
Contrast-enhanced microwave imaging of breast tumors: a
computational study using 3-D realistic numerical phantoms

J D Shea, P Kosmas, B D Van Veen, and S C Hagness
Department of Electrical and Computer Engineering University of Wisconsin-Madison 1415
Engineering Drive Madison, WI 53706
J D Shea: jacob_shea@ieee.org

Abstract
The detection of early-stage tumors in the breast by microwave imaging is challenged by both the
moderate endogenous dielectric contrast between healthy and malignant glandular tissues and the
spatial resolution available from illumination at microwave frequencies. The high endogenous
dielectric contrast between adipose and fibroglandular tissue structures increases the difficulty of
tumor detection due to the high dynamic range of the contrast function to be imaged and the low
level of signal scattered from a tumor relative to the clutter scattered by normal tissue structures.
Microwave inverse scattering techniques, used to estimate the complete spatial profile of the
dielectric properties within the breast, have the potential to reconstruct both normal and cancerous
tissue structures. However, the ill-posedness of the associated inverse problem often limits the
frequency of microwave illumination to the UHF band within which early-stage cancers have sub-
wavelength dimensions. In this computational study, we examine the reconstruction of small,
compact tumors in three-dimensional numerical breast phantoms by a multiple-frequency inverse
scattering solution. Computer models are also employed to investigate the use of exogenous contrast
agents for enhancing tumor detection. Simulated array measurements are acquired before and after
the introduction of the assumed contrast effects for two specific agents currently under consideration
for breast imaging: microbubbles and carbon nanotubes. Differential images of the applied contrast
demonstrate the potential of the approach for detecting the preferential uptake of contrast agents by
malignant tissues.

1. Introduction
Consideration of the safety, cost, availability, sensitivity, and specificity of established breast
cancer screening methods such as mammography and magnetic resonance imaging (MRI)
motivates interest in alternative or complementary technologies. The last decade has seen
expansive investigation of a number of techniques in which the interior of the breast is probed
noninvasively with low-power, microwave-frequency electromagnetic waves. The ultimate
goal of this research is a safe, inexpensive, and accurate approach to the detection, monitoring,
and assessment of breast cancers. Tissue-penetrating radar techniques have been applied to the
tumor detection problem to locate strong scattering targets within the breast [1,2].
Electromagnetic inverse scattering has been widely investigated in application to breast
imaging as such methods offer a complete mapping of the dielectric profile of the breast [3–
11]. Inverse scattering approaches have been applied to data from numerical and experimental
models of the breast, and some preliminary clinical studies have been performed [12,13].

The three-dimensional (3-D) imaging results presented in [9,11] were obtained with a
frequency-domain inverse scattering algorithm formulated using the distorted Born iterative
method (DBIM) [14]. The algorithm reconstructs the complete 3-D profile of the dielectric
properties of the interior of the breast using multistatic array data measured over a discrete set
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of frequencies. The imaging method was evaluated in [11] in application to realistic numerical
breast phantoms of healthy tissues over a range of fibroglandular density classifications. The
method was shown to produce representative reconstructions of the actual profile of complex
permittivity, suggesting that it may be suitable for normal tissue density assessment. However,
the low resolution of the images suggests that early-stage malignancies may not be identifiable
by direct inspection of the images.

Endogenous contrast and spatial resolution are two important considerations in the detection
and location of tumors by microwave imaging techniques. Recent studies of the histopathology
and microwave-frequency dielectric properties of excised breast tissues suggested a much
lower contrast between healthy and cancerous tissues than was previously understood [15].
The ex-vivo microwave dielectric properties of malignant glandular tissues were observed to
be about ten times those of adipose tissue, but only one tenth higher than the properties of
normal glandular tissues. Furthermore, the electrical dimension of early-stage cancers are at
or below the nominal half-wavelength resolution limit of the UHF-band frequencies (0.3–3.0
GHz) typically employed in frequency-domain microwave inverse scattering. Although super-
resolution has been observed and attributed to evanescent waves in near-field measurements
or in multiple-scattering environments [16,17], microwave detection of early-stage
malignancies is nevertheless challenged by the moderate endogenous dielectric contrast, the
small scattering area of these malignancies, and the heterogeneous scattering environment of
healthy glandular tissue in which tumors often form.

These fundamental challenges can be addressed in part through the use of comparative
information, such as a contralateral comparison of a patient’s left and right breasts [12], or the
monitoring of tissue properties and distribution over time. A simple proof-of-concept of the
latter approach was illustrated for a numerical breast phantom with and without a malignant
inclusion [9]. Several medical imaging modalities have made use of contrast agents to enhance
imaging in the areas of concentration of the agent. For example, breast malignancies are imaged
in MRI with the introduction of a gadolinium contrast agent [18]. The preferential uptake of a
contrast agent by malignant tissue [19,20] could enhance the contrast of the malignant tissue
relative to the healthy surrounding tissue and allow microwave detection via comparative
imaging using pre-and post-contrast measurements.

In this computational study we investigate the use of exogenous contrast agents in microwave
imaging to detect tumors based on the change in their dielectric properties after the introduction
of the agents. We assume an effective change in dielectric contrast as suggested by preliminary
studies of two potential contrast agents for use in microwave breast imaging: microbubbles
[21] and carbon nanotubes [22,23]. A homogeneous spherical inclusion is placed among
healthy fibroglandular tissues in anatomically realistic numerical breast phantoms of varying
fibroglandular density. The inclusion is given dielectric properties representative of either
malignant tissue or malignant tissue under an assumed influence of a contrast agent. A Gauss-
Newton nonlinear inverse scattering method is used to reconstruct 3-D estimates of the
numerical phantom profiles in each case. Differential imaging then compares the estimated
profiles to assess the tumor information available to this approach.

