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Listeria monocytogenes is an intracellular pathogen responsible
for severe foodborne infections. It can replicate in both phagocytic
and nonphagocytic mammalian cells. The infectious process at the
cellular level has been studied extensively, but how the bacterium
overcomes early host innate immune responses remains largely
unknown. Here we show that InlC, a member of the internalin
family, is secreted intracellularly and directly interacts with IKKα,
a subunit of the IκB kinase complex critical for the phosphorylation
of IκB and activation of NF-κB, the major regulator of innate im-
mune responses. Infection experiments with WT Listeria or the
inlC-deletion mutant and transfection of cells with InlC reveal that
InlC expression impairs phosphorylation and consequently delays
IκB degradation normally induced by TNF-α, a classical NF-κB stim-
ulator. Moreover, infection of RAW 264.7 macrophages by the inlC
mutant leads to increased production of proinflammatory cyto-
kines compared with that obtained with the WT. Finally, in a peri-
tonitis mouse model, we show that infection with the inlC mutant
induces increased production of chemokines and increased recruit-
ment of neutrophils in the peritoneal cavity compared with infec-
tion with WT. Together, these results demonstrate that InlC, by
interacting with IKKα, dampens the host innate response induced
by Listeria during the infection process.
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The Gram-positive bacterium Listeria monocytogenes infects
human and animal hosts and causes foodborne infections

that can lead to bacteremia and meningitis. It mainly affects
immunocompromised patients, pregnant women, and newborns.
Once inside the host, L. monocytogenes can invade both phago-
cytic and nonphagocytic cell types, replicate intracellularly, and
spread directly from cell to cell, thereby escaping the humoral
immune response. The successive steps of this intracellular
parasitism are dependent on various virulence factors, including
the surface proteins InlA and InlB, required for entry into cells;
secreted proteins listeriolysin O (LLO) and phospholipases, in-
volved in escape from the primary and secondary vacuoles; and
ActA, responsible for actin-based intracellular and intercellular
movements. These virulence factors are positively controlled by
the transcriptional activator PrfA (1–3).
The complete genome sequence of L. monocytogenes strain

EGD-e has revealed the presence of 25 genes encoding proteins
of the internalin family (4–6). Proteins of this family are char-
acterized by the presence of a leucine-rich repeat (LRR) do-
main. Most of these are surface proteins attached to the bacterial
surface by different anchoring motifs, in particular the LPXTG
motif, which mediates covalent binding to the peptidoglycan.
Some of these internalin proteins are well-characterized viru-
lence factors, including internalin A (InlA, the prototype of the
family) and InlB, which are involved in the crossing of intestinal
and placental barriers (7, 8). Only four proteins of the internalin

family are predicted to be secreted proteins (5), and among
these, only InlC has received attention. This protein, whose gene
is present in the pathogenic L. monocytogenes and L. ivanovii
species but absent in nonpathogenic Listeria species, has been
identified by searching PrfA-regulated genes in strains over-
expressing prfA (9, 10). inlC encodes a small protein of 297 aa
that displays a signal peptide of 34 aa, no known anchoring
motif, and six LRRs of 22 aa, followed by an Ig-like domain (Fig.
1A). This latter domain has been shown in other internalins to
stabilize the LRR domain and favor protein–protein inter-
actions. The InlC 3D structure has been determined (11). The
LRR domain is similar to that of other internalins. The Ig-like
domain displays a high concentration of aromatic residues,
suggesting a self-association of InlC molecules or the possibility
of InlC association with partner proteins through this domain as
well as with the LRR domain.
inlC is transcribed as a monocistronic mRNA from a single

promoter displaying a typical consensus PrfA-binding site at
position −40 from the transcription start site. The expression of
inlC has been shown to be highly induced intracellularly at rather
late stages of infection (12–14). A recent analysis of the entire
Listeria transcriptome in various in vitro, ex vivo, and in vivo
conditions of growth confirmed stronger inlC expression in the
intestine and blood than in rich broth media (15).
An inlC deletion mutant is significantly attenuated when

