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1. INTRODUCTION
For almost as long as three- and four-dimensional NMR experiments have been used, NMR
spectroscopists have been devising ways to speed them up. Indeed, the publication that is often
cited as the very first to demonstrate a 3-D NMR experiment commented, “it has been thought
that…high-resolution 3-D NMR experiments are impracticable because of huge data matrices
and long measurement times,” but went on to “suggest a technique for reduction of data
matrices” using selective excitation pulses [1]. Although both spectrometers and computers
have advanced considerably since this 1987 publication, somewhat changing the definitions
of huge and long, the fundamental problem of measurement time continues to limit the
experiments that can be carried out in practice using conventional multidimensional NMR
methodology, and significant effort is still devoted to alleviating this restriction.

The problem arises from the very nature of Fourier transform (FT) NMR, which involves the
systematic sampling of a signal over time followed by the calculation of the spectrum using
the FT [2,3]. Traditionally, an n-dimensional (n-D) experiment is obtained through the
sampling of the time domain on a complete n-D Cartesian grid; since the number of points in
an n-D grid grows exponentially with the number of dimensions n, the measurement time
needed to record the experiment becomes considerable even for small n. Yet NMR spectra are
generally only sparsely populated with signals, suggesting that there is no statistical need for
so many observations (other than signal accumulation for sensitivity in some cases), and that
a suitable alternative approach to sampling and/or processing might significantly reduce the
time requirement, while generating the same or more spectral information. Two trends in
biomolecular NMR research have given particular impetus to these efforts: the drive for
increased throughput in studies of small proteins—for example in structural genomics—which
requires running today’s routine experiments more quickly, and the increasing attention given
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to large and challenging systems, which require more dimensions and higher resolution than
conventional experiments can offer.

A variety of methods have been introduced in these efforts to reduce the amount of data needed
for multidimensional NMR, but a surprising number of them share in common that they sample
the indirect dimensions of the time domain along radial spokes. The measurement of a radial
spoke simply means collecting data samples along a line in the time domain that passes through
the origin. If multiple radial spokes are sampled, the resulting dataset is equivalent to recording
the NMR experiment in cylindrical coordinates or their higher-dimensional equivalent
(cylindrical rather than spherical because the directly observed dimension is always sampled
conventionally). The potential advantage of this arises from the fact that one can arrange the
radial sampling points so as to obtain higher resolution information than with conventional
Cartesian sampling, for the same or a smaller number of samples. Depending on the processing
method used to extract spectral information from the data, this approach may lead to artifacts
or ambiguities—but it also has the potential to provide complete spectral information in
considerably less time than required for conventional NMR.

The purpose of this article is to review the long history of radial sampling in NMR, from its
initial introduction in the “accordion spectroscopy” experiments, through reduced-
dimensionality and G-matrix Fourier Transform (GFT) spectroscopy, and on to the projection
spectroscopy and projection-reconstruction techniques. Because all of these methods share a
common mathematical foundation—despite their sometimes differing vocabularies—we first
explain these underlying concepts. We then continue with a chronological survey of the
different approaches, describing how they were developed, how they work and how they have
been put to use. Particular attention is given to how these methods can be used to reduce the
measurement time of the experiment, including the theoretical basis for the time savings and
the practical tradeoffs that can result.

It is important to note that while this review describes a number of techniques for reducing
NMR measurement time, it does not attempt to describe the many methods that have been
introduced recently for that purpose which do not use radial sampling. These include random
sampling [4–11], concentric ring or shell sampling [12,13] and other unconventional sampling
approaches (e.g. spiral [14]); filter diagonalization analysis to extract high-resolution
information from low-resolution conventionally sampled data [15–17]; the measurement of a
spectrum in a single scan through the encoding of the spectroscopic frequency information
spatially within the sample [18,19]; Hadamard encoding to measure signal intensities at a small
number of directly excited frequencies [20–22]; covariance spectroscopy, which enhances the
resolution in the indirect dimensions through a statistical symmetrization with the directly
observed dimension [23–26]; and the “minimal sampling” procedure, which involves
calculating the possible correlations between the signals on the “first planes” of a
multidimensional experiment and resolving any ambiguities by measuring a single additional
sampling point [27,28]. We touch on processing methods such as multidimensional
decomposition [7,29] and maximum entropy reconstruction [30] only to the limited extent that
they have been applied to radial sampling experiments. Additionally, we do not discuss
methods for reducing experiment time by optimizing the longitudinal relaxation rate to allow
a much shorter interscan delay, which could be applicable to any type of sampling [31–34].

2. FUNDAMENTAL CONCEPTS
2.1. Signals and Sampling

NMR signals are continuous, but they are known only through discrete sampling, meaning
observation at specific times. Since the purpose of an NMR experiment is almost always to
discover the frequencies, lineshapes and relative intensities of the signals as normally presented
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in the frequency domain spectrum, it is useful to consider how accurately and unambiguously
this information can be obtained through the discrete sampling of a continuous signal. As a
general rule, taking a limited number of measurements of an analog signal results in a loss of
information [35]. For example, the most common approach to sampling, in NMR or otherwise,
is to record a set of evenly spaced measurements during a finite period of time (Fig. 1a). One
consequence of this is the loss of all information about what the signal does during the intervals
between the samples. Given the sampling points alone (Fig. 1b) and no a priori information
about the signal, one could infer an infinite number of signals at a variety of frequencies that
would be equally consistent with the data (Fig. 1c); indeed, one cannot even definitively say
that there is only one signal contributing to the data1. The sampling process has introduced
ambiguity about the signal frequencies. A second consequence of discrete sampling is the loss
of all information about what happens to the signal after the end of the sampling period. It is
unclear from the data whether the signal ends abruptly, decays slowly or continues forever
(Fig. 1d), and one could infer infinitely many different frequency domain lineshapes for the
signal that would be equally consistent with the known information. Again, the sampling
process has introduced ambiguity, in this case about the lineshape.

These ambiguities can be seen clearly in a comparison between the spectrum of the original
continuous signal (Fig. 2a) and the spectrum of the samples alone2 (Fig. 2b) [35,36]. Two
major effects are apparent when uniform discrete sampling is used. The first is a duplication
of the continuous signal’s single peak at many different frequencies. The second is an alteration
in the shape of the peak and its duplicates, such that each appears much broader than the line
obtained from the continuous data and is accompanied by a series of small wiggles that disturb
the neighboring baseline. The duplications of the peak at regular intervals in the spectrum can
be interpreted as reflecting the set of infinitely many signals that fit the data equally well, owing
to the gaps between samples; these aliases are prevented by sampling at a rate that equals or
exceeds the Nyquist rate. The changes in the shape of the peaks reflect the truncation of the
signal at the end of the sampling period. The broadening of the peak arises because of the
inverse relationship between the duration of a signal and its linewidth, a fundamental form of
mathematical uncertainty [35]. The wiggles represent the sharp discontinuity at the end of the
sampling, which introduces low-level artifacts at many frequencies. These truncation
artifacts are customarily eliminated through apodization [30].

The phenomena of aliasing and truncation are thoroughly familiar to NMR spectroscopists,
but we revisit them to point out an interpretation that will be useful in understanding the
advantages and disadvantages of radial sampling. We describe them as ambiguities introduced
by sampling because they can be shown to depend entirely on the sampling pattern, and on its
ability to capture information about the continuous signals that may be present—and not on
the signals themselves, or the Fourier transform calculation [3,35,37]. Most importantly, other
sampling patterns would have different kinds of ambiguity, and would show different artifacts,
and one can imagine that it might be possible to find patterns that collect the same information
more efficiently.

The consequences of sampling by any pattern can be found by calculating the spectrum of the
sampling pattern alone, which is commonly called the point response [3,35]. The point response
can be determined by treating the sampling pattern as a function with a value of unity at each
position measured, and zero otherwise, and computing the Fourier transform of this function.
The term point response arises because it shows the frequency domain response that would be

1Of course, in practice, we normally do have a priori information about the possible frequencies of signals, and this theoretical ambiguity
does not pose a problem.
2This is calculated by evaluating the continuous transform, treating each sample as an infinitely sharp time impulse or delta function,
according to the generalized function method [36].
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obtained if the sampling process were applied to the time domain signal corresponding to a
single infinitely sharp peak, a point in the frequency domain; it is also called the point spread
function, since discrete sampling has the inevitable consequence of spreading the energy of the
point signal elsewhere in the spectrum. The convolution theorem explains how the point
response can be applied to understand the effects of sampling in a particular case. If two
functions are multiplied together in the time domain, the result in the frequency domain is their
convolution, the intermingling of their lineshapes. Since sampling is equivalent to multiplying
the continuous signal by the sampling function in order to obtain discrete data, the spectrum
determined from a discretely sampled dataset is simply the convolution of the true spectrum
with the point response. For conventional NMR sampling, one can decompose the process into
the product of two sampling functions, one representing the even spacing (and in particular the
gaps between points), and the other representing the finite duration of the data collection (Fig.
3). Since the final observed data is equivalent to multiplying the continuous signal with these
two sampling functions in turn, the final observed spectrum will be simply the convolution of
the true spectrum with the two point responses. The final spectrum shows both types of artifacts
mixed together, but it is analytically equivalent to applying two separate sampling functions,
each with independent artifact behavior, sequentially.

The decomposition of discrete sampling and its effects into two separate processes, one
pertaining to the arrangement of the sampling points and the other pertaining to the finite
duration of the signals, highlights the fact that the two main types of sampling artifacts are very
different in origin and implications, even though both reflect ambiguity about the signal
frequencies due to a loss of information. Truncation and peak broadening will occur in exactly
the same manner for any arrangement of sampling points that covers the same finite time period,
and as long as the duration of the sampling is shorter than the duration of the signal3. Thus the
only way to improve the resolution of a spectrum is to increase the portion of the time domain
that is sampled, providing additional information that will reduce the uncertainty of the
frequency estimation. By contrast, it is the particular arrangement of the points within the
sampling window that leads to the generation of aliasing artifacts. For evenly spaced samples,
there is an infinite set of equally possible frequencies for each signal, reflected in the complete
duplication of the peak at regular intervals. A different sampling pattern, however, with a
different principle for arranging the sampling points, would lead to a different kind of aliasing.

2.2. Radial NMR Sampling
Since the evolution times for the indirect dimensions of a multidimensional NMR experiment
can be set arbitrarily, it is possible to measure the multidimensional time domain signal at any
point desired. Conventionally, however, the sampling times for multidimensional NMR
experiments have been chosen such that the data points fall on an evenly spaced time domain
grid (Fig. 4a) [3,38]. The same principles apply to multidimensional grid sampling as for the
uniform 1-D sampling just described; namely, one can see aliasing artifacts if the sampling
rate in any dimension is too low, and one can see truncation artifacts if the finite sampling
period in any dimension is shorter than the duration of the signal. These phenomena occur
independently for each dimension, since the multidimensional grid pattern can be decomposed
as the product of orthogonal 1-D uniform sampling patterns. The independence of the
dimensions means, however, that the number of sampling points on a grid pattern grows
exponentially as the resolution or dimensionality of the spectrum is increased. Unfortunately,

3This is not completely true. The distribution of sampling points within the window can and does alter the resolution, by affecting how
much information, relative to the total, is available about each interval of evolution time. If the distribution of sampling points is biased
towards the earlier part of the time domain, the resolution is effectively reduced, since there is proportionally more information about
the earlier times than the later. This is exactly how window functions can alter the resolution of a spectrum, and as we discuss later it can
be very important to correct for these effects. However, if properly corrected with a weighting factor, one finds that different internal
arrangements of points lead to different aliasing artifacts but the same truncation/broadening effects.
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many experiments that would be helpful or essential for particular projects are impractical due
to such sampling requirements.

The alternative that we describe in this review is to sample the multidimensional time domain
along radial spokes (Fig. 4b), or in other words, in polar coordinates (Fig. 4c). Collecting such
data is straightforward: the same pulse sequence can be used, but with a different set of
evolution times for the indirect dimensions4. As will be demonstrated below, the potential
advantage of radial sampling is that it is possible in many cases to determine the signal
properties accurately from a small number of radial spokes in a small number of directions. If
such sampling is sufficient, one can afford to include more data points on each spoke for the
same total measurement time. This means that a larger area of the time domain is covered by
the sampling pattern, and the longer evolution times result in a higher resolution spectrum than
one would obtain from conventional sampling with the same number of samples (Fig. 4a/b).

In the sections below, we analyze radial sampling in detail. We begin by examining the
information content of a single radial spoke, and go on to consider the information in sets of
radial spokes taken together, and the issues that arise in trying to determine signal properties
from radial data. Of particular importance in addressing these topics is the connection between
radial spokes and projections, which we develop in the next section. As we go along, we will
pay particular attention to ambiguity caused by sampling, building up an understanding of how
aliasing manifests itself in a radial context. Lastly, we present the point response of the radial
sampling pattern, and consider how it can illuminate the differences between radial and
conventional sampling, and how it can explain when and why radial sampling can be useful.

2.3. Slices and Projections
Consider a 2-D experiment containing several signals. If we let x and y refer to the two
dimensions5, each signal consists of a 2-D wave formed as the product of a 1-D wave along
the x time axis and a 1-D wave along the y time axis; the full time domain is the sum of these
2-D waves. Conventional 2-D grid sampling and a conventional fast Fourier transform (FFT)
would yield a 2-D spectrum containing peaks positioned according to the frequencies of the
2-D waves with respect to the two axes.

Now consider a line of evenly spaced sampling points measured along the tx axis of the 2-D
time domain. These sampling points would capture information about the x components of all
the 2-D signals, but would fail to capture information about the y components, since they cannot
“see” any effect from the y modulation. If a 1-D spectrum were computed from this line of
samples, it would contain a peak for each of the signals, and the peak positions would be
dependent only on the x frequencies. This 1-D spectrum would be a projection of the full 2-D
spectrum, effectively collapsing the y dimension to a single line. One might be inclined to make
a visual analogy and think of this projection as the silhouette of the 2-D spectrum when sighted
down the y axis—but this would not be quite correct, since the projection is actually the
integral along the y direction. If two of the 2-D signals shared the same x frequency but different
y frequencies and were in phase, from the standpoint of the line of x samples they would appear
as a single x wave with a magnitude equal to the sum of the intensities of the two signals. Thus
in the spectrum they would appear as a single peak with an intensity equal to the sum of the
intensities of the two peaks in the 2-D spectrum—and this is, in fact, the integral with respect
to the y dimension.

4While one can always use the same pulse sequence in a radial experiment as for a Cartesian grid experiment, we shall see below that
there are also some specialized methods that can be applied only in the radial case, in particular multiple quantum coevolution.
5In theoretical discussions, we shall use x, y and z to represent the dimensions of generic 2-D and 3-D experiments. The evolution times
for these dimensions shall be represented as tx, ty and tz, and the frequencies as ωx, ωy and ωz, respectively. At times we shall also employ
polar coordinates r and θ, where the evolution time with respect to the radial dimension is tr and the frequency ωr.
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NMR spectroscopists are familiar with this principle from recording the “first planes” of a
multidimensional experiment, but what may be less obvious is that the same principle applies
to any straight line of sampling points, regardless of their direction. Consider, for example, a
line of sampling points crossing the 2-D time domain at a 30° angle with respect to x (Fig. 5).
This is effectively a 1-D experiment at a 30° angle with respect to x and a 150° angle with
respect to y. It is sensitive to the component of the 2-D signal along the 30° vector (a linear
combination of the x and y modulations), and it is insensitive to the component of the 2-D
signal along the orthogonal vector with angle 30° + 90° = 120° (a different linear combination
of the x and y modulations). From the perspective of this 1-D tilted experiment, signals with
identical modulation along the 30° vector cannot be distinguished and would overlap,
regardless of their modulation with respect to the 120° vector. Upon computation of the FT,
the result is the projection of the signals onto the 30° vector, collapsing the unsampled 120°
modulation.

This result, which is well known from many fields and was first described in NMR by
Nagayama et al. [39], is commonly referred to as the projection-slice theorem, and can be
stated succinctly: The Fourier transform of a cross-section through the time domain yields a
projection at the same angle in the frequency domain. The measurement of a projection reduces
the dimensionality of an experiment, eliminating all information about the behavior of the
signals in the direction perpendicular to the line of sampling. While a tilted projection can
capture some information about multiple dimensions simultaneously, it cannot capture
complete information about them, since it is insensitive to orthogonal modulation6. The
ambiguity inherent in the sampling of a multidimensional time domain by a single spoke can
be appreciated from the point response of the spoke, shown in Fig. 6 for the 2-D case described
above [37]. The main feature of the point response is a ridge running perpendicular to the line
of the sampling, reflecting the total lack of information about the signals for this particular
direction.

The projection coordinate for each peak on a projection is a linear combination of its ωx and
ωy coordinates, since the frequency of the modulation in the projection direction is a linear
combination of the x and y frequencies of each signal. To be explicit for the example above, a
peak at (ωx, ωy) would appear on the 30° projection at a position ωr = ωx cos 30° + ωy sin 30°.
An alternative way to write this that generalizes readily to higher dimensions is to use direction
cosines, the cosines of the angles between the projection vector and each of the coordinate
axes. Thus the formula in the example becomes ωr = ωx cos 30° + ωy cos 60°, and the general
formula is ωr = Σ ωi cos θi, where ωi is the frequency in dimension i and θi is the angle between
the projection and axis i.

The potential benefit of measuring projections comes not from measuring a single projection,
but rather from measuring sets of projections in different directions. While each projection has
limited information, projections in different directions provide different information about the
multidimensional experiment, which one might imagine could be combined to deduce the full
spectral information. In fact, in the most favorable cases, only a very small number of
projections is needed for such a deduction—for a single peak in a 2-D spectrum, for example,
only two projections are needed to position the peak correctly in the 2-D space by visual
inspection alone (Fig. 7). As for radial sampling more generally, the advantage in measurement
time for projection experiments versus complete grid sampling arises because a small number
of projections can be collected at very high resolution with considerably fewer total sampling
points than would be needed for conventional sampling at the same resolution (cf. Fig. 4).
Unfortunately, the problem of deriving peak information from projections is not consistently

6In the language of linear algebra, the line of sampling points defines a subspace that does not span the full dimensionality of the
experiment.
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so trivial as in Fig. 7, but we shall see that there are a variety of methods that are able to
accomplish it, depending on the situation.