The challenges inherent to detecting small, compact breast tumors with microwaves are
discussed in section 2 to motivate study of contrast agents. In section 3 we review the numerical
breast phantoms which serve as the computational test beds for the imaging investigation and
we summarize the reported effects of the contrast agents at microwave frequencies. Section 4
details the inverse scattering algorithm used to reconstruct the dielectric profiles of the
numerical phantoms. We present imaging results in section 5 for three groups of numerical
phantoms, each having a single tumor: homogeneous interiors, realistic heterogeneous
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interiors, and realistic heterogeneous interiors with the tumor under the influence of a contrast
agent. Further discussion and concluding remarks are offered in section 6.

2. Microwave Imaging of Small Tumors
Before turning our attention to the imaging of malignant inclusions in numerical breast
phantoms, we first evaluate a fundamental dynamic affecting tumor detection performance in
microwave imaging systems: the amount of scattering information available from the tumor
depends primarily on the size of the tumor and the contrast of the tumor relative to the
surrounding tissue. To illustrate these considerations, we compute the scattering cross-section
of a lossy dielectric sphere as the diameter and contrast are varied. The scattering cross-section,
as defined in [24], is the area of the incident plane-wave power density equal to the total power
scattered from the sphere over all 4π steradians. The performance of inverse scattering
techniques generally improves with additional information obtained by adding angles of
illumination and multi-static observations to the system. Thus, the scattering cross section of
an object is a measure of the relative amount of information available to an imaging system
over a range of frequencies. In particular, it can illustrate the limitation of information from
sub-resolution features and low contrast objects. The scattering cross-section given by equation
(11–104) of [24] is evaluated and plotted in figure 1 versus electrical diameter for a sphere of
malignant tissue in three different lossless background materials exhibiting relative
permittivity values that span the range of normal breast tissue. The three background media
are referred to as fibroglandular, transitional, and adipose; these representative normal breast
tissue types are explained in further detail in section 3. In each case, figure 1 shows the sharp
decline in scattering information in the region below the λ/2 resolution limit, where the
scattering response from the tumor will be overtaken by errors, noise, and scattering from larger
tissue structures. These curves also show that the low contrast of a tumor buried in normal
fibroglandular tissue presents a scattering cross-section that decays below the physical cross-
section above the nominal λ/2 resolution limit.

Inverse scattering is a model-based approach to microwave imaging that operates by comparing
the computed scattering from an estimated object profile to the measured scattering from the
actual object. In the case of an electrically small object, for which a resolution-limited
reconstruction will overestimate the dimension of the object, figure 1 suggests that
reconstructed contrast will be underestimated to limit the magnitude of the computed scattering
response equal to that of the actual object. According to this reasoning, we expect a resolution-
limited microwave breast imaging system to underestimate the properties of electrically small
features of the tissue distribution, such as early-stage tumors. We illustrate this effect in section
5 by imaging a simple numerical breast phantom with a single spherical tumor of varying
diameter placed in the three cases of homogeneous background tissue (normal fibroglandular,
transitional, and adipose) considered in figure 1.

3. Testbeds and Data Generation
Measurements for our study are simulated using anatomically realistic numerical models from
the University of Wisconsin Computational Electromagnetics Laboratory’s (UWCEM) breast
phantom repository [25,26]. In this section we summarize the models selected from the
repository and the modifications made to these numerical phantoms to create the test beds
employed in this paper. We present the endogenous frequency-dependent dielectric properties
of the breast tissue models as well as the assumed effect of the microbubble and carbon
nanotube contrast agents on the dielectric properties of malignant tissue.
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3.1. Heterogeneous Numerical Breast Phantoms
We select one phantom from each of the four American College of Radiology classifications
of fibroglandular breast tissue density [27]: ID number 071904 from the Class 1 group (“mostly
fatty”), 010204 from the Class 2 group (“scattered heterogeneity”), 062204 from the Class 3
group (“heterogeneously dense”), and 012304 from the Class 4 group (“extremely dense”).
The phantoms are defined on a 0.5-mm uniform Cartesian grid. The 1.5-mm-thick,
homogeneous skin region of the repository phantoms is replaced by a 2.0-mm-thick region to
match the cell dimension of our imaging grids. The dielectric properties of the constituent
tissues of the MRI-derived phantoms are mapped as described by Zastow et al. [26]. We use
a least-squares fit of the single-pole Debye relaxation model to the reported properties of ex-
vivo breast tissues [28] over our frequency range of interest, 0.5 to 3.5 GHz. The single-pole
Debye model for complex permittivity is given by,

(1)

The relaxation time constant, τ, of the Debye model is fixed at 15 ps for all tissues. The values
of the Debye model parameters (infinite permittivity, ε∞; delta permittivity, Δε; static
permittivity, εs = ε∞ + Δε; and static conductivity, σs) for the breast tissue models in the
phantoms are given in table 1. The table gives the range of parameters assigned to adipose,
transitional, and fibroglandular tissue regions in the phantoms. The relative permittivity, εrel,
and effective conductivity, σeff, of these models are plotted over frequency in figure 2(a)–(b).
The Debye parameters assigned to the homogeneous skin region [29] are also given in table
1. The phantom and array are immersed in a lossless medium with a relative permittivity similar
to vegetable oil, εrel = 2.6.

In this study we investigate the image reconstruction of a compact malignant mass. Since each
phantom in the repository is comprised only of normal tissues, we add a homogeneous spherical
inclusion having the median properties of malignant glandular breast tissue, as characterized
by Lazebnik et al. [15] and given in table 1. A single 1-cm-diameter inclusion is placed adjacent
to or within an area of fibroglandular tissue in each of the four test phantoms. A survey of the
size of the tumors detected in a large collection of breast cancer studies of various modalities
shows that the median diameter of detected tumors ranges between 10 to 20 mm [30]. Thus, a
1-cm diameter for the inclusion represents a clinically relevant dimension at which to evaluate
tumor imaging performance. In addition, 1 cm is on the order of one half wavelength – the
nominal resolution limit – in fibroglandular tissue at the upper frequencies of the UHF band.