tested in the mouse model of infection by the i.v. route (10, 16).
As reported recently, although the inlC deletion does not affect
bacterial internalization and intracellular proliferation, it does
impair cell-to-cell spread in polarized epithelial cells (17). InlC
has been shown to bind the mammalian adaptor protein Tuba,
thereby preventing its interaction with N-WASP. Impairment of
Tuba–N-WASP interaction by InlC would relieve cortical ten-
sion at cell–cell junctions and promote protrusion formation and
bacterial spreading.
Analyses of the transcriptional host responses in cultured

human intestinal epithelial cells, murine macrophages, and in-
testinal tissues infected with L. monocytogenes have shown that
MAP kinases and NF-κB/Rel pathways are the predominant host
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responses to a Listeria infection (13, 18, 19). More specifically,
the virulence factor LLO has been shown to induce the NF-κB–
mediated transcription of the proinflammatory cytokine IL-8 in
endothelial cells (20), whereas InlB induces TNF-α and IL-6 in
macrophages (21).
The eukaryotic transcription factor NF-κB consists of a di-

meric complex of two subunits, including p65/RelA, c-Rel, RelB,
p100/52, or p105/50. In resting cells, NF-κB dimers are seques-
tered in the cytoplasm and kept inactive through their binding to
IκB (22–24). IκB is expressed as different isoforms, of which the
alpha isoform (IκBα) is the most abundant and most ubiquitously
expressed (24). Certain bacterial infections or other stimuli, such
as TNF-α, can activate the IκB kinase complex (IKK), which is
composed of two catalytic subunits (IKKα and IKKβ) and
a regulatory subunit (IKKγ/NEMO). Activation of the IKK
complex leads to phosphorylation of IκBs, followed by their
polyubiquitination and degradation by the 26S proteasome.
These events allow translocation of the NF-κB dimers to the
nucleus and activation of NF-κB–regulated genes, which are
involved mainly in innate immune responses. In the alternative
nonclassical pathway, which is involved primarily in the de-
velopment and maintenance of secondary lymphoid organs,
there is no sequestration of NF-κB by IκB proteins. Instead, one
of the precursors of NF-κB—the p100 or the p105 subunit before
maturation into the p52 or the p50 subunit, respectively—acts as
an inhibitor of the complex. In this pathway, the kinase complex
comprises only two subunits of IKKα.
To investigate the function of InlC in the infectious process,

we searched for its potential host partners and performed
a large-scale two-hybrid screen in yeast. Among the potential
cellular targets, we identified IKKα. In this study, we found that
InlC binds to IKKα, impairs the phosphorylation of IκBα, delays
the degradation of P-IκBα, prevents NF-κB nuclear trans-
location, and dampens the NF-κB–associated proinflammatory
response both in vitro and in vivo.

Results
InlC Is a Bona Fide Virulence Factor Overexpressed Intracellularly.
Because the inlC mutant analyzed previously was still expressing
a residual polypeptide (10, 16), we generated a complete inlC-
deletion mutant (ΔinlC) in the L. monocytogenes strain EGD
and reexamined the contribution of the inlC gene in the infec-

tious process in vivo. As the original inlCmutant, our mutant was
growing as well as the WT both in broth medium and in-
tracellularly. It infected cells as efficiently as the WT. In-
travenous injections of C57BL/6 female mice with 1 × 105 of the
WT bacteria and the ΔinlC strain resulted in 100% mortality
with the WT bacteria, but only 20% mortality with the inlC
mutant (Fig. S1). Moreover, the LD50 of the ΔinlC mutant after
i.v. injection in C57BL/6 female mice was 5.6 × 105 CFU, com-
pared with 1.5 × 104 CFU for the WT strain. Together, these
results confirm the role of InlC in Listeria virulence.
To examine the production of InlC, we generated antibodies

against a recombinant InlC protein and examined InlC expression
during bacterial infection of HeLa cells. As shown in Fig. 1B, in
contrast to LLO, which is already expressed at the onset of in-
fection, InlC expression gradually increased inside the cells over
time, in perfect agreement with the previously reported tran-
scriptional analysis of the inlC gene (12, 13). Moreover, as shown
by immunofluorescence analysis, the InlC protein was detected in
both the cytosol and the nucleus of infected cells (Fig. 1D).

