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Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator with crucial roles in a wide variety of
cellular functions across a broad range of organisms. Though a simple molecule in structure, S1P
functions are complex. The formation of S1P is catalyzed by one of two sphingosine kinases that
have differential cellular distributions as well as both overlapping and opposing functions and which
are activated by many different stimuli. S1P can act on a family of G protein-coupled receptors
(S1PRs) that are also differentially expressed in different cell types, which influences the cellular
responses to S1P. In addition to acting on receptors located on the plasma membrane, S1P can also
function inside the cell, independently of S1PRs. It also appears that both the intracellular location
and the isotype of sphingosine kinase involved are major determinants of inside-out signaling of S1P
in response to many extracellular stimuli. This chapter is focused on the current literature on
extracellular and intracellular actions of S1P
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1. Introduction
In just over a decade, the sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged
as a key regulator of numerous physiological functions, including cell growth and survival,
angiogenesis, cell motility and migration, and lymphocyte trafficking 1. S1P promotes cell
growth and inhibits apoptosis, while its precursors, ceramide and sphingosine, typically inhibit
cell growth and induce apoptosis 1. Therefore, the cellular balance of these three sphingolipid
metabolites, the “sphingolipid rheostat”, is of crucial importance in regulating cell fate 1.
Moreover, sphingolipid metabolism has been found to be dysregulated in many human
diseases, including cancer, inflammation, atherosclerosis, and asthma 2. S1P is produced
intracellularly by two sphingosine kinases (SphK1 and SphK2), and is the ligand for a family
of five G protein-coupled receptors, termed S1P1-5. However, there are some actions of S1P
that appear to be independent of the known S1PRs. This review will focus on the emerging
evidence for S1P as a second messenger.
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2. Sphingolipid metabolism
Sphingolipids are ubiquitous components of the lipid bilayer of eukaryotic cells. Like
glycerolipids, numerous agonists regulate sphingolipid metabolism to generate signaling
molecules, including ceramide (N-acyl sphingosine), sphingosine and sphingosine-1-
phosphate (S1P) 1, 3, 4. Ceramide, the backbone of all sphingolipids, is produced both by de
novo synthesis and by turnover of sphingolipids, such as hydrolysis of sphingomyelin by
sphingomyelinases. De novo synthesis at the endoplasmic reticulum (ER) is initiated by
condensation of serine and palmitoyl-CoA catalyzed by serine palmitoyltransferase. The 3-
ketosphinganine formed is rapidly reduced to dihydrosphingosine, which is subsequently N-
acylated by one of a family of six (dihydro)ceramide synthases (CerS, formerly referred to as
LASS) to form dihydroceramide, with the CerSs having differing but overlapping preferences
for acyl chains from 16 to 26 carbons long. Finally, a 4–5 trans double bond is introduced in
the sphingoid base to produce ceramide. Ceramide is then trafficked from the ER to the Golgi,
where a variety of head groups are added, forming sphingolipids. After removal of these head
groups during catabolism, deacylation of ceramide by ceramidases yields sphingosine, the most
common sphingoid base in mammals. It is important to note that sphingosine and
dihydrosphingosine (sphinganine) are not produced de novo and are only formed by catabolism
of sphingolipids. These sphingoid bases can be re-utilized for complex sphingolipid
biosynthesis or phosphorylated by two sphingosine kinases (SphK1 and SphK2) to form S1P.
S1P can be degraded either by reversible dephosphorylation to sphingosine by phosphatases,
including lysosomal phosphatases, members of the LPP family of lipid-specific phosphatases,
and two S1P-specific phosphatases, termed SPP1 and SPP2 (reviewed in 5), or degraded by
irreversible cleavage to ethanolamine phosphate and hexadecenal by S1P lyase (SPL) 6.

Ceramide and sphingosine, the precursors of S1P, are important regulatory components of
stress responses, typically inducing growth arrest and apoptosis 3, 4. In contrast, S1P has been
implicated in motility and cytoskeletal rearrangements, formation of adherens junctions,
proliferation, survival, angiogenesis, and the trafficking of immune cells 1, 7–9. Thus, the
dynamic balance between S1P and ceramide, and the consequent regulation of opposing
signaling pathways, is an important factor that determines cell fate 10. S1P produces many of
its effects by acting as a ligand for one or more of its five receptors, discussed below. However,
although intracellular targets for both ceramide and sphingosine have been identified,
indicating they are both bona fide second messengers, intracellular targets for S1P have
remained elusive.