To emulate an idealized preferential uptake of a contrast agent by malignant tissue, we vary
the properties of the inclusion according to the contrast effects suggested by preliminary studies
of two contrast agents. A computational study of air-filled microbubbles in malignant tissue
[31] showed that the effective permittivity and conductivity were decreased by approximately
30% due to the presence of microbubbles at a concentration of 20% by volume – a concentration
that is within the dosage of existing ultrasound procedures. We reduce the Debye parameters
of the malignant inclusion accordingly to simulate this concentration of microbubbles; thus the
frequency-averaged contrast of the Debye model given in table 1 for malignant tissue with
microbubbles is −30% in both relative permittivity and effective conductivity relative to the
endogenous properties. In the case of carbon nanotube contrast agents, we fit Debye models
to the reported dielectric properties measurements for an experimental material mimicking the
dielectric properties of malignant tissue with and without a 2 mg/mL concentration of carbon
nanotubes [23]. The resulting frequency-averaged contrast of the Debye model given in table
1 for malignant tissue with carbon nanotubes is +22% in relative permittivity and +66% in
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effective conductivity relative to the endogenous properties. The effect of each contrast agent
on the dielectric properties of the malignant tissue model is plotted over frequency in figure 2
(c)–(d).

3.2. Homogeneous Numerical Breast Phantoms
An additional set of numerical phantoms is created by downsampling the Class 2 phantom
from the 0.5-mm grid to a 2.0-mm grid. The interior of the downsampled phantom is replaced
by a homogeneous material described by one of three Debye models representative of nominal
properties of each tissue type: normal fibroglandular tissue (ε∞=17.5, Δε=31.6, σs=0.720),
transitional tissue (ε∞=10.5, Δε=11.7, σs=0.273), or adipose (ε∞=3.11, Δε=1.70, σs=0.0367).
A single homogeneous spherical inclusion having the endogenous properties of malignant
tissue given in table 1 is placed in the homogeneous interior.

3.3. Data Acquisition
A 40-element cylindrical array of 14-mm dipoles surrounds each numerical test phantom, as
shown in figure 3. The antennas are distributed on five elliptical rings of eight antennas each,
with adjacent rings rotated by π/8. The rings are evenly spaced between the posterior and
anterior coronal planes of each phantom. The dimensions of each array are set to provide a
minimum spacing of 1 cm between each antenna element and the skin surface.

Array measurements of the phantoms are simulated using the finite-difference time-domain
(FDTD) numerical method. An auxiliary differential equation approach [32] is used to simulate
Debye relaxation in the dispersive dielectric materials, and a perfectly matched layer [32] is
used to terminate the grid. The dipole antennas are driven with a modulated Gaussian pulse
having a bandwidth covering 0.5 to 3.5 GHz. Each antenna is sourced individually in
independent simulations and the time-domain received fields are recorded at every antenna
and converted to phasors at the frequencies of interest via the discrete Fourier transform.

Data is acquired from each of the four numerical phantoms from the repository for three cases
of the dielectric properties of the spherical inclusion: the endogenous malignant properties,
decreased properties due to microbubbles, and increased properties due to carbon nanotubes.
Data is also acquired from the downsampled Class 2 phantom for each of three cases of
homogeneous interior background properties. The diameter of the inclusion in the breast
interior is varied from 2 mm to 22 mm in 4 mm increments. Simulations of the downsampled
phantom are conducted on the same 2-mm grid used by the reconstruction algorithm in order
to remove modeling error from the evaluation. These simulated measurement sets are used to
evaluate resolution and estimation error of the imaging system.

White Gaussian noise is added to the simulated data such that the signal-to-noise ratio (SNR)
is 50 dB. The reference signal level is defined at each frequency as the mean of the measured
total fields over all multi-static measurements of the numerical phantom – typically about 60
dB below the source level for the inefficient and unmatched antenna models used in this study.
This level of noise is comparable to the noise levels specified in prior experimental and
numerical microwave breast imaging studies [8,10,33].

4. Imaging Methodology
In section 4.1, we briefly review the well-known theoretical relationship between the field
scattered from a domain of unknown objects and the dielectric profile of that domain, and
formulate an approximate discrete linear system of equations using multi-static array
observations at multiple frequencies. The linear system is constrained by restricting the
frequency dependence of the solution to the space of single-pole Debye solutions. An iterative
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method for solving the nonlinear scattering problem is summarized in section 4.2, and a simple
approach to creating a differential image from two sets of measurements is presented in section
4.3.

4.1. Electromagnetic Inverse Scattering
The scattering of electromagnetic radiation from a non-magnetic, heterogeneous dielectric
object domain  at an observation location described by coordinate vector robs can be written
as an volume integral equation,

(2)

where the scattered field, Es, is the difference between the total field observed in the object
environment and the total field observed in the background environment. The scattered field
results from the re-radiation of the total field, Et, in  from the dielectric contrast formed by
the difference between the object profile, ε(r), and the background dielectric profile, εb(r). The
free-space wavenumber is k0. The scattering contribution at robs due to the dielectric contrast
at r ∈  is determined by the Green’s function, Ḡb(robs|r), of the background dielectric profile.
The object and background profiles are complex permittivities and both may be heterogeneous.

The total field, Et, in  depends on the multiple scattering interactions between the features of
the dielectric profile. The scattered field, Es, is therefore nonlinearly related to the contrast
function due to the product Et(r) [ε(r) − εb(r)] in the integrand of (2). The relation can be
linearized using the Born approximation [14], in which Et in  is approximated by the
background field Eb, that is, the total field in the background profile εb(r).