Although the example was given for a 1-D projection of a 2-D spectrum, the same basic
principle applies for higher dimensionalities. Thus a line of sampling points passing through
a 3-D time domain yields a two-fold reduction in dimensionality for that specific projection,
projecting the 3-D spectrum down to a 1-D vector. As reflected in the point response (Fig. 8),
the sampling is sensitive to modulation in the same direction as the sampling vector, and
insensitive to modulation in the directions defined by a plane perpendicular to that vector. By
comparison, a 2-D plane of samples from a 3-D space will be sensitive to modulation parallel
to that plane, and insensitive to modulation that is perpendicular; its point response is thus a
line. Note finally that in practice, NMR experiments always have a directly observed
dimension, meaning that a projection will always have at least two dimensions, one directly
observed conventional axis and one indirectly observed projection axis. Likewise, the parent
multidimensional experiment will always have at least three dimensions, one directly observed
and at least two that are coevolved to produce the radial sampling. Thus the sampling is best
described as cylindrical or hypercylindrical rather than polar.

A multidimensional function and its complete set of projections in all directions are related by
an integral transform called the Radon transform [40–42]. Since each point on a projection is
nothing more than an integral of a region of the multidimensional function, the forward Radon
transform generates projections from the starting function by simple integration in all
directions. The inversion of the Radon transform is called tomography, and is mathematically
more complicated, as discussed below. The forward Radon transform literally describes how
projections are obtained in a number of other fields that work with projections, such as CT
scanning in medical imaging, where the imaging process involves physical integration
(absorption of X-rays in the patient) to yield a projection [42]. In NMR there is no physical
Radon transform, as the projections are obtained from radial sampling in the time domain and
Fourier transformation—but the result is equivalent, and the same considerations apply for
inversion. The inverse Radon transform will thus be our starting point for addressing
reconstruction from projections.

Note that in the direction(s) sampled by a radial spoke, the use of evenly spaced points behaves
like any other sampling by evenly spaced points, introducing the same kinds of ambiguity and
therefore the same aliasing and truncation artifacts (cf. Fig. 6). To prevent aliasing, the sampling
rate along the spoke must be set to meet the Nyquist criterion for the component of the signals
in the sampling direction; since this is a linear combination of the frequencies on the orthogonal
axes, the required spectral width of the spoke may be greater than for the independently
acquired orthogonals, corresponding to a closer spacing of the time domain samples [43–45].
As always in NMR, the resolution of the projection is determined by the maximum evolution
time, and truncation artifacts may result if the signals are cut off abruptly.

2.4. Comodulation and Splitting: An Alternative Interpretation of Radial Sampling
There is a second common interpretation for what appears in the Fourier transform of a radial
spoke, besides that it is a projection at a specific angle. This second interpretation is built on
an explicit consideration of how the orthogonal 1-D signals (for example, the x and y signals
above) combine to form the sampled data values. Since the multidimensional signal is a
product of these 1-D signals, the result in the frequency domain is a convolution. One can thus
understand the contents of a projection in terms of the convolution of the original signals. This
interpretation is of great importance, as it formed the basis for the development of the reduced
dimensionality and GFT experimental approaches (see Sections 3.2 and 3.3).
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Consider again the example of a 2-D time domain, and a vector of samples from that time
domain taken at a 30° angle from the x axis. As illustrated in Fig. 9a, from the perspective of
these samples, the x modulation would appear to be expanded by the factor of 1/(cos 30°). The
Fourier transform of this expanded modulation would show the same peak as for the original
x signal, except with the frequency scaled by the factor cos 30° (Fig. 9b). Likewise, in these
samples the y modulation would appear as if it were expanded by the factor 1/(sin 30°), and
the Fourier transform would show the y peak with its frequency scaled by sin 30°. The actual
observed data are the product of the scaled x signal and the scaled y signal; by the convolution
theorem, the result in the frequency domain is the convolution of the scaled x peak and the
scaled y peak (Fig. 10a). This spectrum would contain a single peak at the position ωx cos 30°
+ ωy sin 30°, with a lineshape that blends the lineshapes of the x and y signals. Note that this
is precisely the peak position that would be predicted from the projection argument, as we
described above.

2.5. Quadrature Detection and Projections
The complete description of a 1-D NMR signal requires complex data rather than real data,
meaning that two measurements of the signal with a phase relationship of 90° must be acquired
simultaneously for each sampling position [3,38]. The reason for this is that the magnetization
vector of an NMR coherence behaves as a phasor, precessing about an axis, the external
magnetic field, over time. With only a single intensity measurement for each time point, it is
not possible to determine the direction of rotation of the phasor, and the resulting Fourier
transform reflects this ambiguity by splitting the peak into a doublet. With two intensity
measurements taken 90° apart—in other words, a sampling in complex numbers—it becomes
possible to determine the sign of the frequency of the signal. The measurement of an NMR
signal as complex values is referred to as quadrature detection.

When multiple dimensions are involved, quadrature detection becomes more complicated. A
multidimensional signal is formed as the product of complex 1-D signals for each dimension.
One might imagine that this would occur as a traditional product of complex numbers,
producing a new complex number—for example, (xr + ixi)(yr + iyi) = (xryr − xiyi) + i(xryi +
xiyr) for two dimensions x and y, with real and imaginary components designated via subscripts
r and i, respectively—but in fact the typical pulse sequence techniques used in NMR do not
capture the quadrature information in this form7. Instead, data collection in NMR is said to be
hypercomplex, measuring 2n components for n dimensions, which in the 2-D example would
be xryr, xryi, xiyr and xiyi. With a conventional multidimensional NMR experiment sampled on
a rectangular grid, the standard approach to data processing involves computing the Fourier
transform for each dimension independently, holding the other dimensions constant during the
calculation [46]. Each of these transforms is over complex data, using pairs of hypercomplex
components; after a dimension is transformed, its imaginary components are discarded, as the
information in the frequency domain imaginary components is redundant and will lead to
phase-twist lineshapes (see Section 2.9) if retained.

This conventional approach of independent, sequential transforms for each of the nuclei in the
experiment cannot be applied in processing radial spokes to produce projections. A radial spoke
captures information from multiple nuclei simultaneously as a slice through the time domain,
and the projection-slice theorem calls for taking the Fourier transform along the slice in order
to generate a projection. Such a slice will have a reduced dimensionality from the original time
domain, and computing the transform of the slice will require some method of reducing the
number of hypercomplex components. The two main approaches that have been taken are either

7In fact, many early 2-D NMR experiments recorded data in a complex rather than hypercomplex format, but as this leads to problems
with phase-twist lineshapes, the hypercomplex procedure was favored. See Section 2.9 below.
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measuring fewer components to begin with, such that one has the correct number of
components for the transform of the slice, or measuring the full set of hypercomplex
components, but rearranging the components so that the correct number is supplied to the
Fourier transform.

The first solution is to limit the experimental sampling to the correct number of hypercomplex
components for the dimensionality of the slice; for the typical experiment combining two or
more indirect dimensions into a single radial dimension, this means measuring only two
components, so as to present complex data to the 1-D Fourier transform [47,48]. In practice,
one simply limits the quadrature detection in the pulse sequence to one of the indirectly
observed dimensions. Thus for the 2-D example, one could record the experiment with
quadrature in x and not in y by measuring the two components xryr and xiyr at each of the
sampling points on the tilted vector, and use them as the complex input for the 1-D FT with
respect to the radial dimension.

One might expect that collecting less data will result in increased ambiguity somewhere, and
this ambiguity in fact appears as a duplication of each signal. This result can be deduced using
the convolution argument presented in the preceding section, as worked out graphically in Fig.
11. We shall look at the contributions from x and y independently, and then examine their
convolution. Since the sampling of x is in quadrature, the transform of the x contribution alone
would give the projection of the x peak onto the tilted axis (Fig. 11a). The contribution from
y, however, is purely real, and its spectrum would have two peaks, one of positive frequency
and the other of negative frequency (Fig. 11b). The observed time domain data are the product
of the x and y contributions. Since the effect of multiplying two functions in the time domain
is to convolve their spectra in the frequency domain, the final spectrum is the convolution of
the x signal’s spectrum with the spectrum of the y signal. The split y signal causes the final
result to be a doublet, with the pair centered on the scaled x frequency and separated by the
scaled y frequency (Fig. 11c).

The same procedure could be applied for other dimensionalities, using quadrature detection in
one dimension and measuring real data for the others. The result would be a more complicated
splitting pattern, with an additional splitting for each cosine-modulated indirect dimension.

The second solution is to record the full set of hypercomplex components for all indirect
dimensions, and then to rearrange the components before computing the Fourier transform
[49–53]. In practice, this normally means converting hypercomplex data to complex data. We
have already seen that complex and hypercomplex components are related in the case of two
dimensions by the simple rule (xr + ixi)(yr + iyi) = (xryr − (xiyi) + i(xryi + xiyr), indicating that
we can convert hypercomplex data to complex data by taking a linear combination of the
hypercomplex components. Equivalent rules can be deduced for any other dimensionality by
finding the analogous product. The result of computing the transform of the converted complex
data is the expected projection of the 2-D peak onto the tilted axis, with no duplication of the
signal, since all dimensions are sampled in quadrature.

Interestingly, it is possible to form more than one linear combination from a set of
hypercomplex components. In the case of two coevolved indirect dimensions, for example, it
is possible to form a second linear combination, (xryr + xiyi) + i(xiyr − xryi This combination
would appear to generate the time domain data corresponding to the product (xr + ixi)(yr −
iyi). Since (yr − iyi) is the complex conjugate of the y signal, the product (xr + ixi)(yr − iyi)
would be a mirror image of the 2-D signal but with the direction of precession reversed, thus
extending the complex time domain into the +tx −ty quadrant [37]. In the context of 1-D radial
spokes, the data values generated from this alternative linear combination of the sampled
hypercomplex components thus trace a spoke in a new direction −θ mirroring the original
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sampling angle θ [53]. The transform of this new spoke would yield the projection in this new
direction, with a single projected peak for each 2-D signal.

An alternative interpretation, by the modulation and convolution argument, is shown in Fig.
10b.

Note that it does not matter whether the second linear combination is computed as a mirror
image of the data in the x dimension [(xr − ixi)(yr + iyi) = (xryr + xiyi) + i(xryi − xiyr)] or as a
mirror image of the data in the y dimension [(xr + ixi)(yr − iyi) = (xryr + xiyi) + i(xiyr − xryi)]
—but only one of these can be used productively at a time, as they provide access to the same
mirror image projection.

The hypercomplex sampling of a radial spoke thus provides access not just to the projection
in the direction of the spoke, but also to projections in mirror image directions, a phenomenon
that arises because of the inability of any single hypercomplex component to distinguish
between positive and negative frequencies (Fig. 12). The Fourier transform of a single
hypercomplex component shows both the true peak and a set of mirror-image duplicates in the
other quadrants (Fig. 12b). Taking a linear combination of these hypercomplex components
results in a spectrum showing a single peak, either the true peak or one of the duplicates (Fig.
12c). The same principles apply to radial spokes, as shown in Fig. 12b/c. One finds that the
“extra” projections arising from linear combinations of hypercomplex components are in fact
projections of these duplicate, mirror-image peaks (Fig. 12d).

Note that if one takes into account the full set of linear combinations, the process of converting
hypercomplex to complex data does not reduce the number of data values, but rather changes
their form. In the 2-D example, conversion takes us from having four hypercomplex
components defined over the +tx + ty quadrant to having two complex components defined
over both the +tx + ty and + tx − ty quadrants (Fig. 10c). A set of four data values sampled at a
time domain position (tx, ty) becomes two components at (tx, ty) and two components at (tx,
−ty). Because there is no reduction in the amount of information, there is also no introduction
of ambiguity.

The linear combinations that can be used for any particular dimensionality in order to obtain
independent mirror image projections from hypercomplex data can be calculated conveniently
using tensor product formalisms introduced by Kim and Szyperski [52]. The “G matrix” for a
given dimensionality provides the appropriate coefficients for each of the possible independent
combinations of the time domain data.

Note that it is possible to arrive at the same result by taking linear combinations in the frequency
domain, where one may note a strong resemblance to the IPAP (In-Phase/Anti-Phase)
technique used in the measurement of couplings (cf. [54]). Kozminski and Zhukov
demonstrated this by computing 1-D transforms over pairs of hypercomplex components, i.e.
using xryr and xiyr for one transform and xryi and xiyi for the other [55]. The former transform
would produce an in-phase doublet split by the y frequency, while the latter would produce an
antiphase doublet. By taking linear combinations of these doublets, one can separate the two
mirror-image projections. Kim and Szyperski supplied an “F matrix” formalism giving the
appropriate coefficients to carry out this kind of frequency domain processing for any
dimensionality [52].

The connection between multiplet components and mirror-image projections is important for
understanding one technique that was used with reduced dimensionality experiments without
full quadrature detection [48,56]. Consider a 2-D case where the chemical shifts in y are
significantly larger than those in x. If one measures x with quadrature and y without quadrature,
the splittings will be so large that the upfield doublet components for all the signals will tend
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to cluster together in an upfield region of the spectrum, while the downfield components will
tend to cluster together in a downfield region of the spectrum, with a gap between the clusters.
Furthermore, by adjusting the angle of the sampling, one can calibrate the size of the splitting
and thus the gap between the clusters. This phenomenon makes the data easier to analyze, and
was often considered in the design of reduced dimensionality experiments. In fact, the two
clusters are the two mirror-image projections, and this method therefore provides a way to
separate them without using full quadrature detection. Ding and Gronenborn later showed that
TPPI could be used to introduce very large artificial frequency offsets in the cosine-modulated
dimensions, allowing them to produce a (4,2)-D experiment with the four mirror-image
projections placed in an equispaced row within the same spectrum (see Section 3.2 for a more
detailed discussion and illustrations) [57].

To summarize this section, we have seen that measuring pairs of hypercomplex components
along radial spokes causes the peaks to be split into multiplets, which is what one analyzes in
the classic reduced dimensionality experiments. One can take linear combinations of the
hypercomplex components in order to select out particular multiplet members. The individual
multiplet members correspond to the projections in certain directions that are related by mirror-
image symmetry, and thus taking linear combinations allows one to separate out the projections
in these directions. One can also say that the linear combinations of hypercomplex components
generate complex data corresponding to different regions of the time domain. When we move
on to polar Fourier transforms of radial data, we shall see a few additional considerations
involving quadrature detection, but the principles described in this section allow one to explain
all of the different approaches to data collection and manipulation that have been used for
quadrature detection in reduced dimensionality and projection experiments.

2.6. Using Projections: Directly Interpreting Projected Peak Positions
Having described radial sampling and the conversion of radial time domain data to frequency
domain projections, we shall now consider how information about the signals can be obtained
from such data. As we saw above, it is possible in simple cases to examine projections directly
to determine the position of an original peak in the multidimensional space. Under the most
favorable circumstances only two projections are needed to position a peak correctly (Fig. 7);
as we shall see, it is unfortunately not always so straightforward. This general idea, however,
has inspired a number of approaches for using radial data, both manual and automated, that
seek to determine the frequencies of the signals in the multidimensional spectrum by examining
the positions of the peaks on projections8. The specific approaches will be addressed in detail
when we consider the history of radial sampling in NMR, but for the moment we wish to
consider some general aspects of the problem.

The primary difficulty with interpreting projected peak positions is in determining which
projected peaks originate from the same multidimensional signal. With a single peak this is
never a problem. Depending on the directions of the projections and positioning of the peaks,
the assignment may also be unambiguous for multiple peaks (Fig. 13a). However, it is not hard
to imagine pathological cases. Given the two projections in Fig. 13b/c, the spectrum in Fig.
13c is just as likely as that in Fig. 13b— indeed, one cannot say whether two, three or even
four of these possible peaks exist (Fig. 13d). One can extend a vector from each projected peak
across the multidimensional spectrum, and wherever such vectors cross is a possible peak; if
there are multiple crossings for the same vectors, one is faced with the question of how many
and which ones are real. One criterion is that a real peak should appear on all of the projections,
and any intersection that does not feature a vector from every projection can generally be

8We distinguish these from reconstruction methods, which attempt to reconstruct the full spectrum from its projections, and which do
not attempt to identify or analyze individual signals on the projections.
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disregarded9. In addition to this, another clue available for resolving any uncertainty is the
relative intensities of peaks on the projections: if there is no peak overlap on the projections,
one should be able to assign the projected peaks of matching intensities to the same source
signal; naturally, assignment by comparing intensities presumes that the signals have
substantially different intensities, which is not always true. If there is overlap, the pattern can
still potentially be resolved by analyzing the intensities of the projected peaks, which should
be sums of the original signal intensities (Fig. 13d).

If one can correctly match which projected peaks belong to which signal, the determination of
the multidimensional signal frequencies is straightforward. The calculation can be neatly
formed as a system of linear equations relating the unknown signal frequencies to the known
projected peak positions, with the projection angles supplying the coefficients. An argument
has been made that if there are enough projections the problem becomes overdetermined,
allowing the signal frequencies to be calculated by a least-squares fit with greater precision
than for conventional NMR [52]. Whether this in fact applies depends on a number of variables
specific to the case at hand.