InlC Binds IKKα. To identify partners interacting with InlC in the
eukaryotic cell, we used InlC as bait in a large-scale yeast two-
hybrid screen. This screen identified IKKα, which had a very high
interaction score. To confirm the interaction of InlC with IKKα,
InlC tagged with a C-terminal Myc epitope and IKKα tagged
with an HA epitope were expressed independently or simulta-
neously in HEK-293 T-REx cells. Cell extracts were immuno-
precipitated with anti-InlC antibodies, and precipitates were
analyzed by immunoblotting with anti-Myc, anti-HA, anti-IKKα,
and anti-IKKβ antibodies. As shown in Fig. 1C, Myc-tagged InlC
coimmunoprecipitated with HA-tagged IKKα as revealed by the
anti-Myc and anti-HA antibodies. Using an anti-IKKα antibody
recognizing both the transfected and the endogenous forms of
IKKα, we showed that both forms coimmunoprecipitated with
InlC (Fig. 1C, lanes 3 and 4). Moreover, by binding IKKα, InlC
pulled out IKKβ, in agreement with the known IKKβ–IKKα in-
teraction. Together, these results demonstrate that InlC interacts
with the kinase subunit IKKα in mammalian cells.

InlC Impairs the Phosphorylation of IκBα and Delays Its Degradation
in Infected and Transfected Cells. To investigate whether InlC, by
binding the kinase IKKα, affects IκBα phosphorylation and
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Fig. 1. InlC binds IKKα. (A) Schematic representation of InlC,
a protein containing a signal peptide (SP), six LRRs, and an Ig-
like domain. (B) Kinetics of InlC and LLO expression in infected
HeLa cells. Total cell extracts at different time points after in-
fection were analyzed by Western-blot using anti-InlC, anti-
LLO, and anti-actin antibodies. Actin is used as loading control
of protein. (C) Interaction of IKKα with InlC in transfected HEK-
293 T-REx cells. Whole cell lysates from HEK-293 T-REx cells,
nontransfected or transfected with the indicated plasmids
(InlC c-Myc, IKKα-HA) were immunoprecipited with anti-InlC
antibodies, followed by immunoblotting with anti-c-Myc and
anti-HA antibodies. Western blot analysis with anti-IKKα and
anti-IKKβ antibodies show the endogenous IKKα and IKKβ. (D)
Detection of InlC by immunofluorescence in HeLa cells
infected for 3 h with the WT strain. Actin was labeled with
Alexa Fluor 488–conjugated phalloidin. InlC was detected
with anti-InlC antibodies, and bacteria were detected with
anti-Listeria antibodies.
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degradation, we infected HeLa cells with the WT strain, the
ΔinlC mutant, and the complemented strain. We then stimulated
the cells with TNF-α to induce IκBα phosphorylation via the
classical pathway, and compared the kinetics of IκBα phos-
phorylation and degradation in infected and noninfected cells.
As shown in Fig. 2A, the phosphorylation of IκBα was detected
as early as 3 min after stimulation with TNF-α, with smaller
amounts found in WT-infected cells than in noninfected cells.
The ΔinlC-infected cells showed higher amounts of phospho-
IκBα compared with cells infected with WT or the com-
plemented strains. The degradation of the IκBα form (Fig. 2B)
began concomitantly with the appearance of phospho-IκBα in
noninfected cells and in ΔinlC mutant–infected cells, but was
significantly delayed (by up to 20 min when InlC was present),
strongly suggesting that the interaction of InlC and IKKα blocks
the phosphorylation of IκBα induced by TNF-α and, conse-
quently, its degradation.
All cells are not infected during infection of tissue cultured