The volume  enclosing the unknown object volume can be discretized by the set of constant
basis functions of edge length Δ given by

(3)

for all . Using this basis for voxels k
= 1, …, K within , the unknown contrast function can be written as a length K vector of basis

coefficients, v, where . The Born approximation of (2) can then
be written as a discrete vector equation. Noting the vector form of the scattered field,

, the linearized vector scattering equation for a source at rsrc is Es

= Hv, where H is the 3 × K matrix given by,

(4)

A set of field observations due to a source at rsrc, as well as additional sets of field observations
due to other source locations, can be used to create a larger system of equations in the unknown
v, where the vector scattering equations for each of M multi-static observations are combined
into a length 3M vector, es, and a 3M ×K matrix, B. In practice, fields are typically measured
by single-polarization antennas. We therefore consider only the scalar field observations, Es,
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made by an array of z-directed dipoles. In this case es is only length M. In either the scalar or
vector observation case, the matrices associated with each observation are collected as the

block-rows of a larger matrix, , operating on the same unknown
contrast function vector, v, such that es = Bv.

Observations at multiple frequencies can be added to the linear system of scattering equations
by vertically concatenating the multiple-observation vectors, es(ω), and matrices, B(ω), at each
of F frequencies. The resulting MF × K system is less ill-posed than a single-frequency system
[34] and can be approximately inverted to yield a simultaneous solution for a frequency-
independent contrast function v. When the actual dielectric profile is frequency-dependent, the
system can be transformed by a parametric model of the frequency dependence [6]. For a
general parametric model of complex permittivity, , the multiple-
observation linear scattering system at each frequency is transformed to,

(5)

We choose the Debye relaxation model of (1) for the parametric model of the contrast function
to fit the dispersive properties of biological tissues. Note that the coefficients  must be
constant so that the system remains linear in the unknown parameters. Since  is a function
of τ in the Debye model, we therefore assume a fixed value for the time constant. The remaining
three degrees of freedom in the model are sufficient to accurately capture the frequency
dependence of the tissues over the frequency range of interest. Further, noting that the Debye
parameters are real-valued we split each complex equation into real and imaginary parts so
that the solution space is limited to real values. Using (5) and the three-parameter Debye model
(1) for the contrast function, , a 2MF ×
3K system is obtained.

(6)

We will denote the system in (6) as y = Ax. It is a multi-static, multiple-frequency, linearized
description of the scattering due to the contrast function, formulated in the Debye parameter
space. The solution of this system, described below, yields an estimate of the contrast function
of the unknown object.
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4.2. Distorted Born Iterative Method
The linear system y = Ax of (6) approximates the nonlinear scattering relation of (2). The error
in the Born approximation used to linearize (2) increases with the magnitude of the contrast
function. The high contrasts between the constituent breast tissues of table 1 will result in a
highly inaccurate solution based on the Born approximation alone. However, a nonlinear
method of optimization can be used to overcome the limitation. The distorted Born iterative
method (DBIM) [14], a form of Gauss-Newton optimization [35], is the approach we use here
to estimate the contrast function from the observations of nonlinear scattering. This method
iteratively refines the estimate, beginning with an initial guess for the background profile that
may include any available a priori information about the object profile. A solution to (6) (the
inverse solution) is found at each iteration i to obtain an update to the estimated profile. The
updated estimate, ε̂i(r), is used as the background profile, εb(r), in the subsequent iteration and
the background fields and Green’s functions are recomputed (the forward solution). The
difference in the scattering from the background profile and the object profile decreases at each
iteration as the estimate is improved. The DBIM algorithm is terminated when the norm of the
residual scattering, ||y||, converges sufficiently. The full DBIM procedure is outlined in
Algorithm 1.

We use the FDTD method in the forward solution to efficiently compute the background fields
and Green’s functions at multiple frequencies. The FDTD simulations are performed as
described in section 3 for the acquisition of measurements with the exception that the grid
dimension in the forward model is 2.0 mm. The cells of the forward solution grid are the same
as the voxels defined in (3), extended ∀ k : rk ∈ , where is a cuboid measurement region
enclosing  and the array of N antennas. The forward solution domain is depicted by the 3-D
diagram in figure 3. In addition, the background field due to each source, Eb(rk|rsrc), is
measured at each cell rk ∈ . The heterogeneous background Green’s function is computed
using the principle of reciprocity [36] and the field measured at rk ∈  due to a source current
Ix, Iy, or Iz of length Δ at rsrc ∈ .

(7)

The antenna array described in section 3 consists of z-oriented dipoles sourced with Iz. Thus,
only the last row of the Green’s function tensor of (7) is computed.

The inverse solution is the inexact Newton step found using the conjugate gradient for least-
squares (CGLS) inversion method [37], which finds a solution to the system of normal
equations, ATy = ATAx. The inverse solution approximates the contrast updates for each voxel
rk ∈ . The update step length is fixed at unity. The under-determined system in (6) is ill-posed
and requires regularization. Regularization is accomplished by early termination of the CGLS
algorithm after a fixed number of iterations [8,11]. The termination condition is based on
empirical observations of the trade-off between reduction of the norm of the residual scattering,
||y||, and the divergent growth of the norm of the unknown contrast function, ||x||, that is
indicative of the corruption of the solution by noise and other errors.

4.3. Differential Imaging
A small change in contrast or a change to a localized area of the object profile may not be
recognizable among the more sizable features of the reconstruction. The effect of a change in
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the object profile on the reconstructed profile can be visualized by the difference between the
reconstructed profiles before and after the change. In this way, not only is the location of the
change revealed but the ability of the system to measure information from that change is
confirmed. Thus, by imaging the difference between the reconstructions of the phantoms before
and after the introduction of a contrast agent, we evaluate both the scattering information
available from a change in contrast of a compact malignant inclusion as well as the ability of
the method to locate that change.