The classic reduced dimensionality experiments use the limited quadrature detection approach,
where each signal is split into a multiplet (almost always a doublet, from coevolving two
indirect dimensions—but as described below, other cases involving more dimensions and more
complicated multiplets have also been demonstrated) [47,48]. Such data can easily be analyzed
by hand, provided that the intensities and/or lineshapes of the signals are different enough to
allow each doublet to be identified unambiguously, and that there is minimal overlap of the
split peaks. In cases where the pairing of peaks into doublets is ambiguous, and for automated
processing, a knowledge of the center point of each doublet can be very helpful [56,58,59].

If full quadrature detection is used, the overlap problems can be reduced significantly (since
the ωx + ωy and ωx − ωy peaks are separated onto independent spectra), but at the expense of
making the visual identification of multiplets, as well as the bookkeeping, more difficult for
the spectroscopist to perform by hand. At the extreme, one can coevolve several dimensions,
leading to multiplets of four or even eight components, which are separated onto independent
spectra [52]. These would constitute a set of projections of the multidimensional spectrum: one
in the direction of the spectrum’s diagonal, and the others in mirror image directions. Kim and
Szyperski’s key insight into this problem is that it can be analyzed as a hierarchical series of
splittings [52]. The splitting patterns can be discerned with the aid of additional sets of
projections that coevolve fewer dimensions and show the center point at each level of splitting
(cf. Fig. 24b). This analysis can be carried out by hand, or it can be automated [60]. Customarily,
it has been used only with the diagonal projections, but with automation it should be easier to
incorporate projections other than the diagonal to resolve overlap problems.

The other kind of reasoning one could use to sort out which projected peaks belong to the same
originating signal is the geometric approach illustrated in Fig. 13, where the potential locations
for the peaks are determined by finding the intersection points of vectors extended from each
projected peak. This has formed the basis for several automated procedures (such as APSY),
which are discussed below, and can also be the starting point for the development of nonlinear
reconstruction algorithms.

2.7. Reconstruction from Projections
A second option for utilizing projection data is to attempt to reconstruct the spectrum in full.
There are several motivations for seeking a full reconstruction rather than calculating a list of

9We will see this reasoning again when we consider reconstruction from projections, as well as in the discussion of Fourier transforms
of radial data.
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signal frequencies. Provided it is a complete and faithful reconstruction of the information that
would be found in the equivalent conventional spectrum, a full spectrum (1) would contain
more information about the experiment—for example, pulse sequence and instrumental
artifacts, unusual lineshapes, the full structures of overlapped peaks, and the like—which are
captured by the projections, and which may be of use to an experienced spectroscopist; (2) it
would present the signal information in the format that spectroscopists are used to, allowing
the use of conventional methods for resonance assignment; (3) it would implicitly solve the
problem of matching together the projected peaks belonging to the same signal, which makes
the direct analysis of projected peaks difficult; (4) depending on the reconstruction method, it
might be possible to improve the sensitivity of the experiment via signal averaging across the
projections. Some would argue that points (1) and (2) are insignificant or a matter of preference,
but it is clear that (3) and (4) would be genuine advantages of full reconstruction. The key
qualification, however, is that the reconstruction must be complete and faithful for these
advantages to accrue. Much hinges on how accurately a reconstruction can be obtained and
the amount of data required.

From a theoretical standpoint, reconstruction from a set of uniformly distributed projections,
also known as tomography, can be accomplished by inversion of the Radon transform. How
to do this was first worked out by Johann Radon in 1917, who was investigating the properties
of integral transforms in a purely theoretical context [61]. It has since been rediscovered on
several occasions [62–67], as the same problem has appeared in many scientific fields,
including radioastronomy, electron microscopy and medical imaging. Several formulations
have been given, but the most straightforward is known as filtered backprojection (FBP) [42,
63,68].

Backprojection means to extend each projection backwards over the reconstruction space—
such that each peak generates a ridge of intensity, as in the point response of a single projection
shown in Fig. 6—and then to take the sum or superposition of these ridges [63,67,69]. The
result for a small number of projections is a set of ridges for each signal, intersecting at the
locations of the peaks of the signals (Fig. 14a). For a large number of projections, the ridges
merge to form a mountain of intensity at each peak position, with each peak broadened, and
the baseline elevated (Fig. 14b) [67,69]10.

Filtering can be thought of as a way of correcting for this broadening, although it is not an ad
hoc correction but rather an integral part of the theory. In signal processing, a filter originally
meant a device that could filter out specific frequencies from a collection of signals, but it has
additionally come to refer to any processing procedure that alters the signals via convolution,
or equivalently by multiplication in the Fourier domain. FBP calls for a very specific filter to
be applied to each of the projections, as derived from a theoretical analysis of backprojection,
altering the shapes of the projected peaks (Fig. 14c) [42,63,68,69]. This can be carried out
either by convolution of the projections with a new lineshape function in the NMR frequency
domain, or more practically by multiplication of the time domain data with a specific window
function [68]. The result is that each backprojection ridge is bordered by troughs on each side;
these troughs serve to cancel out the ridges when there is overlap, and in the limit of infinitely
many projections a completely faithful reconstruction of the original signal—a true inversion
of the Radon transform—is obtained (Fig. 14d).

Filtered backprojection is linear and gives completely predictable quantitative results, and it
is widely used in medical imaging and other fields that require tomography (e.g. cf. [42]). Both

10This elevation can be attributed to the fact that the zero time point, the hub of the spoke pattern, is measured on each of the projections.
This repeated measurement of the first time point introduces a DC offset in the frequency domain, which can easily be corrected (as first
reported by Vainshtein [67], and explained more thoroughly by Gilbert [69]).
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it and its unfiltered cousin, pure backprojection, have been described and used for NMR [70,
71]. Because these methods involve the summation of contributions from each of the
projections, they effectively carry out signal averaging over the full set of projections. As a
result, the sensitivity in backprojection and FBP reconstruction is proportional to the total
measurement time used to collect all of the projections— although one should note that filtering
causes a loss of sensitivity from what would be obtained by pure backprojection, as it tends to
emphasize data at longer evolution times, when the signals have decayed [12]. In cases of poor
sensitivity, the gain from using backprojection or filtered backprojection, even accounting for
a loss due to the filter function, may provide a very significant advantage over directly
analyzing projections. Backprojection and filtered backprojection are simple to implement,
and fast to calculate. The filtering requires a single multiplication in the time domain, and after
Fourier transformation with respect to the tilted axis (performed quickly using the FFT) one
need only sum the contribution from each projection.

We have just seen that backprojection-based reconstructions form peaks at the intersections of
ridges of intensity. This no doubt will seem similar to the geometric analysis described in the
previous section and illustrated in Fig. 13, where peaks are located at the intersections of
projection vectors. Despite their very different origins—the one from intuition and the other
from the analytical inversion of an integral transform— these methods seem to embody the
same logic. We shall see, in fact, that all methods for utilizing radial data can be related to this
same logic. This also means that these methods can suffer from the same problems. In Fig. 13,
we show how geometic analysis of peak positions can be ambiguous when multiple peaks are
present. If the same data were used in a backprojection or filtered backprojection
reconstruction, one would see this same ambiguity, manifesting itself in the form of spurious
peaks appearing wherever ridges from different signals intersect (Fig. 15b). The only solution
to this in a backprojection or FBP reconstruction is to measure more projections, reducing the
intensities of spurious intersections relative to the real peaks, eventually reaching the perfection
of Fig. 14d (or Fig. 29d).

In cases where one wishes to determine reconstructions from a small number of projections,
one must find some other approach, not subject to this limitation. The most significant idea
described to date is the lower-value method (now sometimes called lowest-value or minimum-
value) [53]. One way to describe this method is by analogy to backprojection. Assume that the
process of forming ridges by extending projections is carried out in independent spaces for the
different projections. The backprojection reconstruction would be the sum or superposition of
these spaces. As in Fig. 15b, this can lead to spurious peaks as well as substantial ridge artifacts.
In contrast, with the lower-value method one assigns to a point in the reconstruction the smallest
value encountered in any of these spaces at the corresponding position (Fig. 15a). Thus, as in
backprojection reconstruction, peaks are found at positions where ridges from all projections
intersect, since these are the only positions where every projection contributes intensity. Unlike
in backprojection, one would not encounter spurious peaks when a smaller number of ridges
intersect, since the smallest value found in the comparison would be a noise value from one of
the other projections. Thus in a lower-value reconstruction, a peak is produced at a given
location only if every one of the projections of that location also contains a peak.

While the lower-value method reduces the likelihood of encountering false peaks, it
unfortunately cannot guarantee that they will not occur. Situations like that of Fig. 13b/c, where
there are as many or more peaks as there are projections, will always pose a risk of generating
a false peak, depending on the geometry of peak positions and projection angles. If one knows
a priori from other experiments how many real signals to expect, one can protect against this
by collecting more projections than the number of signals [72]. Even this does not provide
absolute protection, however, as it is built on the assumption of infinitely sharp peaks; in
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practice, with a large number of peaks and/or overlapping peaks, lower-value reconstructions
can generate false peaks even if there are more projections than signals.

Besides this issue, lower-value reconstructions differ from the true spectra in several other
ways. First, the lineshapes are not reproduced accurately, although this can be corrected
artificially by convolving with lineshapes extracted from the projections [70]. Second, overlap
on the projections may lead to peaks with incorrect relative intensities. Third, the apparent
noise level in a lower-value reconstruction will always be substantially lower than the true
noise level, since the lower-value comparison for noise points will always choose the lowest
of the random noise values [72]. This may mislead an unaware spectroscopist regarding the
sensitivity of the experiment. Fourth, the sensitivity of a lower-value reconstruction is no better
than the sensitivity of an individual projection [70,72]. Finally, lower-value reconstructions
are likely to fail if negative peaks are present [72,73].

Another approach for a relatively small number of projections is to combine the lower-value
and backprojection methods in a hybrid method (named the hybrid backprojection/lower-
value or HBLV algorithm), which offers some of the benefits of each [72]. The original
formulation was equivalent to calculating independent backprojection reconstructions for all
possible groupings11 of projections into groups of a specified size k, and then taking the lowest
value from among the groups (Fig. 15c). The backprojection provides a sensitivity boost, while
the lowest-value comparison eliminates ridge artifacts—since any given ridge cannot appear
consistently in all of the groups—and reduces the broadening effect (cf. Fig. 28f–h). False
peaks are generally eliminated, although it is still possible to produce one in some particularly
unfavorable circumstances. The choice of group size k determines whether the method behaves
more like LV or more like backprojection. The hybrid algorithm is effective, but the
combinatorics involved in forming and evaluating the groups of k projections is a major
computational burden. It was recently shown by Ridge and Mandelshtam that one can obtain
almost the same result instantaneously by taking the absolute values of the projections, and
adding together the k lowest projection intensities [73]. This simplification substantially
improves the practical feasibility of the HBLV method.

Ridge and Mandelshtam have also very recently proposed a “Histogram Method,” which
calculates the value at each point in the spectrum by considering a histogram of the projected
values [73]. Instead of assigning the lowest value or a sum of the lowest values, the histogram
method in essence assigns the mode, the most frequent value. Of course, the literal mode is
meaningless for projection intensities, which constitute a continuous variate. Instead, an
intensity distribution function is computed by adding together Gaussian functions centered at
each projection intensity value, and the intensity value corresponding to the maximum of this
distribution is assigned to the projected point. As with the lower-value algorithm, the sensitivity
of the histogram approach is no better than the sensitivity of the weakest projection, and it does
not preserve lineshapes.

Thus there are several choices for how one can reconstruct a spectrum from projections, with
trade-offs in each case. The theoretically derived method, filtered backprojection, offers the
most accurate reconstructions, albeit at the expense of requiring a relatively large number of
projections if one is to avoid ridge artifacts. It is also able to offer nearly maximum sensitivity
by accumulating signal intensity from all the projections. Backprojection without a filter can
achieve truly maximum sensitivity, but produces significantly broadened peaks. By contrast,
the lower-value and related methods are able in many cases to produce cosmetically artifact-
free spectra from a small number of projections, but at the same time suffer from limited
sensitivity and altered lineshapes, and a danger of introducing false peaks. Note that in any

11In mathematical terms, for all k-tuples of projections.
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event, the accuracy of all reconstruction methods is limited by the ambiguity of the data, as
determined by the sampling. With an extremely small number of projections, a situation such
as that of Fig. 13b/c can cause any of these methods to produce false peaks.

Regardless of the particular reconstruction algorithm used, there are a small number of practical
problems that arise in any computer implementation of reconstruction from projections. Most
significant is the issue that the projection data are collected in polar coordinates, while the
reconstruction is generated in rectangular coordinates. Thus the projection of a particular
discrete location in the reconstruction onto a projection will almost always lie between two
discrete sampling points, requiring interpolation. The choice of interpolation method can have
a significant impact on the quality of the reconstruction, and it has been a major topic of debate
in other fields using tomography (for example, see [66] and [74]). The second major issue with
multidimensional NMR spectra is the data storage requirement of the reconstructed spectrum,
especially for spectra with more than four dimensions: in many cases it is extremely difficult
to reconstruct the full spectrum at the desired resolution without exceeeding operating system
limitations on file sizes. If one knows the expected locations of peaks a priori (for example,
from other, lower-dimensional experiments) one can selectively reconstruct the particular
planes or regions of interest [44]. An alternative idea that has not yet been used widely in
practice is to compute reconstructions of spectral regions as needed in real time within an
interactive spectral viewing program [44].

2.8. Fitting Signal Models to Radially Sampled Data
A third strategy for deriving signal information from radially sampled data is to fit a model of
the signals to the data. In a sense, every method that derives signal properties from spectral
data is a kind of modeling, but here we refer specifically to methods that iteratively optimize
the parameters of a model while comparing backcalculated data from the model to the
experimental data. These approaches have a long history in NMR, and have attracted particular
interest in recent years in the context of their application to various sparse sampling methods.
The model in such a procedure could mean a spectrum, with the intensity at each position
adjusted iteratively, or a list of signals of an explicit functional form and their intensities,
frequencies and linewidths. The search algorithm is the particular mathematical method used
to carry out the optimization. The model is evaluated by backcalculating either time domain
or frequency domain radial data and comparing to the experimental values. Since the scenarios
contemplated for radial sampling of NMR involve deliberate undersampling to reduce the
measurement time, one expects that in some cases there could be multiple possible models that
would be consistent with the data, requiring a regularization procedure to choose between
them.

The full catalog of specific algorithms that have been applied to NMR will be considered below.

2.9. Multidimensional Fourier Transformation of Radially Sampled Data
After considering radially sampled data as a source for projections—which we have seen can
be used in a variety of ways—and as the reference data for the fitting of models, a final
possibility remains: to determine the higher-dimensional spectrum by directly computing the
multidimensional Fourier transform of the full set of radially sampled data. The Fourier
transform has the advantage of being a stable and predictable linear method, well understood
by NMR spectroscopists. At the same time, it must be remembered that Fourier transformation
always reveals the ambiguities of discrete sampling, in the form of artifacts.

One way to calculate the Fourier transform of radial data is to substitute the data values (after
first multiplying them by a weighting factor) and sampling point coordinates directly into the
equation of the discrete Fourier transform. For input data consisting of n radial spokes of m
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points each, producing an output spectrum of d indirect dimensions with m points per
dimension, a total of O(nmd+1) operations are required12. Working with radially sampled
radioastronomy data in 1974, Thompson and Bracewell noted that there is a faster way to carry
out this transform: first reweight and transform each radial spoke independently, then calculate
the value at each output position by summing the transforms of the spokes [74]. This method
requires only O(nmd) operations13, saving a factor of m in calculation time.

If the faster method of Thompson and Bracewell sounds familiar, it is because of the simple
fact that it is the same as FBP. It is possible because of the linearity of the Fourier transform:
if a time domain input can be written as the sum of multiple functions, then the frequency
domain output can be written as the sum of the transforms of those multiple functions. Since
a time domain radial dataset can be expressed as the sum or superposition of its radial spokes,
its Fourier transform can be obtained by transforming each spoke individually and summing
together those transforms. Properly speaking, we are concerned with the multidimensional
transforms of each of the spokes; however, as the point response in Fig. 6 suggests, this is the
same as computing the 1-D transform of each spoke, with respect to radius, and then
backprojecting these. Thus the overall process of computing a polar FT for radial data can be
carried out most quickly by employing FBP.

There are extensive connections between the Radon, Fourier, inverse Radon and inverse
Fourier transforms, which have proven important in many fields. Bracewell [62] has several
useful figures illustrating these connections. The formal distinction in the mathematical
literature between the polar Fourier transform and FBP is their starting point, the polar Fourier
transform converting time domain radial spokes to a frequency domain spectrum, and FBP
instead converting frequency domain projections to a frequency domain spectrum. Since the
latter process can be accomplished for NMR data only if the data are first converted to
projections, the net process for NMR is always a polar Fourier transform, regardless of whether
the data are temporarily placed into the form of projections during the processing [37]. Indeed,
even when nonlinear methods are used for reconstruction from projections, the net process can
still best be thought of as achieving the equivalent of a multidimensional Fourier transform by
means of a 1-D Fourier transform and a subsequent inverse Radon transform14.

A weighting factor—or as it is known in FBP, a filter function—is required because the
sampling points in a radial pattern are not evenly distributed throughout the plane, but rather
are concentrated with increasing density towards the zero time point, the “hub” where the
spokes converge [37,75]. This must be accounted for in the Fourier transform calculation, or
the excessive emphasis on the low-resolution information found close to the origin of the time
domain will lead to broadening of the signals. The specific correction can be derived by
considering how the change from rectangular to polar coordinates affects the infinitesimal area
element in the Fourier transform equation15 (dtx dty for the 2-D transform, which can be written
more generally as dA) [37,75]. For rectangular grid sampling, each point occupies the same
area, and the dA factor can be ignored (Fig. 16a). In polar coordinates, however, the points do
not occupy the same area. In 2-D, dA = dtx dty must become dA = tr dtr dθ (Fig. 16b), where
the linear function tr, the distance from the origin, is the relevant correction that must be applied
in the calculation.