3. Sphingosine kinases
Oddly, like mammalian SphKs, two SphK isoenzymes are also found in organisms as diverse
as yeast, slime molds, worms, flies, and mammals 7. In mammals, both SphKs have a broad
and overlapping tissue distribution, with SphK1 predominating in lung and spleen, and SphK2
predominating in the heart, brain, and liver 11, 12. Both SphKs are members of the
diacylglycerol kinase family, containing five conserved domains responsible for substrate
binding and catalytic activity 13. Differential activation of SphKs can be determined by in
vitro assays, as detergents stimulate SphK1 and inhibit SphK212. Conversely, SphK2 is
stimulated by high salt, whereas SphK1 is inhibited. SphK1 and SphK2 have similar
endogenous substrate specificities, with both being able to phosphorylate d-erythro-
dihydrosphingosine and d-erythro-sphingosine, the two mammalian sphingoid bases 11, 13.
Cells contain both S1P and dihydro-S1P, and both activate cell surface S1PRs with essentially
the same affinity (see below). S1P predominates both in cells and plasma, and thus for the
purposes of this review “S1P” will refer to all phosphorylated sphingoid bases, including phyto-
S1P found in yeast and plants, unless otherwise indicated. SphK1 and SphK2 are primarily
cytosolic, although their distributions are altered in different cell types and by various signals

Strub et al. Page 2

Adv Exp Med Biol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(see below). Homozygous single knockouts of either isoenzyme are viable and there are also
no obvious phenotypes in yeast 14 or mice 15, 16, suggesting that they may have redundant,
overlapping, or compensatory functions. Intriguingly, there is no functional redundancy in
Drosophila, as deletion of Sk2 but not Sk1 results in flight defects and reduced fecundity 17.
In yeast, even the double knockouts are viable 14. However, when Sphk1−/− and Sphk2−/− mice
were crossed, mice lacking 1 to 3 of the Sphk alleles appeared normal, but mice lacking all
four alleles died in utero due to defective brain and cardiovascular system development 16.
This suggests that SphK1 and SphK2 are redundant in mammals, at least for viability. However,
subtle yet significant phenotypic differences in Sphk1−/− and Sphk2−/− mice are emerging, and
the apparent functional redundancy may not apply to a variety of pathophysiological
conditions, suggesting that isozyme-specific targeting of SphKs may be an effective means of
disease control or prevention.

3.1 SphK1
SphK1a is a 48 kDa splice variant that was cloned utilizing peptide sequences from SphK1
purified to homogeneity from rat kidneys 11. Most investigations of the role of SphK1 have
focused on SphK1a, the major splice form, although two N-terminal extension splice variants
have been described in humans, SphK1b (+14 aa) and SphK1c (+86 aa), all with similar
enzymatic properties 18. SphK1 isoforms are predominantly cytosolic but have slightly
different subcellular distributions, with SphK1b and SphK1c having greater plasma membrane
localization 19. Interestingly, extracellular secretion of SphK1a, by unknown mechanisms
through a Golgi-independent route has been described 19, although the biological significance
of this is not yet clear. SphK1 was initially purified in part based on its ability to bind to a
calcium-calmodulin column 20. Subsequently, it was shown that SphK1 has a calmodulin
binding site between residues 191–206, the mutation of which blocks agonist-induced SphK1
translocation to the plasma membrane, but not its activation 21. An important advance in
understanding regulation of SphK1 was the demonstration that SphK1 is phosphorylated on
Ser225 by ERK1/222, which was necessary but not sufficient for its targeting to the plasma
membrane 23. SphK1 has been shown to physically interact with a number of proteins that may
affect its cellular localization, including RPK11824, PECAM-125, Acy126, and δ-catenin/
NPRAP 27, among others. SphK1 is activated by diverse stimuli, including hormones, growth
factors, immunoglobulin receptor crosslinking, cytokines, chemokines, and lysolipids,
including S1P 1. Functionally, numerous studies have demonstrated a role for S1P produced
by SphK1 in protection of cells from apoptosis, promotion of cell growth, stimulation of
motility and tumorigenesis, and as an essential component of many signaling pathways,
activating kinases, phospholipases, and inducing calcium release (reviewed in 1, 8, 28, 29).
Indeed, many of the pro-growth and anti-apoptotic effects observed by exogenous addition of
S1P can be reproduced by overexpression of SphK1.

3.2 SphK2
Much less is known about SphK2, which was cloned in mammalian cells based on its homology
to SphK112. SphK2 has two splice variants. The smaller, originally cloned SphK2-S, contains
618 amino acids, and the N-terminally extended SphK2-L, consists of 654 amino acids 30.
SphK2-L is expressed in human cells but not in mice, and is reported to be the predominant
SphK2 mRNA in most cell lines and tissues except brain and kidney 30. SphK1 and SphK2
have similar abilities to phosphorylate endogenous substrates, but SphK2 is mainly responsible
for phosphorylation of the immunosuppressive pro-drug, FTY72015, 31, 32. SphK2 was found
to be a two hybrid interactor with the cytoplasmic domain of the IL-12 receptor β1, and SphK2
overexpression enhanced IL-12-mediated signaling 33. SphK2 also binds calmodulin at a site
that is conserved between the SphKs, although unlike SphK1, interaction with calmodulin does
not alter SphK2 localization 21. SphK2 contains a putative BH3 domain that has been shown
to contribute to the ability of overexpressed SphK2 to induce apoptosis in a variety of cell types
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34. In contrast to SphK1, only a few agonists have been reported to activate SphK2, including
EGF 35, IgE receptor crosslinking 36, and IL-1β and TNFα37. Of note, EGF activates SphK2
and induces phosphorylation on Ser351 and Thr578, both dependent on ERK138. Moreover,
this phosphorylation was required for SphK2-enhanced cell migration towards EGF 38.
Intriguingly, although SphK2 expression typically inhibits growth, promotes apoptosis, and
chemosensitizes several cell types 30, 34, 39, 40, SphK2 protects MCF-7 breast cancer cells and
HCT116 colon cancer cells from doxorubicin-induced apoptosis by a pathway mediated by
p53-independent upregulation of p2141.