First, we simulate measurements of a phantom containing a malignant lesion with endogenous
dielectric properties. Next, we assume a change in dielectric properties of the inclusion due to
the contrast agents as detailed in table 1 and simulate a second set of measurements. The
“before” and “after” measurements are then individually reconstructed by the DBIM, and the
difference between the two reconstructions is imaged.

5. Results
We begin with the reconstruction of the downsampled homogeneous numerical phantom
modified described in section 3.2. We then present images of the reconstruction of the four
realistic heterogeneous numerical phantoms, each having a single inclusion of malignant tissue
with endogenous properties. Finally, we present the differential images of all four realistic
phantoms, using the reconstructions of each with and without the effect of the contrast agent
applied to the properties of the inclusion.

In all cases presented in this paper, the linear system is constructed with data acquired at 1.0,
1.5, 2.0, and 2.5 GHz from all multistatic array channels, excluding the monostatic channels.
For each phantom, the initial background profile of the breast interior is a homogeneous interior
having the average properties of the true phantom profile and includes a downsampled version
of the skin region of the true phantom. The unknown imaging region  is defined to be the
interior breast volume inside the skin layer. The dielectric properties of the immersion and skin
regions are assumed known a priori. The DBIM is terminated after the 8th step and the CGLS
algorithm is terminated at the 5th iteration at every step of the DBIM. These conditions ensure
convergence at termination in all the cases shown such that the decrease in the residual
scattering norm, ||y||, is less than 1% of the residual scattering norm of the initial step. The
CGLS termination condition is based on the results of an L-curve heuristic used for imaging
these numerical phantoms in [11]. All imaging results are visualized in orthogonal cross-
sections of the profiles of relative permittivity and effective conductivity at 2.5 GHz, computed
according to (1) from the reconstructed profiles of the Debye parameters.

On the 2-mm voxel grid, the forward domains of the four realistic numerical phantoms contain
between roughly 500,000 and 1,000,000 cells while the inverse domain contains between
roughly 120,000 and 360,000 unknowns. The forward solution is executed on a 128-core GPU
using Acceleware’s FDTD API, while the inverse solution is executed on a 4-core CPU using
MATLAB code. The 40 independent simulations of the forward solution are run in serial on
the GPU, each taking 20 to 30 seconds. The inverse solution requires about 3 minutes on a
memory-limited system, for a total time per step of the DBIM of around 20 minutes.
Parallelization of the forward simulations, implementation of the inverse solution on the GPU,
and advances in GPU performance are expected to reduce the time per DBIM iteration by about
a factor of ten [38].

5.1. Imaging a Tumor in a Homogeneous Phantom Interior
The simplified breast model consisting of a skin region, a homogeneous background in the
interior breast volume, and a single spherical inclusion is imaged over all combinations of three
background tissue types (adipose, transitional, and fibroglandular tissue properties) and six
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diameters (2, 6, 10, 14, 18, and 22 mm) of a homogeneous inclusion with malignant tissue
properties. The effect of inclusion diameter on the estimation accuracy is shown in figure 4 by
comparison of the coronal cross-sections of the reconstructed relative permittivity at 2.5 GHz
of inclusion diameters 6, 14, and 22 mm in a transitional tissue background. The error in the
estimate is normalized by comparing the estimated Debye curves to the actual curve relative
to the initial guess curve, (ε* − ε̂)/(ε* − ε0), averaged over the frequencies used in the
reconstruction. The real and imaginary parts of the error are computed separately and are
plotted in figure 5 versus the diameter of the inclusion. The peak of the estimated contrast for
each case of inclusion diameter and background tissue is compared to the actual contrast in
table 2.

These results show the improvement in the estimation accuracy of the imaging system as the
inclusion diameter is increased through a range of sub-wavelength dimensions. The diameters
are given in wavelengths in figure 5 and table 2 to demonstrate the dependence of estimation
accuracy on the electrical dimension of the scatterer in a given background tissue. For example,
despite the higher contrast of the inclusion in an adipose background, the longer wavelength
(compared to that of other background tissues) results in increased estimation error. Thus, the
sensitivity of tumor detection in the microwave imaging system will depend not only on the
tumor contrast but also the wavelength in the tissue surrounding the tumor.

5.2. Imaging a Tumor in a Heterogeneous Phantom Interior
In the Class 1 and 2 phantoms the inclusion is placed adjacent to areas of both adipose and
fibroglandular tissue, while in the Class 3 and 4 phantoms the inclusion is mostly surrounded
by fibroglandular tissues. Table 2 and figure 5 suggest that a 10 mm inclusion will not be well
reconstructed in a background of primarily adipose tissue, and that while the same inclusion
in a background of dense fibroglandular tissue may be more accurately reconstructed, the low
contrast and the low imaging resolution may blur it into adjacent features of the heterogeneous
background. These predictions are confirmed in figures 6, 7, 8, and 9, where the reconstructions
of the four realistic phantoms introduced in section 3 are compared to the actual phantom
profiles. While the areas of dense fibroglandular heterogeneity are reconstructed, there is no
clear visual evidence of the inclusion in any of the four reconstructions. These imaging results
illustrate the expected challenges in directly imaging electrically small tumors, and motivate
the use of contrast agents in microwave imaging.

5.3. Differential Imaging of a Tumor in a Heterogeneous Phantom Interior
Differential images showing the effect of each contrast agent on the reconstruction of relative
permittivity and effective conductivity in each of the four realistic phantoms are shown in
figures 10, 11, 12, and 13. These images are produced by subtracting the profiles reconstructed
with and without the effect of the contrast agents. The cross-sections are taken through the
voxel having the peak estimated contrast and the values are clipped at zero since the direction
of the change in contrast caused by each agent is known. The white ‘×’ marker on each cross-
section marks the true location of the center of the inclusion, as projected onto the cross-
sectional planes of the estimated location. The estimated change in contrast of the inclusion
and the error in the estimated location of the inclusion are given in table 3 for each agent in
each phantom.

