rotation symmetry. Ring structures were
modeled using SymmDock program [47] fed with DotD atomic
coordinates (excluding water molecules and the lid) and order of
rotation symmetry (C12 or C14).
doi:10.1371/journal.ppat.1001129.g005

Structure of a T4BSS Core Component DotD
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[50]. Rabbit anti-sera against DotC, DotG, DotH and M45 epitope

were raised by immunization of KHL-conjugated synthesized

peptides CMDYVKPEAPNVTLLPKTKA (DotC), CWKQVET-

QVYTEGTEETK (DotG), CYGPNAKSMPTEEGIPPS (DotH),

and CDRSRDRLPPFETETRIL (M45), respectively. Polyclonal

antibodies were purified from the anti-sera by affinity chromatog-

raphy using peptide-conjugated SulfoLink resins (Pierce). Antibod-

ies against DotA (mAb2.29) and DotD were described previously

[51,52].

Protein expression and purification
E. coli cells overproducing DotDDN with a hexa-histidine tag

were collected by centrifugation and resuspended with 50 mM

Tris-HCl pH 7.5, 50 mM NaCl, 1 mM EDTA containing

Complete Protease Inhibitor Cocktail (Roche Diagnostics). Cells

were disrupted, centrifuged (30,0006g, 20 min), and the soluble

fraction was loaded on a SP sepharose column (GE Healthcare).

His-tagged DotDDN was eluted by a step gradient of NaCl in

20 mM Tris-HCl pH 7.5 and was loaded on a HisSelect column

(Sigma-Aldrich). His-tagged DotDDN was eluted by a step

gradient of imidazole in 20 mM Tris-HCl pH 7.5, 150 mM

NaCl. Peak fractions were pooled and dialyzed against 20 mM

Tris-HCl pH 7.5, 200 mM NaCl. After removal of the His-tag by

thrombin digestion, DotDDN was loaded onto a HiLoad Superdex

75 gel filtration column (GE Healthcare). Purified protein was

eluted in 20 mM Tris-HCl pH 7.5 and concentrated using a

Vivaspin 20 concentrator (Sartrius). Se-Met DotDDN was purified

using the procedure described above.

Crystallization, data collection and structure
determination

Crystals suitable for X-ray analysis were obtained at 4uC using the

sitting-drop vapor-diffusion method. I23 crystals of DotDDN with

unit cell dimensions a = b = c = 103.9 Å were grown from drops

prepared by mixing 1 ml protein solution (11.2 mg/ml) with 1 ml

reservoir solution containing 8% (v/v) PEG 8000 and 0.1 M CHES-

NaOH pH 10.0. Crystals of Se–Met-labeled protein grown under the

same conditions as the native crystals were also obtained. Crystals

were soaked in a solution containing 90% (v/v) of the reservoir

solution and 10% (v/v) MPD for a few seconds, and then

immediately transferred into liquid nitrogen for freezing. X-ray

diffraction data were collected at a synchrotron beamline BL41XU of

SPring-8 (Harima, Japan) with the approval of the Japan Synchrotron

Radiation Research Institute (JASRI). The data were recorded under

nitrogen gas flow at 90 K, and under He gas flow at 40 K, for native

and derivative crystals, respectively. The data were processed with

MOSFLM [53] and scaled with SCALA [54]. Initially, we tried to

solve the structure using the anomalous data of Se-Met derivative

crystals, but the anomalous signal was too weak to determine the

phase. Therefore, we prepared Os derivative crystals by soaking the

crystals into a reservoir solution containing K2OsCl6 at 50%

saturation for four hours. Initial SAD phase was calculated from

the anomalous diffraction data of the Os derivative crystal using

SOLVE [55]. The phase was improved and extended to 2.0 Å with

DM using a native data set. The model was constructed with COOT

[56], and was refined to 2.0 Å using program CNS [57]. A 5%

fraction of the data was excluded from the data for the R-free

calculation. During the refinement process, iterative manual

modifications were performed using an ‘‘omit map.’’ The refinement

converged to an R factor of 22.5% and a free R factor of 24.7%. The

Ramachandran plot indicated that 91.1 % and 8.9 % residues were

located in the most favorable and allowed regions, respectively. Data

collection and refinement statistics are summarized in Tables 1 and 2.