3.3 SphK1 vs. SphK2
Even though mice with single knockouts of Sphk1 and Sphk2 are viable with few obvious
phenotypes, suggesting that the SphKs have redundant functions, the kinases exhibit many
differences in a variety of experimental systems. Indeed, several studies have shown that the
two SphKs in yeast, Lcb3p and Lcb4p, do not complement one another (e.g. 42), although this
may be due to the much higher activity of Lcb4p. Moreover, both SphKs, in yeast as well as
mammals, have overlapping but distinct subcellular localizations, suggesting that they may
interact with different proteins and/or lipids and utilize different sphingoid base substrate pools.
The first clues that eukaryotic SphK1 and SphK2 may differ functionally came from the
observations that, in contrast to many reports demonstrating a pro-growth, anti-apoptotic role
for SphK1, SphK2 overexpression induced growth arrest and cell death 30, 34, 39. Consistent
with these results, SphK1 decreased, while SphK2 increased, the sensitivity of several different
cell lines to a variety of chemotherapeutic drugs 34, 40. However, other studies have revealed
that SphK2 knockdown reduced proliferation of glioblastoma cell lines 43. The cell culture
results demonstrating a role for SphK1 in cell growth and apoptosis are likely
pathophysiologically relevant, as SphK1 is overexpressed in a number solid tumors, including
breast, ovary, kidney, brain, stomach, and kidney 43, 44. Perhaps because of its role as a
promoter of apoptosis, SphK2 but not SphK1 was reported to be responsible for the secretion
of S1P during apoptosis of Jurkat T cells induced by staurosporin 45. Conversely, in
hematopoietic cancer cells, it was recently shown that SphK1 produced the S1P that was
secreted in response to doxorubicin-induced apoptosis 46.

The differential effects of the two SphKs on cell fate are due in part to their different roles in
regulating ceramide levels. SphK1 expression decreases ceramide levels, likely by inhibiting
ceramide synthases 47, 48. Conversely, SphK2 expression increases ceramide levels by
increasing the salvage of sphingoid bases 47. In a pathway that is conserved in yeast 42,
exogenous sphingoid bases must first be phosphorylated by a specific SphK (Lcb4p or SphK2),
then dephosphorylated by a specific SPP (Lcb3p or SPP1) 49, 50. This cycle enables cells to
re-acylate sphingoid bases to ceramides and likely represents a control point that cells use to
regulate the amount of ceramide and sphingolipids at the levels of de novo synthesis (SphK1)
and salvage of sphingoid bases (SphK2). SphK1 and SphK2 also appear to have different roles
in the uptake of S1P, with SphK1 but not SphK2 cooperating in another phosphorylation/
dephosphorylation cycle that utilizes cell surface LPP-1 to promote sphingoid base uptake51.

Differential effects of SphK1 and SphK2 are also apparent in transduction of signals from cell
surface receptors. Perhaps because it was cloned first and thus is more well studied, SphK1-
dependent formation of S1P has been found to be an important component of numerous
receptor signaling pathways, but even in cases where participation of both SphK1 and SphK2
have been examined, it is still SphK1 that is typically implicated. To cite a few examples,
estradiol activates SphK1, but not SphK2, ultimately leading to EGFR activation in MCF-7
cells 52; similarly, VEGF-induced activation of ERK1/2 in T24 bladder cancer cells requires
SphK1 but not SphK253; moreover, targeting SphK1 but not SphK2 with siRNA also blocks
TNFα-induced COX-2 induction and PGE2 secretion 54.
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Many studies have demonstrated a role for S1P and S1PRs in cell motility (reviewed in 55),
and SphK1, but not SphK2, has often been reported to be the source of S1P. For example, EGF
stimulates the activity and translocation of SphK1 to lamellipodia in MCF-7 cells, and
overexpression of SphK1 enhances migration towards EGF 56. EGF also has been shown to
stimulate both SphK1 and SphK2 in HEK 293 cells, but only SphK1 was required for EGF-
induced motility 35. The lack of requirement for SphK2 in these cells is the more remarkable
because SphK2 is already localized at the plasma membrane, and suggests that a SphK may
need to be targeted to a specific sub-compartment of the plasma membrane, perhaps in close
proximity to its substrate and specific S1PRs and/or perhaps S1P transporter(s). Intriguingly,
EGF also stimulates both SphK1 and SphK2 in MDA-MB-453 cells, but in these breast cancer
cells, both SphKs are required for EGF-induced motility 35.