cells, precluding a precise evaluation of events occurring in each
cell—in our case, the effect of InlC on the phosphorylation of
IκBα. Therefore, to definitively demonstrate the effect of InlC on
the phosphorylation of IκBα, we analyzed the fate of phospho-
IκBα in human HEK-293 T-Rex cells cotransfected with plas-
mids expressing InlC and mouse IκBα, taking advantage of the
fact that mouse IκBα and human IκBα migrate differently in
acrylamide SDS/PAGE gels (25, 26). In this scenario, all cells
expressing InlC also express the mouse IκBα. After stimulation
by TNF-α, (Fig. S2A), lower amounts of mouse phospho-IκBα
were detected in cells cotransfected with the plasmids expressing
inlC or IκBα compared with cells cotransfected with IκBα and
the control plasmid. Moreover, the phosphorylation of mouse
IκBα was delayed, appearing only after 6 min. Similarly, IκBα’s
degradation also was delayed, and it was still detectable 20 min
after stimulation in cells expressing mouse IκBα cotransfected

with the plasmid expressing InlC compared with the control
plasmid (Fig. S2B). These findings, in full agreement with the
results obtained with the Listeria-infected cells, reinforce the
data showing that InlC prevents the phosphorylation and deg-
radation of IκBα.
Taken together, these results establish that InlC, by binding

IKKα, prevents the phosphorylation of IκBα induced by TNF-α
and delays the degradation of phospho-IκBα.

InlC Prevents Translocation of NF-κB to the Nucleus in Infected Cells.
To assess whether InlC could block the translocation of NF-κB
to the nucleus after stimulation by TNF-α, we performed im-
munofluorescence assays in noninfected cells (NI) and in cells
infected with WT Listeria, the ΔinlC mutant, and the com-
plemented strain (ΔinlC + inlC). Cells were fixed and stained
with anti-p65 antibodies to label NF-κB, with anti-InlC anti-
bodies to identify the cells where InlC was secreted, and with
DAPI to visualize nuclei and bacteria. As shown in Fig. 3 A and
B, at 30 min after stimulation by TNF-α, all of the noninfected
cells were positive for p65 in the nucleus, confirming that TNF-α
had activated the classical NF-κB pathway and that the p65
subunit of NF-κB had translocated to the nucleus. In cells
infected with WT Listeria, the NF-κB complex was present only
in the cytoplasm and was not detected in the nucleus. In ΔinlC-
infected cells, activated NF-κB was detectable in the nucleus. In
ΔinlC + inlC–infected cells, the NF-κB complex was not de-
tectable in the nucleus. Together, these immunofluorescence
findings unambiguously demonstrate that InlC expression pre-
vents NF-κB translocation to the nucleus.

InlC Inhibits the NF-κB–Regulated Promoter Response on TNF-α
Activation. To investigate whether InlC through its interaction
with IKKα could modify the expression of NF-κB–regulated
genes, we transfected cells with a plasmid encoding InlC and the
reporter plasmid Igκ3-luciferase in which the luciferase gene is
under the control of a NF-κB–regulated promoter. Luciferase
activity was assayed at 6 h after TNF-α stimulation (Fig. 4) and
found to be 35-fold greater in cells stimulated by TNF-α com-
pared with unstimulated cells. Transfection of the InlC-encoding
plasmid significantly decreased the total luciferase activity, with
decreases ranging from 60% to 85% depending on the amount of
plasmid used for transfection. We found no effect of InlC on
luciferase activity when the cells were not stimulated by TNF-α.
Moreover, neither the basal luciferase activity of nonstimulated
cells nor that of TNF-α–stimulated cells was affected by the ex-
pression of LacZ used as a control. Together, these results in-
dicate that InlC blocks TNF-α–induced activation of NF-κB and
NF-κB–regulated downstream events.

InlC Decreases the Proinflammatory Cytokine Response to Infection.
Because NF-κB plays a role in regulating various genes involved
in inflammation (24), we next addressed whether InlC could
control the expression of NF-κB‒dependent proinflammatory
cytokines during infection. We used ELISA to quantify the ex-
pression of TNF-α and IL-6 in supernatants of RAW 264.7
macrophages infected by Listeria WT, ΔinlC, or complemented
strains. As shown in Fig. 5, IL-6 and TNF-α production was in-
creased in cells infected by the inlC mutant compared with those
infected by the WT. Complementation of ΔinlC restored the
capacity of bacteria to down-regulate IL-6 and TNF-α pro-
duction. Together, these results indicate that inactivation of inlC
leads to the induction of a stronger proinflammatory response on
infection in vitro.