12For each of the md output points, nm input points must be evaluated, giving O(nmd+1) operations.
13As explained in the next paragraph of the main text, the initial transforms of the spokes can be computed as 1-D FFTs, requiring n
(m log m) operations in total. The subsequent calculation of the spectrum requires looking up one input from each of the n transforms
for each of the md output points. Since the complexity of the latter operation dominates, the overall complexity is O(nmd).
14Interestingly, the idea that reconstruction from projections can be a useful step in carrying out a Fourier transform in NMR, due to the
connections between the methods, has a converse in imaging: DeRosier and Klug [64,66] instead used the Fourier transform as a step in
carrying out reconstruction from projections. Specifically, they transformed the projections to obtain slices in reciprocal space, and then
interpolated the full reciprocal space from the slices. The inverse FT of this interpolated space is the desired reconstruction.
15That is, determining the Jacobian for the change of variables.
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The final matter that remains to be considered with respect to computing Fourier transforms
of radially sampled data is quadrature detection. In Section 2.5, we explained how NMR data
are collected as hypercomplex rather than complex components, and how the conventional
data processing procedure is able to use this hypercomplex information for frequency
discrimination, by computing independent Fourier transforms for each dimension. We also
explained why this procedure cannot be applied to radially sampled data when calculating
projections from spokes, and the alternatives that one has: either to measure a subset of the
hypercomplex components, as in some reduced dimensionality experiments, or to collect the
complete set of hypercomplex components and convert the data to a complex form.

With full Fourier transformation of radial data, the same difficulties prevent the use of the
conventional procedure, and once again alternatives are needed. The option of using quadrature
detection in only one dimension could be used, and indeed was used in the early days of
multidimensional NMR for conventionally sampled data, with the help of techniques such as
TPPI [3,38]. The disadvantages of this type of data collection are well-known, however, and
it has not been used for polar Fourier transforms.

The other option that was described for projections—conversion of the data from
hypercomplex to complex—is indeed a useful method in this context [37]. Using the
relationships given above, each measured hypercomplex data point can be converted into a
complex value. In addition, the complex value at one or more (depending on the dimensionality)
mirror-image positions can also be calculated. These complex data can then be used as the
input for a complex Fourier transform in polar coordinates.

It is very important that the mirror-image reflections in the time domain be included in the
calculation of the Fourier transform from complex data, as the failure to include them will
result in a mixed-phase lineshape, an overlay of absorptive and dispersive lineshapes [3]. To
show why this occurs, we return to the 2-D example. Looking at the x dimension alone, if the
1-D Fourier transform is calculated using the x data corresponding to positive evolution times,
the resulting complex 1-D spectrum has an absorptive real component and a dispersive
imaginary component, which can be expressed as Ax + iDx, where A and D are the absorptive
and dispersive lineshapes. The y signal behaves identically, with a spectrum Ay + iDy. Since
the 2-D data are the product of the x and y signals, the 2-D spectrum is the product of the 1-
D x and y lineshapes, (Ax + iDx)(Ay + iDy), giving a final lineshape AxAy − DxDy that blends
the absorptive and dispersive shapes (Fig. 17a). Adding data for an extra quadrant resolves this
problem: the transform for another quadrant will also have a mixed-phase shape, but with the
sign of the dispersive contribution reversed (AxAy + DxDy); when data for both quadrants are
combined, the dispersive contributions cancel to leave only the absorptive lineshape (Fig. 17b).

The problem of phase-twist lineshapes and the concept of time reversal with complex data are
not, in fact, new. Early 2-D NMR experiments frequently recorded complex data, and the
resulting spectra suffered from phase-twist lineshapes. One solution was to collect additional
FIDs with the direction of precession for the indirect dimension reversed, and include this
information in the computation of the spectrum16 [77].

There is an additional way to arrive at the full Fourier transform of a hypercomplex data set
that was not discussed in the context of projections, which is to compute an explicitly
hypercomplex Fourier transform. The idea of a hypercomplex Fourier transform was
introduced in NMR by Ernst some years ago [3,77], and has recently been reintroduced by the

16It is interesting to note that both the symmetry relationships supporting time reversal and a form of the equation relating hypercomplex
to complex data were reported by Aue and coworkers in 1976, in their comprehensive paper [76] following up Jeener’s [2] idea of 2-D
FT NMR.
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Marion and Zhukov groups [9,14]. A hypercomplex Fourier transform can be derived by using
multiple imaginary units instead of the single imaginary unit i; for 2-D, these could be
designated i and j. The hypercomplex transform with hypercomplex data produces the same
spectrum as the complex transform using mirror-image reflected data—the difference is the
formalism that describes the operation, and the ordering of the numerical manipulations to
arrive at the final result. The connections between the hypercomplex transform and the
approach of using reflected data and a complex transform were nicely illustrated in a recent
paper from Gledhill and Wand [78].

2.10. The Radial Sampling Point Response and the Information Content of Radial Sampling
As discussed above, the forms of ambiguity introduced by any kind of sampling are revealed
in the point response of the sampling pattern. The point response for radial sampling can be
derived easily thanks to the linearity of the Fourier transform: one need only add together the
point responses contributed by each of the radial spokes [37]. Considering a 2-D case for the
moment, since the point response of a single radial spoke is a ridge in the perpendicular
direction (Fig. 6), the point response for the full pattern is a set of ridges. Accounting for the
interference between the ridges, and including the weighting factor discussed in the previous
section, we obtain the pattern shown in Fig. 18a. The ridges are found throughout the point
response, except in a central “clear zone” where they interfere destructively. The result of
applying this point response to a Lorenztian peak of finite linewidth is compared to the result
from a conventional experiment in Fig. 18b. With sufficient radial spokes, the clear zone covers
the entire spectrum, and the radial result is identical to the conventional one. With fewer spokes,
one observes an identical peak, but surrounded by low-level ridge artifacts. This result is, of
course, identical to what was observed above for filtered backprojection.

An alternative analytical derivation of the radial sampling point response can be made based
on synthesizing the sampling pattern as a collection of rings rather than a collection of spokes,
adding together the point responses generated by each of the rings [37,69]. The point response
for a single ring of sampling points is a Bessel function with respect to radius and a cosine
function with respect to azimuth, with the order of the Bessel function determined by the
number of sampling points on the ring (Fig. 19) [79]. By adding together these Bessel functions
for rings of sampling points at different radii, one arrives at an expression of the radial sampling
point response that is equivalent to the one derived by adding together the point responses of
the individual spokes (see ref. [37], based on historical derivations for helical diffraction
described in references [80,81]). The value of this mathematical form is that it allows one to
determine the parameters of the artifact pattern around each peak analytically [37]. The size
of the artifact-free clear zone, the region in which the ridge artifacts cancel one another, is
found to be N/πtr, max, where N is the number of projections and tr,max is the maximum evolution
time for the collected data in the time domain. Further parameters of the point response can be
determined1 directly from the analytical form; as a general rule, both the magnitude and
coverage area of the ridge artifacts are inversely proportional to the number of projections
available, and directly proportional to the resolution of the data.

The radial sampling point response illustrates how radial sampling is able to determine peak
positions from a small number of radial samples. Measuring the components of a signal in
various directions provides specific constraints on where the signal might be located. A single
radial spoke is sensitive to modulation in the direction of the spoke, and insensitive to
modulation that is perpendicular to it; the data from one spoke is thus able to constrain the
position of the signal to a line perpendicular to the spoke. The way this information constrains
the possible solutions is made manifest in the point response as a ridge of intensity, showing
the possible positions for the peak. The actual location of the peak must be at a point that would
be consistent with all of the available radial data—at a point where the ridges generated by the
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various spokes intersect, as in triangulation. The data on the various spokes thus collectively
imply the location of the signal.

One can also view the point response as representing the ambiguity inherent in the sampling
method—demonstrating that the ambiguity of radial sampling is very different from that of
conventional grid sampling. Unlike grid sampling, radial sampling does not produce full-
intensity aliases of each peak at regularly spaced intervals; instead, it produces low level ridges
in numerous directions. The aliases in conventional sampling reflect a total inability to
distinguish between a set of multiple evenly-spaced frequencies for each signal. With radial
sampling, the ambiguities are observed directly as the spokes; as more spokes are added, the
uncertainty from each spoke becomes less significant to the overall result, and the ridges
become correspondingly less intense relative to the intensity of the peak.

The false peaks seen in FT/FBP spectra arise when the particular frequencies of the signals are
such that there are multiple possible interpretations for the available data, appearing in the FT
spectrum as additional points where the ridges intersect besides those corresponding to real
peaks. This uncertainty is inherent in the data, and is not a function of the FT/FBP
procedure. It is the same uncertainty that plagues the direct analysis of projection data by a
spectroscopist in methods such as GFT—making it difficult to identify which projected peaks
originate from the same signals—and that also plagues the various nonlinear reconstruction
methods. It is the principal danger with any attempt to determine signal frequencies from a
very small number of projections. Of course, these issues apply specifically in the context of
radial sampling with a very small number of projections; when a larger number of projections
are used, false peaks are no longer a problem, and the main issue with the ridge artifact pattern
is that it may obscure weak peaks.

Thus the key principle underlying all radial approaches is that measuring the time domain in
polar coordinates provides access to different information than measuring it in rectangular
coordinates. For the highly compact peaks that comprise NMR spectra, a knowledge of the
signal components in a small number of directions is in fact usually sufficient to resolve the
peak positions, and indeed even the lineshapes and relative intensities. There are a great variety
of processing and analysis methods for extracting this information, but the idea behind all of
them is that the signal components for a small number of directions can collectively imply the
locations of the peaks. Since relatively few spokes are measured, each of them can be sampled
out to very long evolution times to provide high resolution information about the signals, while
still reducing the overall measurement time from that of a high resolution conventional
experiment. The weakness of radial sampling is that aliasing may occur when multiple signals
are present, for particular combinations of sampling directions and signal frequencies, in those
unfortunate cases where the signal components imply more possible peaks than there are real
signals. Such ambiguity can be addressed by specialized procedures, as discussed below for
GFT or projection spectroscopy, or by employing nonlinear reconstruction algorithms. It is
also easily resolved by collecting more radial spokes, since it only occurs with the most extreme
undersampling. For a large amount of data, all that remains of the ambiguity is a residue, in
the form of the very low level ridge artifacts that appear upon the FT or inverse Radon
transform.

3. THE DEVELOPMENT AND USE OF RADIAL SAMPLING IN NMR
Having described the fundamental concepts underlying radial sampling, we now turn to the
story of its application in biomolecular NMR, and the development of the radial sampling
techniques used today. We shall address them here in the order of their introduction, beginning
with the very unusual class of experiments that marked the first use of a kind of radial sampling.
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3.1. Accordion Spectroscopy
In 1981, Bodenhausen and Ernst introduced an experiment in which a chemical shift evolution
period and a mixing period were incremented simultaneously from one FID to the next [82].
Because this “concerted ‘stretching’ of the pulse sequence” resembled the stretching of an
accordion’s bellows (Fig. 20a), they named the method “the accordion experiment.” The
context for this experiment was 2-D exchange spectroscopy, which observed processes such
as chemical exchange, spin diffusion and NOE transfer by showing crosspeaks at the chemical
shifts of the resonances participating in the process, as well as diagonal peaks representing
magnetization that does not exchange or cross-relax [3]. Prior to the introduction of the
accordion experiment, quantitatively measuring the exchange rates for such processes using
exchange spectroscopy required the time-consuming collection of a series of 2-D spectra with
different mixing times—in other words a 3-D experiment.

The accordion experiment made it possible to reduce three dimensions to two by measuring a
tilted 2-D slice through the 3-D time domain formed by the two chemical shift dimensions and
the one mixing dimension (Fig. 20b). Because the signal along the slice is the product of the
sinusoidal chemical shift evolution and the envelope produced by the exchange process during
the mixing period, the result after Fourier transformation is the convolution of these two effects.
Thus the peaks are positioned on the tilted axis according to their chemical shifts prior to
exchange, but the lineshapes are altered to reflect the dynamic process (Fig. 20c). Although
the lineshapes can be analyzed directly, the authors found it more convenient to extract each
peak from the projection and compute reverse Fourier transforms to recover the build-up and
decay curves for the peaks (Fig. 20d). The method was first applied to study exchange rates in
cis-decalin.

From the very beginning, the accordion experiment was understood to be a reduction of
dimensionality (and hence data collection time) by measuring a tilted or “skew” projection of
a higher-dimensional space. The mixing time dimension is significantly different from
chemical shift dimensions: because it is real rather than complex, there is no issue of quadrature
detection to address; and because it is not oscillatory, it affects only the lineshapes of the signals
in the tilted dimensions, and not their frequencies. Thus accordion experiments do not suffer
from the same issues of ambiguity as experiments that simultaneously evolve multiple chemical
shift dimensions.

Since its introduction, the accordion concept has been applied to a host of similar situations,
primarily for studies of small molecules, involving the repeated sampling of a 2-D spectrum
as a function of some third variable (other than chemical shift). These are summarized in Table
1 [57,82–100]. A few accordion studies date back to the early 1980s, but the technique was
revived again in the second half of the 1990s. Besides exchange rates, accordion spectroscopy
has been used to measure relaxation times, coupling constants, diffusion coefficients—and in
a particularly elaborate case, the number of coherence transfers occuring for each crosspeak
of a TOCSY experiment [88].

3.2. Reduced Dimensionality
Almost as soon as the first 4-D triple-resonance experiments for backbone assignment were
introduced, Szyperski and coworkers recognized two important points: that 4-D correlation
information would be valuable even for small proteins, but that spreading the signals into four
dimensions would be unnecessary and wasteful of measurement time when there are only a
small number of signals present [47]. They proposed obtaining the same correlation
information more quickly by evolving two of the nuclei as a function of a single evolution
time. Because this is equivalent to multiplying the two time domain signals together, the result
in the frequency domain would be a convolution, with the information from both resonances
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encoded in a single dimension as a split peak. As an example, they presented a (4,3)-D
HACANH experiment, where the underline indicates that the Cα and N dimensions are sampled
simultaneously, and where (4,3)-D indicates that the experiment measures four chemical shift
dimensions using three independently incremented evolution times, with the two coevolved
dimensions sharing one of the three evolution times17. The coevolution was achieved using a
two-spin heteronuclear multiple-quantum coherence, with quadrature detection on the N,
resulting in a final spectrum containing split peaks in the jointly sampled dimension, centered
on the N chemical shift and separated by twice the Cα chemical shift (Fig. 21). The
magnetization transfer pathway can be written as Hα (t1) Cα ± N (t2) H (t3), with “Cα ± N”
reflecting the fact that both nuclei are evolving simultaneously on the transverse plane during
the evolution time t2. The experiment was called reduced dimensionality because it collected
4-D correlation information with only three conventionally sampled evolution periods.

Shortly thereafter, the same authors presented a second version of this pulse sequence that did
not use multiple-quantum coherences, but instead featured separate evolution periods for
single-quantum Cα and N coherences, like a traditional 4-D pulse sequence [48]. Unlike in a
traditional 4-D experiment, however, the pulse sequence was programmed such that the same
evolution time was always used for Cα and for N; this magnetization transfer pathway can be
written Hα (t1) Cα (t2) N (t2) H (t3), where the same quantity of time t2 is used for two different
nuclei evolving at two different positions in the pulse sequence. This method also gives the
product of the Cα and N signals in the time domain, and their convolution in the frequency
domain. Because quadrature detection is used with respect to one of the two dimensions, but
not the other, the resulting spectrum shows a split peak. In this case, only the Cα chemical shift
was detected in a phase-sensitive manner, so that crosspeaks were obtained at Cα ± N. This
approach was demonstrated using a 2.5 mM sample of the 13C- and 15N-labeled mixed disulfide
between glutaredoxin and glutathione. As with the multiple-quantum version, four dimensions
of information were obtained while only sampling three evolution times.

These experiments were the first of what became a very large category, known by the name
reduced dimensionality, that can be described as jointly sampling two (or in some cases, more)
indirect dimensions with the same (or in some cases, a proportionally scaled) evolution time.
If the sampling positions in the time domain are plotted, one finds that using the same evolution
time in multiple dimensions results in the sampling points tracing out a radial spoke, running
along the diagonal of the time domain. For the common case of two jointly sampled dimensions,
the angle of this spoke is 45°. If two dimensions are incremented simultaneously by
proportional but not identical amounts, the result is a radial spoke at an angle other than 45°.
As described above, computing the Fourier transform along such a spoke yields what can be
interpreted most easily as a convolution of the two coevolved signals18, appearing as a split
peak due to the lack of quadrature detection in one of the dimensions. The center of the doublet
and the size of the splitting provide the two chemical shifts. The information from two
dimensions is thereby compressed into one. Because the splittings are symmetric and the
doublet components appear together in the same spectrum, the data are particularly easy to
analyze by hand, at least for smaller proteins with minimal spectral crowding.

The two main experimental strategies for achieving coevolution in reduced dimensionality
experiments are exactly those introduced by Szyperski and coworkers in the first and second

17The authors’ original name for the experiment was ct-HA[CAN]HN. In the interest of clarity, we have adjusted experiment names
throughout this review to follow a common system of notation, documented in the text and in the captions and footnotes to the experiment
tables. The practice of indicating coevolved dimensions using underlines was introduced by Szyperski and coworkers in [48]. The use
of “(n,k)-D” to indicate n dimensional data measured with k independently incremented evolution times was introduced much later by
Kim and Szyperski, in [52].
18It could also be considered the superposition of the projection of the full spectrum and the projection of the mirror image of the full
spectrum.
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reduced dimensionality papers: (1) using multiple-quantum coherences, which physically
evolve multiple nuclei simultaneously during a single evolution period (with a magnetization
transfer element that we shall write as x ± y [tcoevolution]); and (2) using more conventional
pulse sequences, where individual evolution periods for each of the resonances are
programmed to use the same delay (with magnetization transfer elements that we shall write
as x [tcoevolution] y [tcoevolution]). A number of experiments were developed using the multiple-
quantum approach, which constitutes a very special case of radial sampling, where the natural
properties of the coherence provide for the measurement of a 45° radial spoke19. The second
strategy is more versatile, however, allowing one to vary the angle of the spoke by setting the
evolution time of one dimension to be proportional to, but not equal to, that of the other.
Reduced dimensionality experiments using standard evolution periods are very similar to the
conventional pulse sequences from which they have been derived20.