The roles of S1P in the immune system are complex and deciphering which SphK isozyme is
involved is a challenging task. It has been shown that SphK1, but not SphK2, is required for
degranulation of rat RBL-2H3 mast cells in response to IgE receptor crosslinking 57. In contrast,
in mouse bone marrow-derived mast cells, both SphK1 and SphK2 are activated by IgE receptor
crosslinking in a Fyn-dependent manner 36. Interestingly, SphK1 and SphK2 have different
requirements for effectors downstream of Fyn, suggesting other levels of regulation of SphK
activation. These authors also showed that exogenous S1P could only partially restore
degranulation to Fyn−/− mice, hinting at an intracellular role for S1P (discussed below). This
group later took advantage of Sphk1−/− and Sphk2−/− double knockout mice to demonstrate
that in fetal liver-derived and bone marrow-derived mast cells, only SphK2 was responsible
for IgE receptor triggered degranulation and cytokine release 58. However, in a passive
systemic anaphylaxis model, they found that Sphk2−/− mice fared as well or slightly worse than
wild-type mice in terms of increased plasma histamine levels. Conversely, Sphk1−/− mice had
reduced plasma histamine levels. Sphk1−/− mice also had reduced plasma S1P levels compared
to wild type and Sphk2−/− mice, and the intensity of the histamine released positively correlated
with circulating S1P levels. The triple allele knockout Sphk1+/−Sphk2−/− mice had the lowest
histamine responses and had plasma S1P levels as low as the Sphk1−/− mice. Thus, mast cell
function in mice is determined both by SphK2 in mast cells (intrinsic S1P) and circulating S1P
levels determined by non-mast cell SphK1 (extrinsic S1P). In contrast, in both human LAD2
mast cells and human umbilical cord blood-derived mast cells, knockdown of SphK1
expression decreased degranulation, cytokine release, and motility in response to IgE/antigen
59. Conversely, SphK2 was dispensable for antigen-induced degranulation, motility, or release
of most cytokines 59. S1P likely also plays important roles in other types of immune cells,
although neutrophil function in cells isolated from Sphk1−/− or Sphk2−/− mice, or even in the
whole animals themselves, showed little observable differences between the knockouts and
wild type. The Sphk2−/− mice did have increased disease progression in a lung infection model
60. Differences between mouse and human immune systems remain to be resolved, but will
likely require SphK isozyme-specific inhibitors to elucidate the roles for the SphK1 and SphK2
in mast cell functions and development.

4. S1P Receptors
S1P is a ligand for five specific GPCRs, S1P1-5, formerly called endothelial differentiation
gene (EDG) receptors, which are differentially expressed in different tissues. The cell type
specific expression of S1PRs, as well as their differential coupling to different G proteins,
explains the diverse signaling of S1P 61. As mentioned above, many stimuli, including
hormones, immunoglobulin receptor ligation, growth factors, and cytokines, activate cytosolic
SphKs and the production of S1P that is required for the full activity of these agonists. In many
cases, the S1P produced activates cell surface S1PRs in a paracrine and/or autocrine manner
(reviewed in 62). Indeed, many of the downstream effects of these stimuli require
transactivation of one or more S1PRs, also called “inside-out” signaling. For example, in
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MCF-7 cells, estradiol stimulates ERK1/2 though a mechanism that requires at least two
autocrine signaling loops 52. In the first loop, estradiol stimulates SphK1 and formation of S1P
leading to activation of S1P3. In the second loop, S1P3 activates the metalloproteinase MMP-9,
which in turn releases EGF from the EGF-heparin binding protein and activates EGFR, finally
leading to ERK1/2 phosphorylation 52. How transactivation of S1PRs is accomplished is an
intriguing puzzle as the SphKs and S1P production are both on the cytosolic side of the plasma
membrane and S1PRs bind S1P on the exoplasmic side. While it has been suggested that SphK
proteins themselves may be secreted and produce S1P extracellularly 19, it has been
convincingly shown that the ABCC1 transporter mediates secretion of intracellularly produced
S1P from mast cells 63. Moreover, S1PR transactivation is not only regulated by S1P secretion,
cellular levels of S1P are also important, as decreasing levels by overexpression of SPP1
inhibits transactivation 64, while decreasing S1P degradation by inhibition of SPL promotes it
65. Such inside-out transactivation loops may be a general phenomenon, as chemotactic signals
for neutrophils acting through their receptors induce secretion of ATP that then locally activates
cell surface nucleotide receptors to coordinate directed cell migration 66.