In all cases, the differential images clearly show a compact change in the contrast of both
relative permittivity and effective conductivity. The change is well resolved in all three
dimensions, with some smearing along the coronal axis caused by the incomplete illumination
of the breast by the cylindrical antenna array geometry. The error of the estimated location of
the peak change in contrast is on the order of 10 mm or less and there is no discernible trend
in the location error relative to the fibroglandular density of the phantom. The change in the

Shea et al. Page 10

Inverse Probl. Author manuscript; available in PMC 2010 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dielectric properties of the inclusion is underestimated in all cases, consistent with the
prediction of both the scattering analysis of section 2 and the reconstructions of the
homogeneous phantoms with 1.0 cm inclusions. The estimated change in properties are about
10–20% of the actual change in Class 2, 3, and 4 phantoms, while the estimate was only a few
percent of the actual change in the mostly-fatty Class 1 phantom.

As noted in section 3, the data used in the reconstructions of the heterogeneous numerical
phantoms include additive white Gaussian noise to create a 50 dB SNR. The effect of the noise
on the difference images is evaluated over a range of noise levels. The perturbation of a
difference image due to the noise is evaluated by subtracting the noiseless difference image
from the noise-corrupted difference image. The peak noise perturbation for each numerical
phantom is plotted in figure 14 for SNR from 10 to 50 dB. Comparison of these curves to the
peak of the tumor spot in the difference images of figures 10a, 11a, 12a, and 13a, suggests
accurate tumor identification in all cases studied for SNR greater than approximately 40 dB.
We note that the image noise is higher in the reconstructions of the dense heterogeneous Class
3 and Class 4 tissue distributions since they reach higher dielectric properties over a more
extensive fibroglandular distribution.

6. Discussion and Conclusion
The issue of the limited resolution of the imaging system has been carefully considered in this
investigation. It is important to note, however, the role of the regularization technique in
determining the detection sensitivity of the system. That the small tumors are not visible in the
images of figures 6–9 is a consequence of both the loss of scattering information predicted by
figure 1 as the tumor dimension decreases and the low-pass spatial filtering effect of the
regularization technique employed in our algorithm. While there exist various edge-preserving
approaches to regularization and global optimization techniques that can sharpen the resolution
of the imaging system, there remains a fundamental issue of information deficiency that is
independent of such techniques. Namely, as the dimension of a tumor decreases into the regime
below one half-wavelength, the magnitude of the scattering decays exponentially until it
decreases below the measurement sensitivity of the system. The problem of low level scattering
information can exist even at larger dimensions due to the low dielectric contrast between
malignant tissue and the surrounding healthy glandular tissue. In this work we have addressed
the deficiency through the enhancement of tumor contrast by exogenous contrast agents, and
the use of a differential imaging scheme to capture their effect.

There are practical issues to be considered in a real-world implementation of a differential
imaging scheme. The assumptions of the contrast available from the agents and the selective
uptake of the contrast agent in cancerous tissue are supported in the literature, but require
further confirmation in a clinical setting. A differential image will reveal not only the change
in the reconstruction due to a contrast agent but will also include artifacts due to any changes
in the test fixture, location and position of the breast, noise, and any other measurement
uncertainties. Our numerical models idealize many of these considerations, but provide an
initial test bed in which to study the potential performance of a differential imaging scheme.
Note that the assumed endogenous contrast between malignant and normal glandular tissue
used in this initial test bed is based on ex vivo measurements and may differ slightly from the
actual in vivo endogenous contrast.

Our analysis and results have illustrated the dynamics of tumor detection with respect to
contrast and resolution in microwave imaging, particularly in the lower microwave frequencies
often employed for inverse scattering solutions. The differential images demonstrate a
successful approach by which contrast agents can be used in conjunction with microwave
imaging to detect tumors, including compact tumors of dimensions below the nominal
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resolution of the imaging system. The results of our investigation suggest a promising direction
for further research on contrast-enhanced tumor detection by microwave imaging.

Microwave breast imaging has been an active research area over the past two decades and has
received considerable recent attention. As supported by the results and discussion in this paper,
there are a number of fundamental and contemporary issues deserving of further consideration
in ongoing research of the microwave modality. Resolution remains an important issue and its
fundamental dependence on wavelength, contrast, and measurement sensitivity points to
potential avenues towards improving microwave detection performance by improving the
information content of the measurement data. In addition, there remains significant opportunity
for improvement of the performance through selection and development of imaging methods,
including techniques of regularization, optimization, solution constraints, and modeling. Image
validation is another important requirement in the development of microwave imaging.
Computational studies are easily validated since the exact object is directly available for
comparison; experimental studies offer practical measurement challenges with less realistic
phantoms; clinical studies offer the best possible test case as well as perhaps the most
challenging case for validation due to uncertainty of the true dielectric properties distribution.
Lastly, there is a need for increased attention to the qualification of the potential clinical value
of the microwave modality for medical imaging, including applications in screening, risk
assessment, and tumor detection.
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Figure 1.
Scattering cross-section of a homogeneous dielectric sphere of radius a as a function of
diameter. The diameter of the sphere is given in units of wavelengths in the background
medium, λb. The sphere has the properties of malignant tissue and is placed in a lossless version
of three representative backgrounds: adipose, transitional, and normal fibroglandular tissues.
The contrast in relative permittivity between the sphere and the background at 2.5 GHz for
these three cases are 11.6, 2.55, and 1.15, respectively.
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Figure 2.
(a) Relative permittivity, εrel, and (b) effective conductivity, σeff (S/m), of the ranges of adipose,
transitional, and normal fibroglandular tissues used in phantom construction. (c) Relative
permittivity, εrel, and (d) effective conductivity, σeff (S/m), of the malignant tissue models with
and without the assumed effect of carbon nanotube or microbubble contrast agents.
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Figure 3.
Diagram of the 3-D forward solution domain for the Class 2 numerical phantom, showing the
dipole array, the downsampled skin layer, the measurement region , and the imaging region