With only one exception that we are aware of, described in the next section, for their first ten
years reduced dimensionality experiments were always conducted with quadrature detection
on only one of the coevolved nuclei. Regardless of which experimental strategy is used,
quadrature detection is accomplished in the same way, by applying one of the standard
techniques to the pulses affecting the selected nucleus. Note that the splitting reduces the
intensity of the peaks by half, although this is partly counterbalanced by the fact that a splitting
pattern can be detected with higher confidence at lower signal-to-noise ratios than a single peak
[56]. In addition, the lack of quadrature detection for any given nucleus removes the sign
information about this frequency dimension, leading to the requirement that the frequency
offset be set outside of the region of interest and that the spectral window be increased. The
choice of which resonance to measure in quadrature can generally be made based on the
preference of the spectroscopist, noting that whichever resonance is measured in quadrature
will define the center points of the observed doublets, with the chemical shifts for the other
resonance determining the size of the splitting [48,56]. When one nucleus has much larger
chemical shifts (as measured in Hz) than the other, it is often convenient to use the one with
smaller shifts (in Hz) as the center points and the one with larger shifts (in Hz) as the splitting,
since the larger splitting factors will divide the upfield and downfield components of the
doublets into separate regions of the spectrum for more convenient analysis [48].

It was recognized early on that a knowledge of the center points of the doublets could be a
useful aid in interpreting reduced dimensionality spectra. In the first publication to address the
question of protein backbone assignment strategy using reduced dimensionality, Simorre and
coworkers pointed out the advantage of using the N nucleus as the center point in (3,2)-D
HNCA and HNCO experiments, allowing one to identify doublets from the N chemical shifts
on the 1H/15N-HSQC [56]. The first program for automated sequential assignment from
reduced dimensionality data, introduced by the same group, required this information for its
analysis [58].

An important advance was made by Szyperski and coworkers when they found a way to obtain
extra peaks marking the center points, which they termed central peaks, simultaneously with
the doublets themselves [59,101]. This was achieved by taking advantage of the fact that
magnetization transfer steps in pulse sequences are often incomplete. Because the residual
magnetization terms left behind after each transfer step do not carry the full complement of
frequency modulations, they would produce artifactural axial peaks if they were not normally
suppressed by phase cycling or other techniques. However, in the particular case of the residual

19This could be thought of as splitting due to coevolution, since both nuclei are evolving on the transverse plane simultaneously, and
the resulting data is the product of the two signals. One can also describe a multiple-quantum coherence as the superposition of a double-
quantum transition (here, with the frequency N + Cα) and a zero-quantum transition (here, with the frequency N − Cα).
20Note that one should distinguish between RD experiments that use multiple-quantum coherences for coevolution, and those which use
them (with refocusing pulses on one or more nuclei) for normal evolution, as in many conventional experiments.
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magnetization remaining after transfer from the first of the two coevolved nuclei, the failure
to pick up the frequency labeling from the second coevolved nucleus does not result in axial
peaks but rather central peaks21. Since this magnetization would have been wasted otherwise,
there is no loss of sensitivity for the doublets when central peaks are measured. This technique
was first demonstrated for a (4,3)-D HN<CO,CA> experiment22. [101], where negative central
peaks and positive doublets were produced simultaneously, and was later generalized to a
number of other experiments [59], with a modification allowing the doublets and central peaks
to be separated onto independent subspectra during post-processing to reduce spectral
crowding. The generation of central peaks became a standard feature found in many of the
sequential assignment sequences developed by Szyperski, Wüthrich and coworkers [102,
103].

Reduced dimensionality can also be used to measure scalar coupling constants. An example
where multiple chemical shifts are coevolved at the same time as multiple scalar couplings is
the unusual experiment by Rexroth and coworkers, which they called DQ/ZQ+SQ-HNCA
[104]. The coevolution of multiple chemical shifts leads to chemical shift multiplets, as in other
reduced dimensionality experiments; the additional coevolution of scalar couplings results in
scalar coupling multiplets overlaid on top of the chemical shift multiplets. Note that there are
also many experiments in which a single chemical shift is coevolved with one or more scalar
couplings (for example, [105–107]). Because the chemical shifts are evolved separately from
one another, these experiments do not achieve a reduction in dimensionality, but they could
be considered a kind of accordion experiment.

In most cases, reduced dimensionality without full quadrature detection was used to coevolve
two dimensions—reducing 3-D experiments to 2-D, or 4-D to 3-D—but the two exceptions
that coevolved more than two dimensions are each worthy of comment. Ding and Gronenborn
developed a set of sequential assignment experiments that include the (4,2)-D HN(CO)
CAHA and the intraresidue-only HN(COCA)CAHA, each of which coevolves three nuclei as
a function of a single evolution time [51]. This results in the signal being split twice, into a
quartet, which naturally raises concerns about spectral crowding. Their solution was to extend
an idea that dates back to the very beginning of the method—namely the use of large chemical
shifts to separate the components of chemical shift multiplets [48,56]—in this case introducing
large artificial frequency offsets via TPPI. As a result, the multiplet components appear in four
different regions of the spectrum (Fig. 22a/b). Besides being the first to coevolve three nuclei
as the function of a single evolution time, and besides the clever use of TPPI, their work is also
interesting for including the development of exclusively intraresidue transfer sequences, and
for introducing (3,2)-D HN(CO)Cα/β and intra-HN(COCA)Cα/β experiments employing TPPI
for peak separation and offering central peak detection23.

The other experiment that coevolved more than two nuclei was a (5,3)-D experiment by Löhr
and Rüterjans, in which four nuclei were coevolved, but as two separate groups of two nuclei
each [108]. We shall call this experiment {HACA}{CON}H, with the curly braces indicating
the two groups of coevolved nuclei, according to the nomenclature later introduced by Atreya
and coworkers [109]24. By evolving Hα and Cα as a function of one evolution time, and CO
and N as a function of a second evolution time, a 3-D spectrum is produced with the signals
split into doublets on each of the indirect axes, resulting in a rectangular quartet overall (Fig.
22c/d).

21The first of the two must be the one chosen for quadrature detection.
22The angled-bracket notation was introduced by Szyperski and coworkers [59] for experiments with bifurcated magnetization transfer,
for example in this case a simultaneous transfer from N to CO and from N to CA.
23They called these HN(CO)CACB and HN(COCA)CACB, but we have adjusted the nomenclature for consistency.
24The authors called this “3D HCACOCANH.”
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The host of reduced dimensionality protein and nucleic acid assignment experiments that have
been reported are summarized in Table 2 [47,48,56,59,101–104,108,110–118]. The “Type”
column indicates for each experiment whether it uses the multiple-quantum (MQ) or individual
evolution period (IEP) strategy. A point to be noted is that a number of the papers in Table 2
describe coevolving two nuclei at different rates—that is, collecting a projection at an angle
other than 45°—to scale the size of the splitting to account for different relaxation rates and/
or chemical shift ranges. This is especially true of experiments coevolving Hα/β and Cα/β. Many
of these experiments record central peaks, as noted in the table. Several papers describe
assignment strategies combining multiple experiments, beginning with the (3,2)-D
experiments introduced by Marion’s group in 1995 [56,111], and culminating in the suite of
six new experiments and three previously reported experiments presented by Szyperski and
coworkers in 2002 [103]. For backbone assignment with smaller proteins—as well as several
other purposes—reduced dimensionality experiments provide higher-dimensional information
with decreased instrument time usage, increased digital resolution and smaller data sets, in a
format that can be analyzed easily by hand. With larger systems, the increased spectral
crowding can lead to problems from overlap unless the doublet components are separated into
different regions of the spectrum using TPPI.

3.3. Reduced Dimensionality with Full Quadrature Detection: GFT and Friends
An important advancement came with the introduction of reduced dimensionality experiments
that employ quadrature detection in all of the coevolved indirect dimensions. As described
above, with full quadrature detection several different procedures can be used to separate the
multiplets of reduced dimensionality experiments into independent spectra. This has the major
advantage of eliminating the spectral crowding problem of reduced dimensionality, allowing
the idea of coevolving multiple nuclei to be applied to larger proteins, and allowing a larger
number of dimensions to be coevolved. Also, since more FIDs are collected when compared
with the single quadrature detection data, and since the data sets are summed prior to Fourier
transformation, the overall signal-to-noise ratio is increased. At the same time, however,
separating the multiplet components makes interpretation of the spectra more difficult, since
one must identify which peaks belong to which multiplet across the spectra.

The first such experiments to be described were the full quadrature (4,3)-D doubly filtered
(13C/15N and 13C/13C) NOESY experiments from Brutscher and coworkers, reported in 1995
[119]. These offer equal sensitivity and higher resolution when compared with their 4-D
conventional counterparts, as shown in data collected on a 2 mM sample of 13C/15N-labeled
Rhodobacter capsulatus ferrocytochrome c2. Additionally, the added chemical shift
information allowed for significantly more unambiguous assignments to be determined
compared to the traditional 3-D singly filtered NOESY experiments.

There were no further reports of full quadrature detection with reduced dimensionality until
2003, when three groups independently reintroduced the idea over the period of a few months.
Kim and Szyperski’s paper was published online in January of 2003 [52]; Kozminski and
Zhukov submitted their paper [55] a few days later, and Bersch and coworkers [50] a few weeks
after that.

Bersch and coworkers presented the (3,2)-D backbone assignment experiments HNCA, HN
(CO)CA, HN(CA)CB, HN(COCA)CB, HN(CA)HA and HN(COCA)HA using a 13C,15N-
labeled sample of the 68 N-terminal residues of the cytosolic mercuric reductase merA from
Ralstonia metallidurans CH34 [50]. For each of these experiments, the full set of quadrature
components is collected, and the data are then processed in the time domain by taking linear
combinations of these components, as described in Section 2.5.
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Kozminski and Zhukov began by demonstrating (3,2)-D HNCA, HN(CO)CA and (4,2)-D
HACANH experiments on a 1.5mM 13C,15N-labeled ubiquitin sample at pH 6.0 [55],
separating the multiplet components in the frequency domain as described in Section 2.5 above
(Fig. 23). They subsequently introduced two sets of unusual and interesting experiments that
combine full quadrature reduced dimensionality with multiple quantum evolution for backbone
assignment. Their purposes for using multiple-quantum coherences were to improve the
resolution, by eliminating peak broadening from active carbon-carbon scalar coupling, and to
shorten the pulse sequence, thus improving the sensitivity. The first set consisted of HNCACB
and HN(CO)CACB experiments that use two evolution periods, one for N and the second for
simultaneous multiple-quantum evolution of Cα and Cβ [120]25. The phase cycle was designed
so that this second period produces only the double-quantum term, Cα + Cβ. The experiments
can be run in a (4,3)-D mode with N evolved conventionally, to produce crosspeaks at (HN,
N, Cα + Cβ) positions, or they can be run in a (4,2)-D mode with the N evolution time set to
match the carbon double-quantum evolution. The resulting two subspectra contain crosspeaks
at the positions (HN, Cα + Cβ + N) and (HN, Cα + Cβ − N).

The second set of experiments are (3,2)-D and (4,2)-D full quadrature reduced dimensionality
experiments that accomplish all chemical shift evolution via a single multiple-quantum
evolution period at the center of the pulse sequence, set within nested HMQC transfers to
prepare and reverse the magnetization state [121]. The (4,2)-D HNCOCA thus uses a three-
spin coherence to coevolve all three nuclei simultaneously, according to the transfer pathway

where the multiple quantum evolution is indicated in bold, while the (3,2)-D HNCO, HNCA,
HN(CO)CA and H(N)COCA evolve two-spin coherences. An additional element can be
inserted into those sequences that evolve N that provides additional single-quantum N
evolution, allowing the N chemical shifts to be scaled26. These experiments are considerably
shorter and use considerably fewer pulses than traditional experiments with individual
evolution periods.

It has been Szyperski’s group, however, that has taken the full quadrature detection concept
the farthest. Kim and Szyperski developed a formalism that they called the G-matrix, which
concisely describes the time domain manipulations needed to separate the multiplet
components onto different spectra [52]. If the full set of hypercomplex components are
collected, applying the G-matrix gives 2n−1 projections separating out the 2n−1 multiplet
components27, where n is the number of coevolved dimensions. At the same time, they also
outlined a method for analyzing the data, especially suited for experiments with many
coevolved dimensions, based on a generalization of the central peak concept that Szyperski,
Wüthrich and co-workers had introduced for reduced dimensionality [59,101]. The new
procedure involves recording spectra with progressively fewer coevolved dimensions (n−1, n
−2, n−3, etc.); each time a dimension is removed from the coevolution, the central peak for
that level of splitting is revealed. In this manner, the full splitting pattern can be resolved, and
the multiplet components can be matched together. The 2n−1 projections produced from the
original data with all dimensions coevolved are called basic spectra, while the projections
generated with fewer coevolved dimensions are called central peak spectra. Central peak

25The authors named these experiments DQ-HN{CACB} and DQ-HN(CO){CACB}, with the curly braces representing DQ-only
multiple quantum evolution. We have avoided this nomenclature, however, because it conflicts with the use of curly braces for separate
sets of coevolved nuclei, introduced by Szyperski and coworkers, which we have chosen to use in this publication.
26i.e., allowing the projection angle to be adjusted.
27Or equivalently in the geometric interpretation, corresponding to 2n−1 reflections to other quadrants (octants, etc.) of the n-(hyper)
sphere.
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spectra with n−1 coevolved dimensions are termed first-order, those with n−2 are termed
second-order, and so forth. Note that central peak spectra can be obtained in three different
ways: (1) in one experiment, detected simultaneously with the basic spectra using axial peak
magnetization, as described above for reduced dimensionality; (2) in a separate experiment
with the same pulse sequence as for the basic spectra, but with one or more of the evolution
periods disabled; or (3) through independent experiments with different pulse sequences. All
of these methods have been employed, with strategy (1) typically used for first-order central
peaks, and either (2) or (3) for the higher orders (cf. [52,122]).

Kim and Szyperski called their complete approach G-matrix Fourier Transform
spectroscopy or GFT (later amending this to “GFT projection spectroscopy”), and they initially
demonstrated it by collecting (5,2)-D HACACONH data on a 2 mM sample of the 76 residue
protein ubiquitin [52]. The diagonal radial spoke was measured using the pulse sequence in
Fig. 24a, incrementing all of the indirect evolution dimensions at the same rate, with the spectral
width of each dimension set to the same value. Systematic phase modulation of ϕ1, ϕ2, ϕ3 and
ϕ4 between 0° and 90° allows for collection of the cosine- and sine-modulated data for each
evolution time (full quadrature detection). Eight basic spectra were generated by applying the
G-matrix to these data (Fig. 24b). Seven additional central peak spectra were measured (Fig.
24b): four first-order in which Cα, CO and N were coevolved; two second-order in which CO
and N were coevolved; and one third-order in which only N was evolved. In practice, Kim and
Szyperski used a (3,2)-D HNCO for the second-order central peak spectrum and a
2-D 15N/1H-HSQC for the third-order, while the first order were detected simultaneously with
the basic spectra. The results were compared with the 2-D orthogonal projections of a
conventional 5-D spectrum. Total data collection for the GFT-NMR experiment was only 138
minutes on a 600 MHz spectrometer—saving several orders of magnitude in measurement
time.

An important enhancement used in a number of GFT experiments is the idea of having two
independent sets of coevolved dimensions. As discussed above, there was a precedent for this
in the reduced dimensionality work of Löhr and Rüterjans [108], but it was not seen again until
ten years later, when it was reintroduced by Szyperski’s group under the name G2FT [109].
As in the previous work, this results in splittings in two different coevolution dimensions (Fig.
25a), which now can be divided among subspectra by quadrature detection and GFT processing
(Fig. 25b). The purpose of using two independent coevolution processes in the GFT sequential
assignment strategy is to divide the dimensions used to separate and index spin systems from
those used for matching sequential connectivities. For example, with larger proteins it may be
advantageous to use the three dimensions HN, N and CO as the “fingerprint” of the protein,
rather than just HN and N. By coevolving the N and CO together in all of the sequential
assignment experiments, the same signature can be observed for each spin system in each
experiment. The Cα and Cβ connectivities can then be coevolved as a separate grouping, with
the splitting in a different dimension, allowing forward and reverse connectivities to be
identified easily.28. The result is a straightforward walk-through of the sequence. Fig. 26c
shows how the data for this assignment strategy would appear.

For measuring couplings—in particular residual dipolar couplings—Atreya and coworkers
introduced an interesting variant on these concepts [123]. Instead of coevolving multiple
chemical shifts, they coevolve multiple couplings. In order to be able to separate the multiplet
components into independent subspectra, each coupling evolution must be measured in
quadrature—but the natural evolution of spin-spin couplings produces only sine modulation.
To obtain cosine-modulated coupling evolution they introduced a delay, sized to shift the phase

28Such a (5,3)-D experiment is denoted HN{NCO}{CαCβ} in the nomenclature of Atreya and coworkers, where the curly braces define
the groups of coevolved nuclei.
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of the signals by 90° on average. Because the delay cannot be correct for all of the spins, it is
necessary either to introduce a phase correction or to use a mirror image processing technique,
where a second spectrum is collected with the direction of coupling evolution reversed. One
of the most important elements in this work is the presentation of a general approach to phase
correction in radially sampled data, which for this application was used as part of an iterative
method for correcting the phase errors introduced by the use of an average delay for the
synthetic cosine channel29. Using these techniques, a (6,2)-D experiment was implemented
where only the N and HN chemical shifts are evolved, while the sum of the scalar and residual
dipolar couplings (denoted as K) are measured for the pairs of nuclei Cα–Hα, Cα–CO, N–CO
and N–HN. The peaks in the resulting basic spectra are thus found at the positions N ±
½KN–H ± ½KN–CO ± ½KCα–CO ± ½KCα–Hα; four orders of central peak spectra are used to
untangle the encoding.