4.1 S1P1
S1P1 is ubiquitously expressed, with high levels in brain, lung, spleen, cardiovascular system,
and kidney. It was originally identified as an orphan GPCR involved in differentiation of
endothelial cells 67. Since its discovery, many of the important physiological functions of S1P
have been attributed to ligation of this receptor. It is now known that S1P1 plays a key role in
angiogenesis, because its deletion in mice is embryonic lethal due to hemorrhage resulting
from incomplete vascular maturation as smooth muscle cells and pericytes fail to migrate and
envelop nascent endothelial tubes 68. Endothelial cell conditional S1P1 knockout mice have
been generated using the Cre/Lox system, and these mice display the same vascular
deficiencies, suggesting that S1P1 receptors on endothelial cells are also responsible for vessel
coverage by smooth muscle cells 69. S1P1 also plays an important role in maintenance of
endothelial and epithelial barrier integrity by functioning in conjunction with S1P2 and S1P3
to increase vascular integrity 70–72. Disruption of endothelial barriers leads to increased
vascular permeability, often found in tumors and in inflammation. Silencing of S1P1 expression
with siRNA blocks barrier enhancement, determined by transendothelial monolayer electrical
resistance, while silencing of S1P3 inhibits vascular disruption 71. These experiments also
identified the downstream signaling molecules Akt and Rac as effectors of S1P1 actions on
vascular integrity 71. A role for S1P1 in vascular integrity has also been demonstrated in vivo
73–76, and experiments using a S1P1 selective antagonist demonstrated that S1P1 is crucial in
maintaining vascular tone 77. Of particular interest are the conditional SphK1/SphK2 double
knockout mice, which have normal vascular integrity despite having over 100-fold lower
plasma S1P levels than wild type mice 78, suggesting that even a very low level of S1P is
sufficient as long as S1P1 expression is normal.

S1P1 is also intimately involved in immune cell function. In particular, its expression is required
for lymphocyte egress from lymph nodes. Resting T and B cells express primarily S1P1, and
its downregulation or deletion results in lymphopenia due to the inability of lymphocytes to
exit from the lymph nodes 15, 79. Additionally, transplantation of S1P1 deficient thymocytes
and lymphocytes into normal mice results in their sequestration in lymph nodes and Peyer’s
patches. Moreover, T-cells overexpressing S1P1 preferentially distribute into blood 80. These
results confirm that S1P1 controls lymphocyte recirculation.

4.2 S1P2
S1P2 is also widely expressed in a variety of different cell types. Unlike S1P1 knockout mice,
newborn S1P2 deficient mice do not demonstrate any striking abnormalities, although they
have been reported to develop sporadic seizures between 3–7 weeks of age 81. Neocortical
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pyramidal cells from these mice also display an increase in excitability 81. In addition,
S1P2

−/− mice are deaf indicating that S1P2 is required for proper development of the auditory
and vestibular systems 82, 83. S1P2 is also required for proper degranulation of mast cells 57.
S1P2 is generally considered to be a repellant receptor as its activation inhibits cell migration
and appears to work in opposition to S1P1 and S1P3, which both enhance cell migration 84.
Similarly, activation of S1P2 activates ROCK/Rho and leads to increases in vascular
permeability 72. Finally, although the visceral organs of S1P2

−/− mice develop normally,
expression of S1P2 promotes liver tissue remodeling in response to acute injury 85.

4.3 S1P3
Much like the lack of phenotypic effects of deletion of S1P2, deletion of S1P3 in mice does not
generate any obvious phenotype. S1P3 is expressed in the cardiovascular system, lungs, kidney,
intestines, spleen, and cartilage 86. Knockouts of both S1P2 and S1P3 increases perinatal
lethality, but not to a great extent 87. However, the triple knockout of S1P1-3 leads to embryonic
lethality due to massive vascular deficiencies perhaps even worse than those resulting from
knockout of S1P1 alone 88. S1P3 is also an important regulator of vascular permeability
signaling through the downstream effectors ROCK and Rho 72. A clear role for S1P3 has also
been demonstrated in the regulation of heart rate 89, as S1P3 expression is localized to myocytes
and perivascular smooth muscle cells, and its activation results in bradycardia and
hypertension.

4.2 S1P4 and S1P5
S1P4-5 have much narrower patterns of expression than the dominant S1P1-3 receptors,
localizing in human leukocytes, NK cells, airway smooth muscle cells and white matter of
CNS tracts 90–93. S1P4 is primarily expressed in lymphoid tissues, including the thymus,
spleen, bone marrow, appendix, and peripheral leukocytes 94. S1P4 directly couples to Gαi and
Gα12/13 subunits of trimeric G proteins, and Jurkat cells overexpressing S1P4 display enhanced
pertussis toxin-sensitive cell motility in the absence of S1P 95. S1P4 stimulation also activates
the mitogen activated-protein kinases ERK1/2, activates phospholipase C, and modulates the
opening of intracellular calcium stores 96, 97. Stimulation of S1P4 ectopically expressed on
CHO-K1 cells induced cytoskeletal rearrangements and cell rounding, as well as its
internalization following S1P stimulation 95. Whether or not S1P4 has a role in cell motility
remains unclear. In D10G4.1 mouse Th2 cells and EL4.IL-2 mouse T cells lacking endogenous
S1P receptors but transfected with S1P4, its activation failed to transduce chemotactic
responses 98. These cells also displayed enhanced secretion of IL-10 and decreased
proliferation in response to S1P 98.