Membrane fractionation
Fractionation of L. pneumophila membranes was carried out

essentially as described [58]. Briefly, 20 ml of bacterial culture

grown in AYE for 18 h with starting OD600 = 0.1 was centrifuged

and bacterial pellets were suspended with 5 ml of 10 mM HEPES

pH 7.4, 20% (w/w) sucrose. After the addition of RNaseA (final

10 mg/ml), DNaseI (2 mg/ml) and phenylmethylsulfonyl fluoride

(PMSF, 1 mM), cells were lysed by two passages of a chilled

French Pressure Cell (Thermo Scientific); unlysed cells were

removed by centrifugation (5,000 g, 15 minutes). EDTA was

added to the lysate to a final concentration of 5 mM. A crude

membrane fraction was obtained by loading 1.6 ml of the bacterial

lysate onto a two-step gradient consisting of 0.8 ml of a 60%

sucrose cushion and 2.5 ml of 25% sucrose in 10 mM HEPES.

The membranes were pelleted for 3.5 h at 40,000 rpm in an

SW50.1 rotor at 4uC. A membrane layer visible on top of the 60%

sucrose was extracted and diluted to ,25% sucrose with 10 mM

HEPES. The crude membrane fraction was separated by isopycnic

Table 1. Data collection statistics.

Native Os-derivative

Space group I23 I23

Cell dimension, a(Å) 103.86 103.72

Wavelength (Å) 0.97897 1.13958

Resolution (Å) 42.4-2.0 (2.11-2.0) 42.0-2.6 (2.74-2.60)

Rmerge 7.2 (35.2) 9.9 (37.1)

Rano - 5.5 (11.6)

I/sI 19.9 (5.6) 23.5 (5.7)

Completeness (%) 99.9 (100) 100 (100)

Redundancy 7.1 (7.3) 6 (6)

doi:10.1371/journal.ppat.1001129.t001

Table 2. Refinement statistics.

Resolution range (Å) 36.7-2.0 (2.13-2.00)

No. of reflections working 12,104 (1,990)

No. of reflections test 623 (96)

Rw (%) 22.5 (27.1)

Rfree (%) 24.7 (27.0)

Rms deviation bond length (Å) 0.005

Rms deviation Bond angle (u) 1.1

B-factors

Protein atoms 37.8

Solvent atoms 59.5

Ramachandran plot (%)

Most favored 911

Additionally allowed 8.9

Generously allowed 0

Disallowed 0

No. of protein atoms 794

No. of solvent atoms 181

Values in parentheses are for the highest resolution shell.
Rw = S|| Fo | - | Fc || / S | Fo |, Rfree = S || Fo | - | Fc || / S | Fo |
doi:10.1371/journal.ppat.1001129.t002
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sucrose density gradient centrifugation using a gradient consisting of

a 0.5-ml cushion of 60% sucrose and layers of 1 ml of 55% sucrose,

2.4 ml each of 50%, 45%, and 40% sucrose, 1.4 ml of 35% sucrose,

and 1 ml of 30% sucrose in 10 mM HEPES. Approximately 1.2 ml

of the crude membrane prep was placed on top of the gradient and

centrifuged in an SW41 rotor at 37,000 rpm for 16 h at 4uC.

Fractions (0.75 ml) were collected and analyzed by western

immunoblotting using antibodies against DotC, DotD and DotH.

Levels of the 28-kDa Major outer membrane protein (MOMP) and

DotA were determined by Coomassie blue staining and western

immunoblotting, respectively.

Immunoprecipitation analysis
Bacterial cells grown as described above in 10 ml AYE medium

were washed once with cold PBS and resuspended in 10 ml of PBS.

A cleavable crosslinker, dithiobis (succinimidyl propionate) (DSP;

final concentration: 0.08 mM) was added to the suspension and

incubated for 2 h on ice. The crosslinking reaction was stopped by

addition of Tris pH 8.0 (final 120 mM) and cells were resuspended

with 5 ml of 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM

EDTA. A suspension was mixed with lysozyme (1.25 mg/ml) and

incubated for 30 minutes on ice. After addition of RNaseA, DNaseI

and PMSF, a whole cell lysate was prepared as described above.

Total proteins in 1 ml of the lysate were precipitated by final 10%

TCA. The precipitates were washed three times with acetone, and

dissolved in 100 ml of 50 mM Tris-HCl pH 8.0, 1% SDS, 1 mM

EDTA. After the heat treatment (100uC for 3 minutes), 30 ml of

denatured lysate was diluted with 1 ml of Triton buffer (2% Triton

X-100, 50 mM Tris pH 8.0, 150 mM NaCl, 0.1 mM EDTA).

Insoluble materials were removed by centrifugation (14,000 rpm,

20 minutes) and the supernatant fraction was transferred to a new

tube. Indicated antibody (0.1 mg) was added to a supernatant and

incubated at 4uC for overnight with gentle rotation. Protein A resin

(GE Health Care, 10 ul of 50% suspension in Triton buffer) was

added to the mixture and incubated for further 2 h with rotation.