 of the interior breast volume.
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Figure 4.
Comparison of the exact (top row) and reconstructed (bottom row) coronal cross-sections (in
color) of relative permittivity for a single spherical inclusion of malignant tissue properties
within a homogeneous breast volume of transitional tissue properties. The inclusion diameters
are (a)–(b) 6 mm, (c)–(d) 14 mm, and (e)–(f) 22 mm. Spatial smoothing of the inclusion
boundary and increasing underestimation of the inclusion properties with decreasing diameter
are evident in the reconstructions. (Axes in cm.)
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Figure 5.
The normalized error in the estimation of the dielectric properties of the spherical malignant
inclusion versus diameter in a homogeneous breast interior of (a) fibroglandular tissue, (b)
transitional tissue, and (c) adipose tissue. The estimate is defined as the average of the
reconstructed properties over the actual inclusion volume. The error is calculated as (u* −
uest)/(u* − uinit), where u is either relative permittivity, εrel, or effective conductivity, σeff, at
2.5 GHz.
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Figure 6.
Reconstruction of the Class 1 phantom with a single 1.0-cm-diameter spherical malignant
inclusion. Coronal (top row) and sagittal (bottom row) cross-sections (in color) of the exact
and reconstructed volumes are shown at 2.5 GHz for (a)–(d) relative permittivity and (e)–(h)
effective conductivity in (S/m). (Axes in cm.)
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Figure 7.
Reconstruction of the Class 2 phantom with a single 1.0-cm-diameter spherical malignant
inclusion. Coronal (top row) and sagittal (bottom row) cross-sections (in color) of the exact
and reconstructed volumes are shown at 2.5 GHz for (a)–(d) relative permittivity and (e)–(h)
effective conductivity in (S/m). (Axes in cm.)
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Figure 8.
Reconstruction of the Class 3 phantom with a single 1.0-cm-diameter spherical malignant
inclusion. Coronal (top row) and sagittal (bottom row) cross-sections (in color) of the exact
and reconstructed volumes are shown at 2.5 GHz for (a)–(d) relative permittivity and (e)–(h)
effective conductivity in (S/m). (Axes in cm.)
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Figure 9.
Reconstruction of the Class 4 phantom with a single 1.0-cm-diameter spherical malignant
inclusion. Coronal (top row) and sagittal (bottom row) cross-sections (in color) of the exact
and reconstructed volumes are shown at 2.5 GHz for (a)–(d) relative permittivity and (e)–(h)
effective conductivity in (S/m). (Axes in cm.)
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Figure 10.
Differential imaging of the Class 1 phantom using contrast agents. Coronal (top row) and
sagittal (bottom row) cross-sections (in color) of the complex permittivity at 2.5 GHz are taken
through the peak of the change in (a)–(b) relative permittivity and (c)–(d) effective conductivity
(S/m) due to microbubble contrast agent, and the peak of the change in (e)–(f) relative
permittivity and (g)–(h) effective conductivity (S/m) due to carbon nanotube contrast agent.
The ’×’ markers show the actual location of the tumor as projected onto each cross-sectional
plane. (Axes in cm.)
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Figure 11.
Differential imaging of the Class 2 phantom using contrast agents. Coronal (top row) and
sagittal (bottom row) cross-sections (in color) of the complex permittivity (S/m) at 2.5 GHz
are taken through the peak of the change in (a)–(b) relative permittivity and (c)–(d) effective
conductivity (S/m) due to microbubble contrast agent, and the peak of the change in (e)–(f)
relative permittivity and (g)–(h) effective conductivity (S/m) due to carbon nanotube contrast
agent. The ’×’ markers show the actual location of the tumor as projected onto each cross-
sectional plane. (Axes in cm.)
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Figure 12.
Differential imaging of the Class 3 phantom using contrast agents. Coronal (top row) and
sagittal (bottom row) cross-sections (in color) of the complex permittivity (S/m) at 2.5 GHz
are taken through the peak of the change in (a)–(b) relative permittivity and (c)–(d) effective
conductivity (S/m) due to microbubble contrast agent, and the peak of the change in (e)–(f)
relative permittivity and (g)–(h) effective conductivity (S/m) due to carbon nanotube contrast
agent. The ’×’ markers show the actual location of the tumor as projected onto each cross-
sectional plane. (Axes in cm.)
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Figure 13.
Differential imaging of the Class 4 phantom using contrast agents. Coronal (top row) and
sagittal (bottom row) cross-sections (in color) of the complex permittivity (S/m) at 2.5 GHz
are taken through the peak of the change in (a)–(b) relative permittivity and (c)–(d) effective
conductivity (S/m) due to microbubble contrast agent, and the peak of the change in (e)–(f)
relative permittivity and (g)–(h) effective conductivity (S/m) due to carbon nanotube contrast
agent. The ’×’ markers show the actual location of the tumor as projected onto each cross-
sectional plane. (Axes in cm.)
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Figure 14.
Peak pertubation of relative permittivity in microbubble difference images reconstructed from
noise-corrupted measurement data from each of the four heterogeneous numerical breast
phantoms. The plots indicate the maximum absolute perturbation (over all voxels in ) due to
a given noise level, relative to the noiseless difference image.
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Table 1

Debye parameters of the tissue models used in the construction of the numerical phantoms (valid from 0.5 to 3.5
GHz). The relaxation time constant parameter is τ=15.0 ps for all tissues.