S1P5 is highly expressed in oligodendrocytes 92; however, silencing of S1P5 expression does
not inhibit myelination or produce any other obvious phenotype in these cells 99. Binding of
S1P to S1P5 induces phosphatase-dependent inhibition of ERK1/2, resulting in an anti-
proliferative phenotype 91, 100, 101. In addition, stimulation of rat oligodendrocytes with PDGF
increases S1P1 expression with a concomitant downregulation of S1P5, resulting in an
amplified mitogenic response 102. A recent report emonstrated that S1P5 is present in natural
killer cells (NK). Mice deficient in S1P5 display aberrant NK cell homing and mobilization of
NK cells to inflamed organs 93. Finally, despite a multitude of studies focusing on physiological
functions of S1PRs, some actions of S1P resulting from activation of SphKs are independent
of S1PRs.

5. Evidence for intracellular targets of S1P
As discussed above, cellular levels of S1P are controlled both by its synthesis and by its
degradation. S1P can be degraded either by dephosphorylation back to sphingosine or
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irreversibly degraded by SPL to ethanolamine phosphate and fatty aldehyde. In fact, the latter
is the only pathway in eukaryotic cells for degradation of sphingoid bases. Thus, S1P formation
and subsequent degradation by SPL is one means for decreasing sphingolipid levels within the
cell. Intriguingly, S1P is also an intermediate in the formation of sphingolipids from salvaged
sphingoid bases. Though these pathways regulating sphingolipid levels demonstrate a central
role for S1P, emerging evidence from yeast, plants, and mammals points to S1P as a classical,
intracellular second messenger.

5.1 S1P in Saccharomyces cerevisiaei
The yeast genome does not encode a recognizable cell surface receptor for S1P and exogenous
S1P does not affect yeast growth 103. Thus, any role for S1P in yeast physiology must therefore
be intracellular. While no direct target for S1P has been found, S1P does indeed have
intracellular functions in yeast. First, it has been demonstrated that yeast cells deleted of S1P
phosphatase (lcb3/ysr2/lbp1) and SPL (dpl1) accumulate large amounts of S1P and are non-
viable or very slow growing. This growth arrest can be can be rescued if the major yeast SphK
(lcb4) is deleted, indicating that intracellular S1P suppresses yeast cell growth 104, 105. Indeed,
sphingosine itself induces growth arrest in yeast, and this effect can be blocked by mutational
inactivation of SphK 103. The growth inhibition may be due to elevated levels cytosolic
calcium, as S1P has been shown to increase intracellular calcium levels 106. In contrast, while
heat shock-induced cell cycle arrest is mediated by the sphingoid base itself 107, Heat shock
also increases SphK activity 103 and S1P accumulation 108, suggesting a functional role for
S1P in heat shock responses. Preventing S1P metabolism by deletion of either the S1P
phosphatase Lcb3p 109, 110 or SPL 108 led to enhanced levels of S1P and increased heat shock
tolerance. Moreover, mutational inactivation of SphK reversed the protective effect of SPL
deletion 103. That deletion of either an S1P phosphatase or SPL promotes heat tolerance
indicates that S1P has direct actions, rather than merely functioning as a metabolic
intermediate. Identification of molecular targets of S1P in yeast would aid this quest in
mammalian cells.

5.2 S1P in Arabidopsis thaliana
Abscisic acid is a plant hormone responsible for mediating responses to drought conditions
such as closure of stomata to prevent water loss. It was recently demonstrated that drought
increased S1P levels in plants and that abscisic acid-induced stomatal closure was reduced by
SphK inhibitors 111. Subsequently, it was shown that abscisic acid activated SphK in
Arabidopsis 112. Intriguingly, these authors showed that the effects of S1P on stomatal openings
were dependent on the single canonical Gα protein in plants, GPA1. This finding suggests that
S1P might be acting through plant GPCRs. However, Arabidopsis has only one GPCR-like
protein, designated GCR1, which is not homologous to the known S1PRs, does not bind
phosphorylated sphingoid bases, and GCR1 mutants are hypersensitive to S1P-induced
stomatal closure 113. Thus, S1P likely regulates stomatal apertures and drought responses
intracellularly in plants.