InlC Counteracts the Inflammatory Process Induced by Listeria and
LPS in Vivo. To further investigate the function of InlC in vivo,
we used a mouse model of peritonitis in which WT Listeria, the
ΔinlC mutant, and the complemented ΔinlC strains were injec-
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Fig. 2. InlC delays the degradation of IκBα in infected cells. HeLa cells
noninfected (NI) or infected by L. monocytogenesWT or by the ΔinlCmutant
(ΔinlC) and the complemented-ΔinlC mutant (ΔinlC + inlC), and stimulated
by TNF-α (10 ng/mL) were lysed at the indicated times points after stimula-
tion. Extracts were submitted to immunoblot analysis with antibodies rec-
ognizing phosphorylated-IκBα (A) and IκBα (B). Membranes were reprobed
using antibodies to actin for loading control. NS, nonstimulated.
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ted i.p. in BALB/c mice. We first analyzed the cytokine response
in the peritoneal cavity after 12 h of infection. Despite the re-
duced number of viable mutant bacteria (30% less than WT
bacteria), the inlC mutant induced a stronger cytokine response
than the WT, particularly for the chemokines KC (the murine
IL8 homolog) and MIP1α (Fig. 6A). This enhanced cytokine
response was abolished in mice infected with the complemented
strain, in which CFU recovery was similar to that in mice infected
with the WT bacteria. We next investigated the recruitment of
leukocytes in the peritoneal cavity after infection. We found
significantly increased recruitment of neutrophils in response to
infection with the inlC mutant compared with infection with the
WT or the complemented strain (Fig. 6B). These findings in-

dicate that InlC down-regulates the inflammation induced in
response to Listeria infection.

Discussion
To overcome host defenses, bacterial pathogens or viruses often
interfere with the NF-κB pathway, the major pathway involved in
the regulation of innate host responses (27). In this pathway,
stimulation with an agonist, such as TNF-α, activates the trimeric
IKK complex (i.e., IKKα, IKKβ, and NEMO). Various other
pathways, including TLR and NOD pathways, also lead to acti-
vation of the IKK complex. This complex then phosphorylates
IκB inhibitor proteins, which normally sequester the NF-κB
proteins in the cytosol. Phosphorylated IκBs then become targets
for ubiquitination and degradation, allowing the translocation of
free NF-κB to the nucleus and consequent activation of down-
tream genes. Strikingly, several viral and bacterial pathogens
interfere with the NF-κB pathway; however, only a few interfere
with the degradation of IκB to inhibit the activation of NF-κB
(28). Among these, cowpox virus, racoon pox virus, and certain
strains of vaccinia virus can prevent degradation of phosphory-
lated IκBα (29). It has been proposed that this inhibition may
result from dephosphorylation of IκB or interference with its
degradation after phosphorylation. Similarly, HIV uses various
strategies to manipulate NF-κB activation. The HIV type I Vpu
protein competitively inhibits the β-TrCP/ubiquitin ligase–de-
pendent degradation of IκB, thereby keeping NF-κB in the cy-
tosol and resulting in inhibition of NF-κB activity in T cells (30,
31). The Salmonella SseL effector protein deubiquitinates IκBα
and prevents its degradation, thereby impairing NF-κB activation
(32, 33); another Salmonella effector, AvrA, also has an IκBα
deubiquitinase activity (34). Similarly, ChlaDub1 of Chlamydia
deubiquitinates IκB (35). These three bacterial effector proteins
are secreted by a type III secretion system (T3SS) and trans-
located through the Salmonella or Chlamydia vacuolar mem-
brane into the cytosol. Their mode of action differs from that of
YopP/YopJ protein of Yersinia, which acetylates IKKα and
IKKβ, thereby preventing phosphorylation of IκB (36, 37). En-
teropathogenic Escherichia coli (EPEC) also has been shown to
prevent the phosphorylation of IκB through the use of two T3SS
effectors, NleE and NleB, which interact with the TAK1-IKK