Resins were washed twice with Triton buffer, once with 50 mM

Tris-HCl pH 8.0. Immunocomplexes were extracted with 50 ml of

sample buffer containing a reducing agent and analyzed by western

immunoblotting.

Accession number
The atomic coordinates have been deposited in the Protein

Data Bank, www.pdb.org (PDB ID code 3ADY).

Supporting Information

Table S1 Bacterial strains and plasmids used in this study.

Found at: doi:10.1371/journal.ppat.1001129.s001 (0.04 MB

DOC)

Figure S1 Phylogenetic analysis of a type IVB core component

DotD/TraH. The evolutionary history was inferred using the

Neighbor-Joining method [63]. The bootstrap consensus tree was

inferred from 500 replicates [64]; it is taken to represent the

evolutionary history of the taxa analyzed [64]. Branches

corresponding to partitions reproduced in less than 50% bootstrap

replicates are collapsed. The percentages of replicate trees in

which the associated taxa clustered together in the bootstrap test

(500 replicates) are shown next to the branches [64]. The tree is

drawn to scale, with branch lengths in the same units as those of

the evolutionary distances used to infer the phylogenetic tree. The

evolutionary distances were computed using the Poisson correction

method [65], and are in the units of the number of amino acid

substitutions per site. All positions containing gaps and missing

data were eliminated from the dataset (Complete deletion option).

There were a total of 117 positions in the final dataset.

Phylogenetic analyses were conducted in MEGA4 [66].

Found at: doi:10.1371/journal.ppat.1001129.s002 (0.89 MB TIF)

Figure S2 Outer membrane localization of DotD in the absence

of other components of the Dot/Icm system. Total membranes

were isolated from whole cell lysates of wild-type L. pneumophila

strain carrying empty vector (dotD+/vector), isogenic dotD deletion

strain producing DotD in trans (DdotD/pdotD), or isogenic strain

lacking whole dot/icm genes but producing DotD in trans (Ddoticm/

pdotD). Inner and outer membranes were separated by isopycnic

sucrose density gradient centrifugation as described in Materials

and Methods. Whole cell lysates (Whole cell), soluble fractions

(Soluble), total membranes (Membrane) and membrane fractions

separated by the isopycnic sucrose density gradient centrifugation

were analyzed by Western immunoblotting using anti-DotD

antibodies. Fractions containg inner and outer membranes were

designated on the top of panels.

Found at: doi:10.1371/journal.ppat.1001129.s003 (0.17 MB TIF)

Figure S3 Mapping of DotDDN preferential cleavage sites by

(A) trypsin or (B) V8 protease challenge. Purified DotDDN was

challenged with trypsin or V8 protease over a 180-minute period.

Samples were taken at indicated times, and were subjected to

SDS-PAGE and to MS analysis to determine substable species.

Found at: doi:10.1371/journal.ppat.1001129.s004 (0.41 MB TIF)

Figure S4 Electron density map showing the interaction

between the DotD domain and the lid. Stereo view of the 2Fo-

Fc map with contour level 0.97e/Å3 representing the interface

between the DotD domain and the lid (shown in sticks in Figure 3)

was generated using COOT [56].

Found at: doi:10.1371/journal.ppat.1001129.s005 (0.66 MB TIF)

Figure S5 Stereo figures showing the cleft surfaces of DotD,

GspD and EscC. Bulky side-chains (Phe-5, Phe-9, Asn-23 and

Tyr-51 of GspD, Tyr-32, Ile-34, Ile-44 and Asn-51 of EscC)

protruding inwards and filling the clefts of secretin subdomains are

shown in dark blue.

Found at: doi:10.1371/journal.ppat.1001129.s006 (0.69 MB TIF)

Figure S6 The lid single mutations (I39A or L41A) did not affect

outer membrane targeting of DotH. Membrane fraction using L.

pneumophila strains producing wild-type DotD or single mutants

DotDI39A or DotDL41A was carried out as in Figure 4A.

Found at: doi:10.1371/journal.ppat.1001129.s007 (0.17 MB TIF)

Figure S7 Sequence conservation patterns projected on the ring

models. Sequences of the DotD/TraH family proteins shown in

Fig. S1 were multiple-aligned by ClustalW2 [67]. The resulting

alignment was used for calculation by the ConSurf server [48].

Conservation patterns are projected on (A) C12 and (B) C14 ring

models.

Found at: doi:10.1371/journal.ppat.1001129.s008 (2.04 MB TIF)

Figure S8 Ring models of DotD with the lid. The DotD

domains are shown in green, and the lids are shown in brown.

Found at: doi:10.1371/journal.ppat.1001129.s009 (0.58 MB TIF)
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