5.3 S1P in mammalian cells
The observation that expression of SphK1, but not SphK2, decreases ceramide levels and
increases dihydrosphingosine levels 47 suggests that S1P produced by SphK1 may negatively
regulate one or more of the six (dihydro)ceramide synthases (CerS), leading to accumulation
of its substrate, dihydrosphingosine. Subsequently, using lysates from cells over-expressing
individual CerSs, S1P was shown to be a non-competitive in vitro inhibitor of CerS2, but not
of other CerSs 48. In silico analysis identified two domains in CerS2 with predicted homology
to S1PRs, and mutation of one arginine to alanine in each of these two domains removed S1P
inhibition without altering CerS activity 48. The authors concluded that S1P directly binds to,
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and inhibits, CerS2. However, it is also possible that S1P acts through intermediate proteins
in cell lysates to inhibit CerS2. Moreover, CerS2 does not use C16 or C18 acyl CoAs as
substrates, yet it is C16 and C18 ceramides that are most affected by expression of SphK147.
Additionally, S1P produced by SphK1 reverses CerS1-induced chemosensitivity, suggesting
that S1P directly affects CerS240. Finally, it is not yet clear whether inhibition of CerS2 by
S1P is a signal-mediated effect or whether it is simply feedback product inhibition. Further
work is needed to confirm that S1P binds to and inhibits CerS2.

As mentioned previously, autocrine and/or paracrine transactivation of S1PRs is typically
accompanied by translocation of SphK1 to the plasma membrane. However, both SphK1 and
SphK2 have been shown to translocate to other cellular compartments, suggesting that S1P
may be produced locally in these compartments to act on specific intracellular targets. For
example, SphK1 is targeted to internal membranes through interaction with RPK11824 and
Acy126. SphK1 translocated to nascent phagosomes promotes maturation into mature
phagolysosomes 114. SphK1 has also been shown to translocate to the nuclear envelope during
S-phase 115, and this translocation may play a role in the ability of SphK1 overexpression to
promote the G1/S transition 116. Conversely, SphK2 has been shown to reside in the
nucleoplasm in certain cells, where it functions to arrest cells 30, 39. Moreover, SphK2 has a
nuclear export signal sequence that is activated by in G1 phorbol ester-induced
phosphorylation, likely through protein kinase D 117. Whether the nuclear export signal serves
to promote SphK2/S1P signaling in the cytosol or to decrease SphK2/S1P signaling in the
nucleus is unclear. In some cells, SphK2 has been shown to translocate to the ER under stress
conditions and promote apoptosis 47. Indeed, targeting SphK1 to the ER induced apoptosis
34, suggesting that S1P produced at the ER has specific targets.

A direct target for S1P in the ER has not conclusively been identified, although strong evidence
indicates that S1P can activate thapsigargin-sensitive calcium channels, likely in the ER. S1P
induced inositol trisphosphate receptor-independent release of calcium from permeablized
cells 118 and from cell fractions rich in rough, but not smooth, ER 119. Consistent with these
results, cells overexpressing SphK2, which localizes in part to the ER, were also shown to have
elevated intracellular calcium 47. Conversely, fetal liver derived-mast cells from Sphk2−/− mice
have a defect in calcium mobilization in response to IgE receptor crosslinking that cannot be
restored with exogenous S1P 58, again suggesting an internal S1P target. Exogenous S1P
increases calcium in HEK293 cells, a response that can be inhibited with pertussis toxin.
However, microinjection of S1P increases calcium bypassing a pertussis toxin block, again
supporting a role for intracellular S1P in calcium release 120. Similarly, caged S1P can elicit
calcium mobilization in cells that do not respond to exogenous S1P 121. Likewise, UTP
stimulates calcium mobilization in a SphK-dependent manner, but this effect is not mimicked
by exogenous S1P 122. Finally, exogenous S1P itself can stimulate SphK, and SphK inhibitors
reduced calcium release induced by S1P 123. Intracellular calcium release by S1P may be an
evolutionarily ancient pathway, as it has been shown that S1P can increase calcium in yeast
106. In sum, these results strongly suggest that S1P is a second messenger that can activate
calcium channels.

Finally, there are other effects of S1P that cannot be explained by activation of the known
S1PRs. For example, overexpression of SphK1 promotes survival of endothelial cells in part
through PECAM-1 expression and activation of Akt, an effect that is not reproduced by
exogenous S1P 124. Dihydro-S1P and S1P bind and activate S1PRs with similar affinities, but
dihydro-S1P cannot recapitulate all of the effects of S1P 125–128. For example, S1P, but not
dihydro-S1P, protects male germ cells from apoptosis, an effect that was linked to inhibition
of NF-κB and activation of Akt 128. A similar protection pattern was observed for HL-60 and
PC-12 cells 125. Conversely, S1P-phosphonate, which does not bind to S1PRs, also protects
these cells from apoptosis 125, suggesting an intracellular action. Other studies using embryonic
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fibroblasts from S1PR knockout mice ruled out S1PR involvement, demonstrating that SphK1
overexpression stimulated growth and survival in wild type and in S1PR negative cells 129. In
the APCmin/+ model of intestinal tumorigenesis, it was shown that Sphk1−/− mice, but not
S1p1

−/+, S1p2
−/−, or S1p3

−/− mice, had reduced tumor progression and size 130, suggesting an
intracellular role for S1P. Moreover, SphK1 null mice had elevated levels of sphingosine but
not S1P, so it is possible that reduced tumor progression and size was due to inhibitory effects
of sphingosine rather than to the absence of S1P stimulation. S1PR knockouts were similarly
used to demonstrate that SphK2-induced apoptosis was S1PR independent 34. Consistent with
a role for SphK2 in apoptosis, the FTY720 analog AAL(R), which is phosphorylated by SphK2
but only poorly by SphK1, induces apoptosis in Jurkat cells and primary splenocytes 131. The
authors showed that AAL(R) had to be phosphorylated to affect cells as the non-phosphorylated
AAL(R) isomer did not induce apoptosis in cells from Sphk2−/− mice. However, exogenous
addition of phosphorylated AAL(R) did not induce apoptosis, suggesting both that phospho-
AAL(R) must be generated at or near its site of action and that S1PRs are not involved in
SphK2-induced apoptosis.