A B

Fig. 3. InlC prevents the translocation of NF-κB-p65 to
the nucleus in infected cells. (A) HeLa cells noninfected
(NI) or infected by Listeria monocytogenes WT, the ΔinlC
mutant (ΔinlC), or the complemented-ΔinlC mutant
(ΔinlC + inlC) were stimulated with TNF-α (50 ng/mL) for
30 min, fixed, and labeled by immunofluorescence with
DAPI for the nucleus and bacteria, anti-InlC antibodies to
detect the secretion of InlC in the cytoplasm of cells, and
anti-p65 to recognize the NF-κB subunit. (B) To quantify
the results shown in A, the percentage of nuclear trans-
location of NF-κB (P65) was determined by counting at
least 100 noninfected or WT, ΔinlC, or ΔinlC+inlC infected
cells using fluorescence microscopy. The experiment was
performed twice, and typical results are shown. ***P <
0.0005, χ2 test.

Fig. 4. InlC inhibits activation of an NF-κB–regulated promoter. HEK-293
T-REx cells were cotransfected with different plasmids, an NF-κB–dependent
luciferase reporter, pRL-Tkluc, and pCDNA4-inlC or pCDNA4-lacZ at the in-
dicated amount per well. The cells were then stimulated with TNF-α (10 ng/
mL). Firefly luciferase activity was normalized against Renilla luciferase ac-
tivity. Bars indicate fold induction compared with unstimulated cells. Values
are mean ± SD of six wells. Each experiment was repeated three times. ***P <
0.0005, Welch’s t test. NS, not significant.
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pathway, albeit in an unknown fashion (38). Finally, Shigella has
at least two effectors, OspG and IpaH9.8, that interfere with the
NF-κB pathway (25, 39). IpaH9.8 is an ubiquitin ligase that
interacts and interferes with NEMO, thereby impairing IκB
phosphorylation. In contrast, OspG acts directly on IκBα. This
T3SS is a kinase that binds various ubiquitin-conjugating
enzymes, including UbcH5, which promotes ubiquitination of
IκBα. Thus, OspG prevents the degradation of IκBα and nega-
tively controls the infammatory response (25).
Here we have shown that InlC, a protein of the L. mono-

cytogenes internalin family whose gene is regulated by the global
virulence gene activator PrfA, is overexpressed and secreted in
the cytosol by Listeria once the bacterium has escaped from the
internalization vacuole. InlC interacts with IKKα. Interestingly,
the InlC–IKKα interaction decreases phosphorylation of the
inhibitory component IκB and delays degradation of its phos-
phorylated form, thereby impairing NF-κB translocation to the
nucleus and subsequent activation of NF-κB–regulated genes,
particularly genes encoding proinflammatory cytokines. Like all
bacteria, Listeria expresses a number of components that stim-
ulate nonspecific innate immune responses via the NF-κB
pathway. As in many other Gram-positive bacteria, lipoteichoic
acids in the Listeria cell wall stimulate the NF-κB pathway and
the production of proinflammatory cytokines (40). The virulence
factors LLO and InlB also have been reported to activate the
NF-κB pathway (20, 21).
Nevertheless, similar to other bacterial pathogens [e.g., Shi-

gella (41)], Listeria has evolved several mechanisms to counteract
proinflammatory processes. We previously reported that deace-
tylation of the peptidoglycan by the deacetylase PgdA is a major
anti-inflammatory mechanism that down-regulates the pro-
duction of proinflammatory cytokines (42). We also have shown