Tissue εs ε∞ Δε σs (S/m)

Adipose 2.42–7.63 2.28–4.09 0.141–3.54 0.0023–0.0842

Transitional 7.63–36.7 4.09–16.8 3.54–19.9 0.0842–0.461

Fibroglandular 36.7–67.2 16.8–29.1 19.9–38.1 0.461–1.38

Malignant, endogenous 56.6 18.8 37.8 0.803

 with μ-bubbles 39.7 13.2 26.5 0.562

 with nanotubes 69.3 14.8 54.5 1.47

Skin 40.1 15.3 24.8 0.74

Inverse Probl. Author manuscript; available in PMC 2010 October 8.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shea et al. Page 30

Ta
bl

e 
2

Pe
ak

 c
on

tra
st

 o
f e

st
im

at
ed

 c
om

pl
ex

 p
er

m
itt

iv
ity

 a
t 2

.5
 G

H
z 

of
 a

 m
al

ig
na

nt
 sp

he
ric

al
 in

cl
us

io
n 

in
 a

 h
om

og
en

eo
us

 b
re

as
t i

nt
er

io
r. 

Fo
r r

ef
er

en
ce

, t
he

 e
le

ct
ric

al
si

ze
 o

f t
he

 in
cl

us
io

n 
di

am
et

er
 in

 e
ac

h 
ba

ck
gr

ou
nd

 ti
ss

ue
 is

 g
iv

en
 in

 w
av

el
en

gt
hs

.

B
ac

kg
ro

un
d

E
xa

ct
 C

on
tr

as
t

Pe
ak

 E
st

im
at

ed
 C

on
tr

as
t (

in
cl

us
io

n 
di

am
et

er
)

(2
 m

m
)

(6
 m

m
)

(1
0 

m
m

)
(1

4 
m

m
)

(1
8 

m
m

)
(2

2 
m

m
)

Fi
br

og
la

nd
ul

ar
,

(0
.1

1λ
)

(0
.3

4λ
)

(0
.5

7λ
)

(0
.8

0λ
)

(1
.0

3λ
)

(1
.2

6λ
)

 
 

1.
15

1.
00

1.
05

1.
10

1.
17

1.
18

1.
19

 
 

1.
13

1.
00

1.
03

1.
07

1.
12

1.
14

1.
15

Tr
an

si
tio

na
l,

(0
.0

8λ
)

(0
.2

3λ
)

(0
.3

9λ
)

(0
.5

4λ
)

(0
.7

0λ
)

(0
.8

5λ
)

 
 

2.
55

1.
02

1.
27

1.
77

2.
57

2.
98

2.
88

 
 

2.
99

1.
02

1.
28

1.
78

2.
47

2.
73

2.
94

A
di

po
se

,
(0

.0
4λ

)
(0

.1
1λ

)
(0

.1
8λ

)
(0

.2
5λ

)
(0

.3
3λ

)
(0

.4
0λ

)

 
 

11
.6

1.
01

1.
12

1.
39

2.
16

5.
25

9.
16

 
 

22
.1

1.
01

1.
17

1.
57

2.
71

7.
15

16
.3

Inverse Probl. Author manuscript; available in PMC 2010 October 8.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shea et al. Page 31

Ta
bl

e 
3

C
ha

ng
es

 in
 d

ie
le

ct
ric

 p
ro

pe
rti

es
 a

nd
 lo

ca
tio

n 
er

ro
rs

 a
t 2

.5
 G

H
z 

in
 th

e 
di

ff
er

en
tia

l i
m

ag
in

g 
of

 a
 1

.0
-c

m
-d

ia
m

et
er

 m
al

ig
na

nt
 sp

he
ric

al
 in

cl
us

io
n 

in
 re

al
is

tic
he

te
ro

ge
ne

ou
s p

ha
nt

om
s u

si
ng

 m
ic

ro
bu

bb
le

 a
nd

 c
ar

bo
n 

na
no

tu
be

 c
on

tra
st

 a
ge

nt
s.

Ph
an

to
m

E
xa

ct
 C

ha
ng

e 
(%

)
E

st
. C

ha
ng

e 
(%

)
||r
̂ −

 r
*|

| (
m

m
)

C
la

ss
A

ge
nt

ε r
el

σ e
ff

ε r
el

σ e
ff

ε r
el

σ e
ff

1
μ-

bu
bb

le
−3

0
−3

0
−1

.8
−1

.2
4.

5
2.

8

na
no

tu
be

+2
2

+6
0

+0
.9

+0
.8

6.
0

3.
5

2
μ-

bu
bb

le
−3

0
−3

0
−6

.6
−5

.6
8.

2
7.

2

na
no

tu
be

+2
2

+6
0

+4
.1

+4
.8

12
11

3
μ-

bu
bb

le
−3

0
−3

0
−9

.1
−8

.5
4.

5
4.

5

na
no

tu
be

+2
2

+6
0

+4
.6

+6
.8

8.
2

4.
5

4
μ-

bu
bb

le
−3

0
−3

0
−6

.6
−4

.5
8.

5
7.

5

na
no

tu
be

+2
2

+6
0

+4
.6

+3
.9

8.
9

6.
3

Inverse Probl. Author manuscript; available in PMC 2010 October 8.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shea et al. Page 32

Algorithm 1

Gauss-Newton for Distorted Born Iterative Method

i ← 0

 ← initial background profile

repeat

 for m = 1 to N do

  FDTD: Eb (rn|rm) for n = 1, …, N; Eb(rk|rm) and Ḡb(rk|rm) for k = 1, …, K

  Es(rn|rm) ← Emeas (rn|rm) − Eb (rn|rm) for n = 1, …, N

  Ḡb(rm|rk) ← Ḡb(rk|rm)T for k = 1, …, K

 end for

 construct Ai, yi

 x̂i ← CGLS(Ai,yi)

  

 i ← i + 1

until ||yi−1|| − ||yi|| < δ ||y0||
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