Intracellular S1P has also been linked to regulation of inflammatory responses. CD4+ T cells
from SphK2 knockout mice displayed a hyperactivated phenotype, increased proliferation, and
enhanced secretion of cytokines and STAT5 activation in response to IL-2132. This phenotype
was physiologically relevant, as T cells from SphK2 knockout mice induced a much more rapid
response than T cells from wild type littermates in an adoptive transfer model of inflammatory
bowel disease. The hyperresponsiveness to IL-2 could not be reversed with exogenous S1P,
indicating that internal S1P normally suppresses IL-2-induced inflammatory responses.
Interestingly, activation of the T cell receptor in Th1 and Th2 cells leads to increased expression
of SphK1, but not SphK2, and SphK1 negatively regulates chemokine expression, although
the authors did not examine whether exogenous S1P reproduced chemokine suppression 133.
Similarly, it has been shown that in primary umbilical vein endothelial cells, the pro-
inflammatory cytokine TNFα greatly increased expression of the S1P phosphatase SPP2134.
Induction of SPP2 was required for the TNFα-induced production of IL-1β and IL-8. SPP2 is
an integral membrane protein of the ER and its requirement for induction of inflammatory
responses suggests that it acts at the ER to remove an inhibitory S1P signal. Moreover,
downregulation of SPP1 demonstrated that it played no role in TNFα-induced cytokine
secretion. As SPP1 is also an ER resident protein, these results suggest a role for S1P at a
specific subcompartment of the ER. Moreover, parallel findings have been reported in yeast,
where the S1P-specific phosphatases, YSR2 and YSR3, are both localized to the ER and have
overlapping but distinct functions 5.

Many studies have utilized non-isozyme specific SphK inhibitors to implicate S1P in various
signaling pathways (e.g. 135, 136), leading to the conclusion that S1P was acting intracellularly
in these systems, but S1P release was not detected. Still, care should be used in interpreting
these results as S1P release may have been below the limits of detection. Moreover, exogenous
S1P can activate all surface S1PRs, perhaps resulting in net opposing effects. It is also possible
that signaling events localize secretion of S1P to regions of the plasma membrane where
specific receptors to be activated are localized. Thus, lack of detectable S1P secretion does not
definitively show that S1PRs are not involved in a particular signaling pathway.

Furthermore, studies in endothelial cells using a pan sphingosine kinase inhibitor demonstrated
that endogenously generated S1P functions as a positive modulator of calcium entry via store
operated channels (SOC), whereas exogenously administered S1P initiated calcium release
from the ER similar to histamine and decreased endothelial cell permeability 137. These results
suggest that the production of intracellular S1P, and not the secretion of S1P to act on other
immunoregulatory cells, is the primary determinant of the inflammatory response.
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Recently, a new study demonstrated that the vascular permeability inhibitor Ang-1 stimulated
SphK1 and led to increases in intracellular S1P and decreases in vascular permeability. This
function remained undisturbed even when expression of S1P1-3 were downregulated 138.
Exogenous S1P also decreased vascular permeability, but not in cells where S1PRs were
downregulated 138. These results suggest that Ang-1/SphK1 actions on vascular permeability
are mediated via an intracellular mechanism.

6. Implications and future directions
It is now clear that the bioactive lipid mediator S1P exerts effects both intracellularly and
extracellularly. In addition, SphK1 and SphK2 are not only distributed differently throughout
tissues and within cells, S1P produced by these kinases can have different, sometimes opposite,
downstream effects. How can one simple molecule like S1P have such a wide range of effects?
It seems that in the case of S1P, the location of its production may be a major determinant of
the resulting phenotype. The key to unlocking this riddle will be the inevitable discovery of
intracellular S1P binding partners, but to date, none have been unequivocally identified.
Extensive studies of proteins in the nucleus, particularly those involved in the transcriptional
machinery and the regulation of the cell cycle, are clearly indicated to elucidate the mechanism
by which S1P exerts its effects there. Additionally, the consequences of activation or inhibition
SphK1 vs. SphK2 must be studied with more scrutiny, as it is apparent that despite catalyzing
the same reaction, they have different functions. In addition, because the intracellular actions
of S1P involve many functions related to cancer and other diseases, a full understanding of
both the extracellular and intracellular actions of S1P will be needed to best design clinical
therapies targeting SphKs and S1P production as well as its receptors.
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