that the dephosphorylation of histone H3 leads to down-regu-
lation of a subset of genes including genes involved in immune
responses (43), and that LLO plays a critical role in this process.
As reported herein, InlC also contributes to down-regulate the
inflammatory response both in vitro and in vivo. Similar to sev-
eral other bacterial factors, InlC dampens the inflammatory re-
sponse by acting on one of the most appropriate pathway, the
NF-κB pathway. InlC is highly induced inside eukaryotic cells
and interacts with a key component of the NF-κB pathway. It is
highly likely that IKKα interacts with InlC via the InlC LRR
domain, given that InlC is a small protein composed almost
entirely of LRRs. It will be interesting to examine whether other
bacterial LRR-containing factors behave like InlC. It also will be
interesting to investigate whether InlC, which was shown here to
interfere with the classical NF-κB pathway, also modulates other
pathways regulated by IKKα (e.g., histone phosphorylation),
especially in vivo. Interestingly, InlC was recently shown to also
interact with the cytoskeleton-associated protein Tuba. This in-
teraction also occurs late in infection and affects the efficiency of
the cell-to-cell spread of Listeria (17). The finding that InlC has
several functions is not unexpected for a virulence factor. In-
deed, it is well known that bacterial pathogen effectors can be
multifunctional, be modular, or display cooperative activities.
InlC is another example of such a bacterial effector that exerts
several activities during infection. However, its effect on virulence
is subtler than that of bona fide virulence factors, such as LLO and
ActA (3, 44). Thus, InlC might be more appropriately considered
a “virulence modulator” that acts at different stages of the in-
fectious process. In conclusion, this study reinforces the impor-
tance of the internalin family in listerial pathogenesis, highlighting
that this family is involved not only in the entry of Listeria into
cells, but also in other critical events in the infectious process.

Materials and Methods
Bacterial Strains, Reagents, Antibodies, and Immunofluorescence Microscopy.
The bacterial strains and growth conditions, reagents, antibodies, and mi-

A

B

Fig. 6. InlC modulates the inflammatory process in vivo. (A) Mice were in-
oculated i.p. with PBS or with L. monocytogenes WT (EGD), the ΔinlC mu-
tant, or the complemented ΔinlC mutant (ΔinlC + inlC), and levels of KC and
MIP1α in the peritoneal lavage fluid were measured by ELISA at 12 h post-
infection. (B) Leukocytes present in the peritoneal lavage fluid were pelleted
and processed by flow cytometry, and the number of neutrophils (PMN) was
determined. Values are mean ± SEM; n = 6. *P < 0.01; **P < 0.005; ***P <
0.0005, Student t test.

Fig. 5. InlC impairs the proinflammatory response in vitro. RAW264.7 cells
were infected with Listeria monocytogenes WT, the ΔinlC mutant, or the
complemented ΔinlC mutant (ΔinlC + inlC) (MOI10), and levels of IL-6 and
TNF-α in the supernatant were measured by ELISA at the indicated times
points. Cytokines released from RAW264.7 exposed to LPS (50 ng/mL) were
used as positive controls (data not shown). Values are mean ± SEM; n = 6.
*P < 0.01; **P < 0.005; ***P < 0.0005, Student t test.
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croscopy procedures used in this study are described in SI Materials and
Methods and Table S1.

Cell Culture and Infections, Luciferase Reporter Assay, and ELISA. The cell lines
and protocols for this study are described in SI Materials and Methods.

Plasmids and Oligonucleotides. The plasmids and oligonucleotides used in this
study are listed in Tables S2 and S3. The construction of plasmids pcDNA4-
inlC, pGEX-4T-inlC, and pAD-inlC is described in SI Materials and Methods.

Mutant Construction. The ΔinlC isogenic deletion mutant was constructed as
described in SI Materials and Methods.

Identification of InlC Interactor by Yeast Two-Hybrid Screening. The Y2H screen
was performed on a whole human genome cDNA placental library as de-
scribed in SI Materials and Methods.

Immunoprecipitation and Immunoblotting. HEK-293 T-REx or HeLa cells were
transfected or infected, and cells lysates were prepared. Details of immu-

noprecipitation and Western blot analysis are provided in SI Materials
and Methods.

Murine Infection Experiments and Cell Counting. Infection procedures (i.v. and
i.p.) and leukocyte counting in peritoneal lavage fluid are described in SI
Materials and Methods.
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