Given that many other methods for accelerating NMR have been introduced in recent years, it
should perhaps come as no surprise that several groups have combined full-quadrature reduced
dimensionality with other, complementary techniques for reducing measurement time.
Szyperski’s group has introduced a number of GFT experiments that feature optimization of
the proton longitudinal relaxation (designated by a prefix “L-”), so as to reduce substantially
the delay needed between NMR transients [124]. In addition, Szyperski’s group has introduced
a (4,3)-D GFT-NOESY experiment that uses the time-shared technique to combine an N/N, a
Caliphatic/N and a Caliphatic/Caliphatic NOESY into a single experiment [125]; a similar
experiment was later published by a different group [126]. Finally, Sun and coworkers have
shown that reduced dimensionality can be combined with nonuniform sampling and maximum
entropy reconstruction to obtain an additional reduction in measurement time [127]. In their
HC(CO)NH-TOCSY experiment, they used random sparse sampling and MaxEnt
reconstruction in both the N dimension and the jointly-sampled HC dimension.

Full-quadrature reduced dimensionality has been applied extensively in structural genomics,
primarily for backbone and sidechain assignment, as well as to a number of other purposes—
including even a solid state experiment [128]. Table 3 summarizes the many experiments that
have been reported, listing both the introduction of new pulse sequences as well as a few cases
where previously reported pulse sequences were applied to novel problems [49,50,52,55,
109,120–134].

3.4. Projection-Reconstruction NMR
Projection-reconstruction NMR (PR-NMR) was originally proposed by Kupče and Freeman
in 2003 [53,135]. As with the methods in the preceding section, PR-NMR involves collecting
data by phase-sensitive joint sampling of multiple indirect dimensions; unlike with these other
methods, in PR-NMR one measures multiple projections (multiple radial spokes) at varying
angles, instead of just the diagonal, and one uses these to reconstruct the full multidimensional
spectrum, rather than analyzing them directly. While the need to reconstruct images from
projections is a common problem in many scientific fields, in most of these the image to be
reconstructed is a continuously varying density, necessitating the collection of large numbers
of projections. In contrast to this, PR-NMR involves the reconstruction of relatively sparsely
populated spectra comprised of sharp, compact peaks, and only a handful of projections are
needed for high-quality reconstruction in favorable cases, such as backbone assignment. For
higher-dimensional spectra (4-D and beyond), the time savings for PR-NMR, as with RD and
GFT experiments, can be orders of magnitude.

29The topic of phase corrections in radially sampled data has received relatively little attention. To our knowledge, the only other
consideration of it is a recent publication by Gledhill and Wand [78].
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The projection-slice theorem [35,39], discussed earlier, provides the basis for obtaining
projections from radial slices taken at varying angles through the time domain [53]. Along a
single slice, the evolution times for the indirect dimensions are incremented simultaneously at
a fixed ratio that defines the projection angle. With two indirect dimensions the calculation of
the evolution times is straightforward [53]; for more dimensions, it can be helpful to use
direction cosines [43]. It is necessary to adjust the spectral width to avoid the aliasing of
projected peaks [43]. The hypercomplex data for each slice must be converted to complex data
prior to computing the Fourier transform, which yields projections at mirror-image angles as
described previously [43,53,136]. The geometric relationship between the projections and the
full spectrum is illustrated for a simple case with two indirect dimensions in Fig. 26.

The first demonstration of PR-NMR was a (3,2)-D HNCO experiment on ubiquitin conducted
by Kupče and Freeman [53]. They measured projections at 0°, 30° and 90° from the CO axis,
over a total data acquisition time of 29 min 11 s. The 30° projection was recorded in full
quadrature, as four hypercomplex components, which were then converted into complex data
for the mirror-image projections at 30° and 150°. As a control, they recorded a conventional
3-D HNCO at the same resolution in 18 h 54 min of acquisition time. The two versions were
described as “indistinguishable,” except that the reconstruction was carried out successfully at
twice the digital resolution of the conventional control (Fig. 27).

This first example was quickly followed by demonstrations of PR with 4-D and 5-D spectra,
using the lower-value reconstruction method described above [43,136,137]. In an effort to
make PR-NMR feasible for applications with poor intrinsic sensitivity, Kupče and Freeman
proposed the use of backprojection as an alternative to the lower-value method [70]. In doing
so, one vastly improves the sensitivity of the experiment, albeit while introducing some
artifacts. In a later publication [138], Kupče and Freeman suggested suppressing artifacts from
backprojection reconstruction using a variation on the nonlinear CLEAN algorithm from
radioastronomy [139]. This involves locating the strongest peak in the reconstruction, which
one can safely assume to represent a real signal. From the position of this peak, one can calculate
its projected image for each of the projection directions, and subtract these images from the
projection data. A subsequent reconstruction will be missing both the peak and its artifacts,
and the next strongest peak can safely be assumed to be a real peak, since any artifacts from
the stronger first signal have already been removed. This process is repeated iteratively to
determine a list of the true signals, which are then reintroduced artificially without artifacts.
This method was shown to be successful for an HNCO spectrum on a 187-residue protein.

Like reduced dimensionality, PR-NMR was originally conceived as a way to reduce the time
needed to obtain higher-dimensional information for the backbone assignment of relatively
small proteins. It is not limited to such applications, however. By using a slightly larger number
of projections (on the order of 20–30 rather than 5–10) and a reconstruction algorithm that is
able to capitalize on the combined sensitivity of multiple projections, it is possible to apply
these methods to protonated and perdeuterated proteins with higher molecular weights [71,
72]. Under these circumstances, a certain amount of signal averaging and, therefore, instrument
time is required in order to achieve reasonable signal intensities. Instead of aiming to reduce
instrument time significantly, as is the goal with small proteins with ample signal intensity,
the goal becomes the maximization of resolution and dimensionality in order to best separate
the signals, using whatever instrument time is needed to meet the sensitivity requirements.
Since signals from large proteins relax too quickly to allow for reasonable signal-to-noise ratios
in most (5,2)-D and higher PR-NMR experiments, due to the length of the pulse sequence and
the number of magnetization transfers and selections, (4,2)-D experiments offer the best
compromise between resolution and sensitivity [72]. Compared to conventional 4-D
experiments, the (4,2)-D PR-NMR experiments can be collected at much higher resolution
while using significantly less instrument time.

Coggins et al. Page 29

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Venters and coworkers introduced a suite of (4,2)-D backbone assignment pulse sequences for
this purpose, and at the same time introduced the hybrid backprojection/lower-value or HBLV
algorithm, described above [72]. These methods were demonstrated using human carbonic
anhydrase II, a 29 kDa protein, and calbindin D28k, a 30 kDa protein [72]. The samples were
labeled with 13C and 15N and perdeuterated, and eight radial spokes were collected over 20–
40 hours for each experiment (yielding 23 projections after reflection). By configuring the
hybrid algorithm to add together groups of eight projections, sufficient signal intensity was
accumulated to detect almost all expected peaks, while still suppressing artifacts effectively
(Fig. 28a–e). The backprojection method was shown to be ineffective in this case due to peak
broadening and the presence of artifacts, while many signals could not be detected when using
the lower-value algorithm due to the lack of signal accumulation (Fig. 28f–h). The 4-D data
made it possible to assign some resonances that could not be assigned from the conventional
3-D data available previously.

Nor is PR-NMR limited to backbone assignment. Shortly after the demonstration of (4,2)-D
backbone assignment on HCA II, a PR-NMR (4,2)-D methyl-amide NOESY experiment on
the same protein was reported (Fig. 29) [71]. This study was the first to use FBP in NMR. In
this application, sensitivity was at a premium, requiring a method that would extract the
maximum signal intensity possible from the input data. At the same time, the broadening of
plain backprojection made that method ineffective (Fig. 29e), and the hybrid method was
deemed unacceptable firstly because it could not provide the accurate peak shapes and volumes
needed for quantitative interpretation of the NOESY spectrum, and secondly because of
concerns about false peaks from the lower-value analysis given the number of true signals
expected. A large number of projections was needed—100 radial spokes were collected,
producing just under 400 projections after mirror-image reflection—but the savings in
measurement time over a conventional experiment at the same resolution was still orders of
magnitude. The final experiment required 88 hours but needed only 5% of the measurement
time that would be required for a conventional 4-D experiment with the same resolution.

The questions of how many projections to collect and which angles to use are two of the most
important arising in PR-NMR. For filtered backprojection, Fourier transform theory states that
any kind of nonuniform distribution of projection directions will lead to distortion of peak
shapes, and provides analytical expressions relating the distribution and size of spectral
artifacts to the number of uniformly distributed projections used in the calculation. Thus a
uniform distribution should be used, and the choice of how many projections to collect can be
made, without regard to the number of peaks, by calculation from these formulas based on the
dynamic range needed to resolve the peaks.

The nonlinear methods present the possibility of getting by with far fewer projections than FBP
would require, provided that there are only a small number of peaks, and provided that accurate
peak lineshapes and volumes are not needed. It would seem that in many cases there is a unique,
minimal set of projections that most efficiently and effectively resolves a particular distribution
of signals—for example, in Fig. 13a two projections are sufficient if the directions are chosen
correctly. However, determining such a minimal set would seem to require a priori knowledge
of the signals, which is not usually available. For the lower-value and HBLV algorithms, if
one has an estimate of the number of signals present, an upper bound on the number of
projections needed can be predicted according to a formula given by Venters and coworkers
[72]. To go further requires calculating a provisional map of potential signal locations using
the orthogonal “first planes” of the spectrum, and then determining the set of projections that
will most effectively resolve which of these provisional signal locations actually contains a
signal. Two algorithms have been suggested for this. Kupče and Freeman evaluate the “skyline
projection” or silhouette of the provisional peak lattice for a number of different angles, and
choose angles based on which directions show minimal overlap of provisional peak sites
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[70]. The second method was presented recently by Gledhill and Wand, who use a geometric
analysis of a lower-value provisional signal map and the projection vectors to identify which
of the provisional signals could be artifacts, and to select the angle most likely to resolve the
ambiguity [140].

The reported applications of the projection-reconstruction approach are summarized in Table
4 [43,53,70–72,136,137,141,142]. A software package for calculating reconstructions, PR-
CALC, has been released [44].

3.5. Projection Spectroscopy
The PR-NMR ideas of collecting multiple radial spokes at varying angles, and of interpreting
the Fourier transforms of these as projections, inspired a number of efforts— not all of them
involving reconstruction. Several groups recognized that the information needed for sequential
assignment, namely the chemical shifts of the signals, might be derived directly from the
projections without going through the calculation of a reconstruction. This is, of course, a
similar premise to reduced dimensionality and GFT, except that in the series of experiments
loosely classed under the name projection spectroscopy, there is an explicit intention to use
multiple projections at varying angles to overcome overlap problems. There is also a shift in
strategy towards automated analysis of the projections, it being considerably easier for a
computer to cope with varying projection angles than a human. This automated analysis could
in principle follow (1) the “bottom-up” reasoning of GFT, built on the interpretation of splitting
patterns via central peak spectra; (2) the geometric reasoning illustrated in Fig. 13, where the
potential locations for the peaks are determined by finding the intersection points of vectors
extended from each projected peak; or (3) the model-fitting approach. In practice, the latter
two have received significant attention, and will be considered in this section and the next.

The challenge of the geometric approach, employed by Hiller and coworkers in their automated
projection spectroscopy (APSY) method [143], is finding a robust algorithm for identifying
which intersection points correspond to real peaks. Their answer to this problem is to use a
kind of cross-validation. They determine candidate peak positions by taking a subset of the
projections and intersecting the projection vectors, and then calculate a self-consistent
assignment of the projected peaks to the intersections via a deterministic algorithm favoring
the most likely possibilities. This alone is not likely to lead to a correct result in every case,
but by repeating this procedure for different randomly-chosen subsets they are able to arrive
at a consensus answer with the confidence of having explored the solution space rather
thoroughly.

The original demonstration of APSY was done using a (4,2)-D HNCOCA experiment and a
(5,2)-D HACACONH experiment [143]. For the former, a total of 27 projections were recorded
on a 6.9 kDa protein, using four hours of measurement time. After computing the Fourier
transform of each projection, peaks were picked with the ATNOS program, and the peak lists
were input to the program GAPRO (geometric analysis of projections) which carries out the
APSY analysis. The automated procedure correctly placed 59 of the 60 signals present, having
missed only the weak signal from the N-terminal residue, and listed no false signals. The second
experiment was applied to a 12.4 kDa protein. A total of 28 projections were recorded in 11
hours, and the final list of signals included all expected signals, and no false ones.

An impressive and important body of work followed, including the complete backbone
assignments for the two proteins used in the original APSY study, utilizing data from a 6-D
APSY-seq-HNCOCANH sequence [144]; assignment of unfolded proteins using 7-D APSY-
seq-HNCO(CA)CBCANH experiments [145]; assignment of aliphatic sidechain resonances
using the 5-D APSY-HC(CC-TOCSY)CONH experiment [146]; and the automation of the
sequence-specific protein resonance assignment process using APSY data and a fragment-
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matching algorithm, MATCH [147]. An extremely useful and practical guide for successfully
implementing the APSY approach to the protein assignment problem has recently been
published providing specifics regarding experiment selection, optimization of data collection
and spectral analysis recommendations [148].

Any potential set of signals determined by matching together peaks on projections originating
from the same signal can be tested by backcalculating the projection peak frequencies from
the proposed signals and comparing to the frequencies of the peaks on the experimental
projections. This idea is the basis for the EVOCOUP algorithm from Malmodin and Billeter
[149], which evaluates all possible combinations of projected peaks as to possible signals, and
has also been incorporated into a recent version of APSY as a means of validating potential
solutions determined in the geometric algorithm [148].

3.6. Applications of Iterative Model-Fitting to Radial Data
Several groups have reported efforts to use iterative model-fitting algorithms with radially
sampled NMR data. The algebraic reconstruction technique (ART), developed in the medical
imaging community in the early 1970s [150], is in many ways the prototypical iterative model-
fitting method. Although this method has not actually been applied in protein NMR, it was
employed in the first magnetic resonance imaging (“zeugmatography”) experiments,
conducted by Paul Lauterbur and coworkers in the early 1970s [151], and its historic
importance seems an appropriate justification for its inclusion here (cf. [40] and [42] for
comprehensive discussions of its use in imaging).

ART is built specifically around the fact that the projection values are integrals of the spectral
intensities [150]. A system of linear equations is constructed describing each sampled
projection intensity as the sum of a set of voxel intensities from the spectrum (Fig. 30), which
is then solved for the unknown spectral intensities given the known projection data. Traditional
matrix inversion techniques could presumably be used to solve this problem, but the size of
the system of equations has historically made it more feasible to do so by iterative methods.
In these, the proposed spectrum is the model, and the search algorithm adjusts the proposed
spectrum to obtain agreement between calculated projection values from the system of linear
equations and the observed projection values. Because this problem is often underdetermined,
some versions of ART incorporate a regularization procedure to bias the process towards a
more likely solution out of the various ones that might be consistent with the data.

A least-squares fitting procedure, conceptually similar to ART, has been applied in NMR
spectroscopy by Yoon and coworkers, in which the spectrum was iteratively adjusted to find
the best least-squares fit between backcalculated projection data (presumably calculated by
summation along projection vectors, as in ART, although the authors do not specify) and the
experimental data [152]. Maximum entropy reconstruction also involves the iterative
adjustment of model data to minimize the difference between backcalculated and experimental
data, but with the crucial modification that one simultaneously seeks to minimize the power
spectrum of the model, which is essentially the meaning of maximizing the information-
theoretical entropy [30]. This second criterion is a regularization procedure, allowing the search
algorithm to choose between models that fit the experimental data equally well. Maximum
entropy has been demonstrated successfully for radially sampled data by Yoon and coworkers
[152] and by Mobli and coworkers [153].

The above methods all involve the optimization of a model spectrum (or a model time domain)
independently of any explicit consideration of the signals. It is also possible to develop models
of the spectral data that explicitly optimize parameters for individual signals. The Monte Carlo
methods demonstrated by Yoon and coworkers use such models, coupled with Bayesian
reasoning about the probability of different parameter values [152]. A somewhat different
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approach is the multiway decomposition method, which has been used extensively with random
sampling, but has also been applied to projection data by Malmodin and Billeter in their
program PRODECOMP [154]. The idea is to construct a frequency domain model for each
signal in the spectrum, formed as the product of orthogonal 1-D “shapes” in each direction.
No explicit functional form is assumed for the signals. The projection data can be
backcalculated from these shapes via convolutions: the projected shape is simply the
convolution of the 1-D shapes (cf. Section 2.4 above). Iterative numerical optimization is used
to find the best model, as evaluated by comparing the backcalculated data to the experimentally
observed projections.

Mueller has very recently explored extending the PRODECOMP approach by using
deconvolution as well as convolution [155]. This suggests several possibilities for new data
analysis procedures based on generating the 1-D “shapes” by deconvolution from the tilted
projection data and checking them against the observed signals on the orthogonal first planes.

One of the most interesting methods to be introduced for utilizing radially sampled data is the
HIFI algorithm from Eghbalnia and coworkers [156]. HIFI runs on the spectrometer itself and
directs the data collection process, deciding in real time whether to collect additional
projections, and in which directions. HIFI iteratively optimizes a model in which the frequency
domain spectrum is divided into voxels, each of which is considered to have a certain
probability of containing a signal. The initial probabilities are estimated using the conventional
“first planes” of the experiment, as well as a priori information from, for example, the
BioMagResBank frequency distributions for the type of resonance in question. On the basis
of this probability map, HIFI calculates the projection angle that should provide the most
information for determining which possible signals are real, and it directs the spectrometer to
collect this projection. An updated probability is then calculated for each voxel according to
Bayes’ rule, incorporating the prior probability as well as a new probability estimate derived
from the projection. This process is continued until the probability model predicts that only
negligible information could be obtained by measuring more projections, at which point a list
of signal frequencies can be generated from the model according to the probabilities in the
voxels.

In the original report introducing HIFI, the approach was tested using several proteins—
brazzein (54 residues), ubiquitin (76 residues), mouse protein Mm202773 (101 residues),
Anabaena variabilis flavodoxin (179 residues) and Prp24_12 (166 residues)— and several
experiments, including (3,2)-D HNCO, HNCACB and CBCA(CO)NH [156]. The results were
compared against peak lists generated by conventional 3-D data sets with manual peak picking.
HIFI NMR was able to identify 98–100% of the correct peaks automatically when compared
with manually picked conventional 3-D data, in one-tenth to one-fourth of the spectrometer
time. In a subsequent publication, the same group extended HIFI NMR to the measurement of
small N-CO residual dipolar couplings in proteins (HIFI-C) using a 3-D quantitative-J
experiment [157].

3.7. Polar Fourier Transforms
The most recent major idea to be introduced regarding the use of radially sampled data is its
processing by Fourier transforms in polar coordinates [14,37,75]. As we showed [37], filtered
backprojection is in fact essentially identical to one implementation of the polar Fourier
transform (PFT), and thus the projection-reconstruction NOESY experiment processed by FBP
that was reported in 2006 [71] was arguably also the first demonstration of a radially sampled
dataset being processed by PFT. Almost immediately thereafter, however, came the nearly
simultaneous publication by three different groups of papers explicitly considering PFT
processing. The first of these, by Kazimierczuk and coworkers [14], discussed direct
computation of the Fourier transform of radial data using the traditional discrete Fourier
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transform equation, modified in similar fashion to Ernst and coworkers [3,77] with quaternions
to handle hypercomplex data. This equation is not specific for polar cases, but can rather be
applied to any kind of sampling. One weakness of this study was that no weighting (or
“filtering” in FBP parlance) was used to correct for the sampling distribution. The method was
demonstrated using the (3,2)-D HNCO spectrum of ubiquitin, calculated from three radial
spokes at 4.5°, 45° and 85.5°. Note that the quaternion calculation is equivalent to the reflection
method derived from the projection interpretation, as illustrated by the presence of mirror-
image artifact ridges in the reported spectra (Fig. 31a).

The other two papers appeared very shortly thereafter. Marion cited the PFT as a linear
alternative to the non-linear reconstruction methods being used, recognizing that the artifacts
observed upon computing the Fourier transform are a type of aliasing due to undersampling
or uneven sampling [75]. By applying appropriate weighting to correct for the distribution of
sampling points, proper peak shapes are obtained, although ridge artifacts cannot be prevented.
This weighting was derived by introducing the change in the coordinate system into the
standard discrete Fourier transform equation. Marion also employed a quaternion formalism
to enable the processing of hypercomplex data. Results were shown for a (3,2)-D HNCO
experiment on the protein ubiquitin, using 18 radial spokes (Fig. 31b).

Coggins and Zhou covered the same subject matter as the other two, but also presented a
theoretical treatment of the undersampling artifacts, by reference to linear response theory, and
pointed out the connection to filtered backprojection reconstruction, and the possibility of using
that method as a faster way to carry out the polar Fourier transform [37]. Unlike the others,
this paper used the hypercomplex-to-complex conversion approach to handle quadrature-
detected data, obtaining the same kind of result as for the quaternion methods. The approach
was demonstrated using the (3,2)-D HNCO spectrum of the 19 kDa protein OTU, computed
with either 12 or 48 radial spokes. As predicted by theory, 48 radial spokes provides sufficient
sampling that artifacts are not produced, whereas a dataset with only 12 spokes is undersampled
and produces ridge artifacts upon PFT.

These studies provided the launching point for all three groups to begin exploring sampling
patterns other than radial sampling. Kazimierczuk and coworkers explicitly considered spiral
sampling in the same paper with radial sampling [14], and went on in subsequent publications
to focus on purely random sampling [8,10,158]. Marion likewise moved on to random sampling
[9], whereas Coggins and Zhou proceeded to develop sampling patterns based on concentric
rings and shells [12,13]. The study of alternative sampling coupled to Fourier transform
processing is ongoing.

4. CONCLUSIONS
In the nearly three decades since the first accordion spectroscopy experiment was
demonstrated, radial sampling methods have proven again and again, and in numerous guises,
to be of great utility as a means for accelerating NMR data collection. By evolving two or more
signals simultaneously—or in the case of the accordion experiments, by coevolving a signal
as well as some other experimental parameter, such as a mixing time—high resolution, high-
dimensionality information can be obtained rapidly, often in orders of magnitude less time than
for an equivalent conventional experiment. This has made it possible to shorten routine data
collection for many systems, and has facilitated a number of experiments with four or more
dimensions that were not previously practical. Although radial experiments have been used
most commonly for the backbone sequential assignment of small proteins, they are by no means
restricted to this one application, as their use for scalar and residual dipolar coupling, TOCSY,
NOESY and many other experiments, for both small and large proteins, would indicate. While
radial methods have their limitations, they have also clearly been of great value, as nearly thirty
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years of experience has shown. The idea of improving the efficiency of NMR data collection
via coevolution has been turned to again and again—and has resulted in impressive successes,
again and again. It is likely that radial sampling will continue to be an important tool for
addressing challenging biomedical questions by NMR in the years to come.

GLOSSARY

accordion
spectroscopy

a method whereby one or more mixing times are incremented
simultaneously with the chemical shift evolution time of an indirectly
observed dimension.

algebraic
reconstruction
technique (ART)

an algorithm for reconstruction of a function from its projections, which
relies on the fact that the intensity measurements on the projections are
integrals of the intensity values in the original function. This allows
one to construct a system of linear equations relating the function values
to the projection values, which system can be solved iteratively to yield
the spectrum.

aliasing a situation wherein artifactural intensity appears in a spectrum due to
uncertainty about signal positions, as a result of insufficient sampling.
The form taken by the aliasing depends on the sampling pattern.

automated
projection
spectroscopy
(APSY)

an automated method for analyzing projection data from radial
sampling experiments, based on a geometric algorithm and cross-
validation.

backprojection
(BP)

the process of extending a projection of a function back over the full
domain of that function, along the lines over which the original function
was integrated (or theoretically would have been integrated) in
producing the projection. Also, a reconstruction procedure in which a
spectrum is calculated as the superposition of the backprojections of
all the available projections.

Cartesian
sampling

the sampling of a multidimensional function at regular intervals in each
dimension, so that the positions of the sampling points form a
rectangular grid.

central peak a peak which marks the center point of a chemical shift doublet. Central
peaks can be obtained from the residual magnetization remaining after
incomplete magnetization transfers, either simultaneously with the
doublet or in a separate FID, depending on the pulse sequence.

chemical shift
multiplet

a multiplet that is produced due to coevolution of two or more
dimensions, centered at the chemical shift in one dimension and split
by the chemical shift(s) in the other dimension(s). If quadrature
detection is used in all dimensions, the multiplet members can be
separated onto independent subspectra; in other experiments,
quadrature detection is used only in one dimension, and the multiplet
components appear together.

continuous Fourier
transform

a Fourier transform computed using an integral of infinitely many
samples over an infinite domain. In NMR, the notion of a continuous
transform is useful primarily as a theoretical tool.

convolution a mathematical operation that measures the degree of overlap between
two functions as one is shifted along the other, the output often
appearing as if the shapes of the functions were blended together.

Coggins et al. Page 35

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



convolution
theorem

a theorem of the Fourier transform stating that if two functions are
multiplied together, the Fourier transform of the product is the
convolution of their individual Fourier transforms.

delta function a function containing a single, infinitely sharp peak.

discrete Fourier
transform (DFT)

a Fourier transform computed using discretely sampled data, taking the
form of a summation rather than an integral. While the DFT equation
can be written in a way that incorporates knowledge of Cartesian
sampling, it can also be defined more generally as the sum of the
available time domain measurements, regardless of the form of the
sampling, after multiplication with the appropriate cosine and sine basis
functions. The DFT is equivalent to computing a continuous Fourier
transform of a function that is set to the measured data values at each
measured evolution time, and otherwise to zero.

discrete sampling the process of measuring the value of a continuous function at specific
positions. In NMR, refers to the process of measuring a signal or set of
signals at specific combinations of evolution times.

EVOCOUP an algorithm for the automated analysis of projection data from radial
experiments, which exhaustively searches the possible matchings
between the peaks on the projections to determine which ones were
generated by the same spin systems, and tests its matches by
backcalculating the projections and comparing with the experimental
data.

fast Fourier
transform (FFT)

an algorithm for the computation of discrete Fourier transforms that
saves a factor of log N over the traditional DFT equation, where N is
the number of data points. The FFT is only applicable if the data are
measured on a Cartesian grid, or can be cast onto such a grid.

filter a process that alters the lineshape of a signal. For the purposes of this
review, a filter is a function that can be multiplied with experimental
data in the time domain in order to alter the lineshapes of the signals in
the resulting spectrum, the alteration being governed by the
convolution theorem.

filtered
backprojection

a method for reconstructing a function from its projections, whereby
the projections are first filtered through the application of a window
function in the time domain that corrects for uneven sampling density
with respect to radius, and then backprojected. It has been shown
analytically that filtered backprojection is a form of the inverse Radon
transform; thus with infinitely many projections distributed uniformly
in all directions, filtered backprojection would yield a perfect
reconstruction.

G2FT a version of GFT spectroscopy in which the indirect dimensions are
divided into multiple groups, and coevolution is carried out
independently within each group, producing projections with two or
more independent coevolution dimensions.

G-matrix a formalism for calculating the coefficients to be used in time domain
processing for separating the members of chemical shift multiplets.
Equivalent to converting hypercomplex data defined over one quadrant
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(octant, etc.) of the time domain into complex data defined over
multiple quadrants (octants, etc.).

G-matrix Fourier
transform
spectroscopy
(GFT)

a method whereby the chemical shift evolution periods for two or more
indirect dimensions are incremented simultaneously, with full
quadrature detection in all dimensions; the resulting data are decoded
from hypercomplex to complex format to separate the elements of the
chemical shift multiplets (application of the “G-matrix”); and the
positions of the peaks from the multiplets are analyzed to determine
the frequencies of the multidimensional signals. This is equivalent to
measuring a single radial spoke and decoding a set of projections in
mirror-image directions.

high-resolution
iterative frequency
identification
(HIFI)

an automated method for the collection and analysis of radially sampled
data, run on the spectrometer, in which a probabilistic model of the
spectrum is iteratively improved by computer-controlled measurement
of additional radial spokes.

histogram method a reconstruction method based on calculating a histogram of the
intensities observed at the positions on the projections corresponding
to the point being reconstructed, and taking the intensity value where
the distribution is highest, roughly equivalent to the most frequent value
found on the projections.

hybrid
backprojection/
lower-value
reconstruction
(HBLV)

a reconstruction method that combines backprojection and lower-value
reconstruction, obtaining some of the benefits of each. In the first step,
backprojection is carried out for all possible combinations of k
projections, where k is specified by the user. In the second step, a lower-
value comparison is made between these backprojection
reconstructions.

individual
evolution period
reduced
dimensionality

an experimental design in which the coevolution of multiple nuclei is
achieved by a series of evolution periods, one for each nucleus, which
are programmed to use the same or a proportionally related evolution
time.

inverse Radon
transform

an integral transform that computes a multidimensional function from
its complete set of projections in all directions.

lower-value
reconstruction
(LV)

a method for reconstructing a spectrum from projections, which can be
described as follows. In the first step, each projection is backprojected
across an independent, empty spectrum. In the second step, a pointwise
comparison is made between the spectra, taking the value that is closest
to zero for each position. In practice, LV can be carried out quickly by
looking up the values on the projections at the locations that correspond
to the position to be reconstructed in the spectrum, and taking the one
that is closest to zero.

multiple-quantum
reduced
dimensionality

an experimental design in which coevolution of multiple nuclei occurs
by creating a multiple quantum coherence, with all of the coevolving
nuclei on the transverse plane simultaneously. The resulting sampling
forms a radial spoke along the diagonal of the time domain.

point response or
point spread
function

a function illustrating how a process such as sampling alters signals,
by showing the response that is generated when the process is carried
out on a signal that would constitute a point (a single infinitely sharp
peak) in the frequency domain. The point response for sampling is the
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Fourier transform of the sampling pattern, as calculated by
transforming a function that is unity at each sampling position, and zero
otherwise. The pattern of intensity in a point response shows that would
result were the sampling pattern to be used for data collection; it can
also be thought of as a graphical representation of the sampling
pattern’s uncertainty.

PR-CALC a program for the reconstruction of spectra from projections.

PRODECOMP a program for multiway decomposition analysis of projection data.

projection the integral of a multidimensional function, such that it is collapsed
onto a line or plane. The projection-slice theorem states that a projection
of a frequency domain spectrum can be obtained by measuring a radial
spoke in the time domain in the same direction as the desired projection
(perpendicular to the desired direction or directions of integration).

projection-
reconstruction

a method whereby radial spokes are measured in various directions and
converted into projections, which are then used as input for algorithms
that attempt to reconstruct the corresponding full multidimensional
spectrum.

projection-slice
theorem

a theorem of the Fourier transform which states that the Fourier
transform of a cross-section of the time domain, computed with respect
to the axis or axes of the cross-section, yields a projection of the
frequency domain in the same direction as the cross-section.

projection
spectroscopy

a set of methods that involve measuring multiple radial spokes,
converting them to projections, and then analyzing them automatically
to determine the properties of the signals.

radial spoke a set of samples of a multidimensional time domain, arranged in a
straight line passing through the origin.

Radon transform an integral transform that computes the complete set of projections of
a multidimensional function in all directions.

reduced
dimensionality

a class of experiments whereby the chemical shift evolution periods for
two or more indirect dimensions are incremented simultaneously with
quadrature detection in only one of those dimensions, the other
dimensions being measured as cosine modulation. Upon Fourier
transformation, one obtains a chemical shift multiplet encoding the
chemical shifts of the coevolved dimensions. The sampling is
equivalent to measuring a single radial spoke.

sample the measurement of the value of a function at a specific point in its
domain. In NMR, refers to the measurement of the intensity of a signal
or set of signals for a particular combination of evolution times; that is,
at a particular position in the time domain.

sampling see discrete sampling.

signal a representation of the magnetization of a nucleus as it evolves in time,
as detected directly in a receiver coil or indirectly the manipulation of
quantum states in a pulse sequence. Also, a multidimensional
representation of the magnetizations of multiple nuclei correlated to
one another by magnetization transfers in a pulse sequence.

tomography the process of reconstructing a function from its projections.
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truncation failure to sample a time domain signal over its full duration, leading to
increased linewidth and possible baseline artifacts in the frequency
domain.
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Figure 1. Ambiguity from Discrete Sampling of a Continuous Signal
(a) In NMR, a continuous sinusoidal signal (solid line) is normally measured as discrete
samples (points). (b) The actual information available about the original signal after sampling
is limited to the values at the sampling points, introducing two forms of ambiguity. (c) One
form of ambiguity is the lack of information about what happens between sampling points. In
the case of regularly spaced samples, as plotted here, an infinite number of sinusoidal signals
of various frequencies can be considered to fit the data equally well. (d) The second form of
ambiguity concerns what happens after the end of the sampling period. The data do not allow
one to distinguish between a signal that stops abruptly and a signal that continues infinitely.

Coggins et al. Page 44

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Comparison of Spectra for Continuous and Sampled Signals
(a) The spectrum of a continuous signal contains a single, infinitely sharp peak at the signal
frequency. (b) The spectrum of the same signal sampled at regular intervals over a finite period
of time shows both aliasing and truncation artifacts, reflecting the ambiguities of the sampling.
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Figure 3. Point Responses, Convolution and Discrete Sampling
The consequences of discretely sampling a continuous signal can be understood through the
convolution theorem of the Fourier transform. In the time domain, the sampling process can
be written mathematically as a multiplication of the continuous signal with functions describing
the sampling—in this case, one function specifying evenly distributed samples, and a second
function specifying the limited duration of the sampling interval. Each of these sampling
functions has a Fourier transform, shown below, which is called its point response. According
to the convolution theorem, the effects of sampling in the frequency domain are described by
convolving (in the commonly-accepted convention of Bracewell, indicated by the operator
“*”) the continuous spectrum with the point responses from the two sampling functions,
yielding the discrete spectrum, with its aliasing and truncation artifacts.
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Figure 4. Comparison of Conventional and Radial Sampling
(a) Conventionally, multidimensional NMR experiments have been sampled on regular grids.
In this example, we depict an experiment with 8 × 8 = 64 sampling points. (b) In radial sampling,
data are collected at evolution times falling on radial spokes. Because it is often possible to
determine spectral information from a small number of radial spokes, each of those spokes can
be measured to longer evolution times than for a conventional experiment of the same duration.
Here, we show a radial experiment with four spokes each of 16 points; the number of samples
and resulting measurement time are the same as in (a), but the resolution has been doubled. (c)
Radial sampling is in fact a sampling in polar coordinates.
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Figure 5. The Projection-Slice Theorem
The projection-slice theorem of the Fourier transform states that a slice through the time domain
yields, upon Fourier transformation, a projection in the frequency domain. (a) Measuring slices
at a 30° angle through two different multidimensional sinusoidal signals. The frequency
observed on such a slice is a linear combination of the signal’s original x and y frequencies,
with coefficients depending on the angle of the slice. Note that two signals with very different
x and y frequencies can happen to appear identically on a slice, as shown here. (b) The Fourier
transform of such a slice shows a projection of the original spectrum. In this example, the two
signals coproject at the chosen angle.
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Figure 6. The Point Response of a Single Radial Spoke
(a) A radial spoke at an angle of 30°, sampled uniformly at an interval of Δtr. (b) The point
response for the radial spoke. A ridge of intensity is observed in the frequency domain passing
through the origin and running perpendicular to the direction of the radial spoke, reflecting the
complete lack of information about the modulation of the signal in the 120° direction.
Additional ridges are observed with a spacing of 1/Δtr; these are aliases, resulting from the
discrete sampling of the spoke.
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Figure 7. Identification of a Multidimensional Signal Position from Projections
Given a set of projections of a multidimensional signal, it is often possible to determine the
position of the signal in the full spectrum. In this example, by extending lines back from each
projected peak, one finds a single intersection point, which must be the location of the original
signal. This geometric logic has been exploited in a number of approaches: explicitly for
reconstruction, as well as implicitly in calculations done directly from projected peak positions.
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Figure 8. Radial Spokes and Projections in a 3-D Space
(a) A radial spoke tr can be measured in a time domain with three indirect dimensions tx, ty and
tz. (b) The resulting point response shows a plane of intensity, perpendicular to the sampling
direction, reflecting the complete lack of information about the location of the signal within
this planar region.
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Figure 9. Scaled Wavelengths in the Time Domain Determine Projected Peak Positions in the
Frequency Domain
(a) Consider a signal with modulation only in the x dimension, at a frequency of ωx,1. In the
time domain, this signal would appear as a plane wave with a wavelength λx,1 of 1/ωx,1. The
wavelength λr,1 that would be observed by a slice at a 30° angle would be 1/(ωx,1 cos 30°).
The wave therefore appears to be scaled by a factor of 1/(cos 30°) when measured by the slice.
(b) In the 2-D frequency domain, the peak from the signal would be located along the ωx axis
at position ωx,1. The Fourier transform of the 30° slice would show a projection of this peak,
appearing at ωx,1 cos 30°.
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Figure 10. Convolution Interpretation of Radial Spoke Peak Positions, and Conversion of
Hypercomplex to Complex Data
(a) The frequency domain result of measuring a radial spoke can be understood geometrically
as taking a projection; it can also be understood, however, as a convolution (denoted by *). In
this example, a spoke is measured at an angle of 30° in a 2-D time domain. From the perspective
of the spoke, the x signal would appear scaled by a factor of cos 30°. The y signal would likewise
appear scaled by a factor of sin 30°. The actual time domain observation is the product of these
two scaled signals, meaning that the resulting frequency domain signal is their convolution, a
single peak at the position ωx cos 30° + ωy sin 30°. (b) If one measured a slice at an angle of
−30°, the direction of the y modulation in the time domain would appear reversed. In the
frequency domain, the y signal would appear at the position −ωy sin 30° instead of ωy sin 30°,
and the result after convolution would be ωx cos 30° − ωy sin 30°. Measuring a slice at a negative
angle would mean recording data at negative evolution times, which is not physically
meaningful. However, equivalent data can be obtained by taking linear combinations of
hypercomplex components. (c) NMR data collection is normally hypercomplex, and can only
be carried out for positive evolution times. Once collected, however, that hypercomplex data
can be converted to complex data, to produce slices at both positive and negative angles. The
conversion process preserves all of the information in the data; in this example, four
independent hypercomplex measurements become two complex data values in the +tx +ty
quadrant, and two complex data values in the +tx −ty quadrant.
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Figure 11. Radial Spoke Peak Positions in the Absence of Full Quadrature Detection
Fourier transformation of a radial spoke measured with quadrature information for only one
dimension leads to a frequency domain multiplet. That can be understood by the convolution
argument, shown here for the example of a slice at angle θ through a 2-D time domain, with
quadrature detection in x and real detection in y. (a) Because complex data are available for
x, a radial slice of the x signal alone would show as a single peak at the position ωx cos θ. (b)
Since imaginary components are not available for the y signal, the Fourier transform of a slice
of it alone would show a doublet. (c) The actual time domain observation is the product of the
x and y signals, yielding a convolution of (a) and (b) in the frequency domain. The result is a
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doublet centered on the scaled x frequency, with a splitting equal to twice the scaled y
frequency.
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Figure 12. Geometric Explanation for Why Multiple Projections are Obtained from a Single
Hypercomplex Spoke
(a) In this example, a 2-D spectrum contains a single peak, in the upper right corner. If
hypercomplex components are measured for a radial spoke at angle θ, after conversion to
complex components and Fourier transformation one obtains both the projection at angle θ
(top) and a second projection at angle −θ (bottom). This can be explained by convolution, as
in Fig. 10b. It can also be explained geometrically as follows. (b) An individual hypercomplex
component cannot distinguish which quadrant contains the true peak, showing a mirror image
duplicate in each quadrant. Projections of hypercomplex components at angle θ likewise show
the true peak as well as its duplicates, each projection containing a quartet. (c) Taking a linear
combination of the hypercomplex components selects for one of the four peaks. Depending on
the particular linear combination, this may or may not be the true peak. Here, the duplicate
peak in the lower right was selected. After taking a linear combination of the projections at
angle θ of the hypercomplex components, one obtains a projection at angle θ with a single
peak. In this case, the linear combination has selected for the projection of the lower-right
duplicate peak. (d) The projection of the true peak at angle −θ obtained in panel (a) is in fact
the projection at angle θ of the lower-right duplicate peak.
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Figure 13. Identification of Multidimensional Signal Positions from Projections When Multiple
Signals are Present
(a) Two peaks are present on each of these two projections (one projection parallel to x, and
the other at an angle of 30° to x). By extending lines back across the 2-D space of interest from
the projected peaks, one can determine the locations of the original signals, which are found
where the backprojection lines intersect. In this case, there are only two possible intersection
points for the backprojection vectors within the spectral region, meaning that the original
positions of the two peaks can be identified unambiguously. (b and c) In a less favorable case,
there are two possible interpretations for the projection data, both equally likely. The original
peaks could be located as in (b) or they could be located as in (c); these two configurations
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give identical projection data, and one needs additional information to resolve the ambiguity.
Note that this ambiguity would plague any method trying to interpret this data, regardless of
whether it is automatic or manual, and regardless of whether it attempts to reconstruct a
spectrum or merely attempts to calculate frequencies from the projected peak positions. (d)
The relative intensities of the projected peaks might provide a means for resolving ambiguities.
In this case, one possible answer is that there are three peaks of equal height, A, B and C,
positioned as shown. However, without additional information one could not exclude another
possibility, namely a configuration like that of (b), but with a peak A twice as strong as B.
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Figure 14. Backprojection and Filtered Backprojection Reconstructions
(a) The backprojection reconstruction of a Lorentzian signal from 16 simulated projections.
One observes ridges perpendicular to the projection directions; where these ridges intersect,
the peak is formed, albeit broadened. The merging of the ridges also leads to an elevated
baseline. (b) The backprojection reconstruction of a signal from 128 projections. Here, the
ridges have completely merged. The peak is still broadened, however, and the baseline is still
elevated. (c) By applying the filter function shown in the inset to each time domain radial spoke,
the lineshapes on the projections are altered from the Lorentzian shape at left to the modified
shape at right. (d) The filtered backprojection reconstruction of the same signal, from 128
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projections. The peak is of the correct width, and the baseline is not elevated. Panel (c) is
adapted, with permission, from [44]. © 2006 Springer.
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Figure 15. The Lower-Value, Backprojection and Hybrid Backprojection/Lower-Value
Reconstruction Algorithms
In these three panels, the stacked plots show reconstructions by the three methods of a plane
extracted from the (3,2)-D HNCO of GB1. Four projections were used, at the angles 0°, 45°,
90° and 135°. The reconstructions have been normalized to allow for the comparison of signal
and noise levels. The diagrams at top illustrate how each method calculates an output given
the four inputs A, B, C and D, representing the four projections. (a) In the lower-value (LV)
algorithm, the value assigned to a point in the spectrum is the minimum of the corresponding
values found on the projections. The resulting reconstruction shows the two peaks found on
this plane. (b) In backprojection (BP) reconstruction, the value assigned to a point in the
spectrum is the sum of the corresponding values found on all of the projections. This produces
reconstructions with backprojection ridges. The two true peaks are formed in locations where
the ridges intersect; there are additional intersection points between ridges, however, which
lead to spurious peaks of various heights. The signal level is eight times higher in this
reconstruction than in the lower-value reconstruction, because of the additive nature of the
backprojection process. (c) The hybrid (HBLV) method involves computing the sums of all
possible combinations of k projections, and then assigning to the reconstruction point the
smallest value encountered from among the set of sums. For four projections and a bin size k
= 2, there are six combinations to be compared, which are shown in the diagram at top. The
resulting spectrum shows stronger signals than in lower-value reconstruction, reflecting the
partially additive nature of the process, without introducing artifacts. Reprinted, with
permission, from [72]. © 2005 American Chemical Society.
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Figure 16. Weighting of Data Points in the Polar Fourier Transform
(a) With conventional grid sampling, the area occupied by each sampling point, ΔA, is the
same, and no special weighting is required during the Fourier transform. (b) In polar
coordinates, sampling points that are closer to the origin are spaced more closely together. To
correct for this, one must weight the points during the Fourier transform according to their
area, ΔA. The appropriate weighting factor for 2-D is tr, the distance from the origin. Note that
this weighting factor is identical to the filter function used in filtered backprojection.
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Figure 17. Data Reflection and Lineshapes
(a) When complex data are available for only one quadrant, the result is a mixed-phase
lineshape, as shown here in a contour plot (positive values are blue contours; negative values
are pale red contours). (b) By reflecting the time domain data into a second quadrant, the
dispersive terms are made to cancel, producing a purely absorptive lineshape.
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Figure 18. The Radial Sampling Point Response, and Polar Fourier Transform Results
(a) The point response for radial sampling, plotted here for 25 radial spokes, can be separated
into a ripple pattern and a ridge pattern. The ripples are the result of truncation from the finite
duration of the sampling, and can be smoothed out by apodization. The ridges, which do not
begin right at the peak but rather some distance from it, are the result of the radial configuration
of the sampling points and are essentially a form of aliasing. The size of the “clear zone” that
is free of ridge artifacts has been found to depend on the maximum evolution time in the time
domain and the number of radial spokes. (b) Polar Fourier transforms from simulated radial
data with 16 and 64 spokes is compared to the Fourier transform of simulated conventional
data. With 16 spokes, the clear zone extends only just beyond the peak, and the ridges are seen
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over most of the spectrum. With 64 spokes, the clear zone extends beyond the edge of the
spectrum, and thus no artifacts are seen. Reprinted from [37].
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Figure 19. Bessel Functions and the Radial Sampling Point Response
The radial sampling point response can be derived analytically as the sum of a set of terms
generated by the individual rings of sampling points. (a) A plot of the Bessel functions of orders
zero to four, traditionally designated J0 to J4. (b) The Fourier transform of a single ring of
sampling points is a Bessel function with respect to radius, and a sinusoid with respect to angle.
This case corresponds to 10 radial spokes. (c) The case of a ring of sampling points
corresponding to 16 radial spokes. Increasing the number of sampling points increases the
frequency of the sinusoidal oscillation with respect to angle, and increases the order of Bessel
function with respect to radius. (d) The case of a ring of sampling points corresponding to 16
radial spokes, but with a larger radius in the time domain. The result in the frequency domain
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is the same as (c), except scaled to have a smaller radius in the frequency domain, and therefore
a smaller clear zone. Since each concentric ring of sampling points in a radial pattern has the
same number of points, the terms they generate are of the same order but with different scaling,
as in (c) and (d). The sum of terms like (c) and (d) for many radii generates the point response
shown in Fig. 17.
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Figure 20. Accordion Spectroscopy
(a) In an accordion experiment, the evolution time, t1, and the mixing time, τm, are increased
simultaneously. The expanding pulse sequence can be likened to the bellows of an accordion.
(b) The sampling points in an accordion experiment trace out a radial spoke, but unlike most
radial experiments, one of the two dimensions is a mixing time rather than a chemical shift.
The proportionality constant relating the simultaneous increases in the two experimental
parameters is κ, which determines the slope (and therefore the angle) of the radial spoke. (c)
A schematic representation of the data that would result from the accordion experiment. The
lineshapes of the diagonal and cross-peaks reflect the dynamics of the exchange process
observed during the experiment. (d) The peaks in an accordion spectrum can be inverse-
Fourier-transformed to reveal the buildup curves. Shown here are the transforms of one

Coggins et al. Page 68

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



diagonal peak (top) and one crosspeak (bottom) from cis-decalin, measured at 240 K in a Bruker
300 MHz spectrometer. Panels (c) and (d) are reprinted from [82].
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Figure 21. Reduced Dimensionality NMR
Contour plot of a plane from the first reduced dimensionality experiment, the multiple quantum
(3,2)-D HACANH of the mixed disulfide of E coli glutaredoxin (C14S) and glutathione,
recorded on a 600 MHz spectrometer. The plane is taken at an Hα chemical shift of 4.28 ppm.
Reprinted, with permission, from [47] (© 1993 ESCOM Science Publishers B.V.).
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Figure 22. Reduced Dimensionality Beyond Three Dimensions
(a) Coevolving three dimensions in a (4,2)-D reduced dimensionality experiment would
produce quartets. To reduce spectral crowding, Ding and Gronenborn used TPPI to introduce
large frequency offsets between the multiplet components. (b) These offsets result in a spectrum
in which the multiplet components appear grouped together as four subspectra. This example
is from their HN(CO)CAHA of GB1, recorded on a 500 MHz spectrometer. (Note that these
are the same as the four subspectra one would obtain if one used a full quadrature radial
sampling approach.) (c) For a (5,3)-D experiment, Löhr and Rüterjans grouped the indirect
dimensions into pairs, with each pair separately coevolved. This produces rectangular 2-D
quartets. (d) Representative planes from their experiment on the protein flavodoxin, recorded
on a 500 MHz spectrometer. Panel (b) is reprinted from [51]. Panel (d) is reprinted, with
permission, from [108] (© 1995 ESCOM Scientific Publishers B.V. ).
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Figure 23. Full Quadrature Reduced Dimensionality
When quadrature detection is used in all dimensions, it is possible to separate the multiplet
components onto independent subspectra. (a) Data from the first full quadrature reduced
dimensionality experiment, a (4,3)-D 13C/15N-filtered NOESY experiment recorded on a 600
MHz spectrometer, reported in 1995 by Brutscher and coworkers for the Rhodobacter
capsulatus ferrocytochrome c2. Crosspeaks are produced at coordinates (HC, C + N, HN) and
(HC, C − N, HN), with the former appearing in the subspectrum at left and the latter in the
subspectrum at right. Data are shown for HC = 4.44 ppm. (b) An example of spectra obtained
by Kozminski and Zhukov from (3,2)-D HN(CO)CA (top) and HNCA (bottom) of ubiquitin,
the slices showing the sequential connectivity between residues I36 and G35. The spectra were
recorded on a 500 MHz spectrometer. Panel (a) is reprinted from [49]. Panel (b) is reprinted,
with permission, from [55] (© 2003 Kluwer Academic Publishers).
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Figure 24. (5,2)-D GFT. The first GFT experiment was the (5,2)-D HACACONH of ubiquitin
(a) The pulse sequence. (b) Data for residue S20, showing the full hierarchical splitting pattern
and the separation of multiplet components onto subspectra. At left are the strips for the 8 basic
spectra, followed by the four first-order central peak spectra, the two second-order central peak
spectra, and finally the one third-order central peak spectrum. In each case, the top half of the
panel shows the transforms of the hypercomplex components prior to application of the G
matrix, showing the full multiplet patterns, while the bottom half shows the result after
application of the G matrix, with multiplet components separated onto independent subspectra.
Reprinted, with permission, from [52] (© 2003 American Chemical Society).
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Figure 25. G2FT
(a) Echoing the previous work of Löhr and Rüterjans, Atreya and coworkers introduced GFT
experiments with multiple groups of coevolved dimensions. (b) Because they use full
quadrature detection, however, Atreya and coworkers were able to separate the multiplet
components onto independent subspectra. Any individual subspectrum will show only one of
the muiltiplet components (filled circle) and omit the others (unfilled circles). (c) Atreya and
coworkers designed their experiments to facilitate sequential assignment, grouping together
the N and CO dimensions as one coevolved group, to produce a reduced dimensionality
“fingerprint” for each residue, and grouping together Cα and Cβ as a second group, giving each
connectivity its own unique signature.
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Figure 26. Geometric Relationship Between Projections and the Full Spectrum
A 3-D contour plot of the lower-value reconstruction of the (3,2)-D HNCO of GB1 is shown
here, along with three of the projections used in its reconstruction. Residue F52 is highlighted.
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Figure 27. The First Projection-Reconstruction NMR Experiment
Comparison of the 2-D planes at HN=8.77 ppm for the projection-reconstruction (left) and
conventional (right) HNCO spectra of ubiquitin. Reprinted, with permission, from [53] (©
2003 Kluwer Academic Publishers).
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Figure 28. (4,2)-D PR Sequential Assignment Experiments on the 29 kDa HCA II
(a) The TROSY HN/N correlation spectrum of HCA II, recorded at 800 MHz. (b) Enlargement
of the region containing residues K80, D110, A152 and E233. (c,d,e) Cα/Cβ planes at the
(HN,N) position of A152 for the intra-HNCACB, HNCACB and HN(CO)CACB experiments,
respectively. Each spectrum was measured as eight radial spokes, becoming 23 projections
after conversion from hypercomplex to complex data, and then reconstructed using the HBLV
algorithm with a bin size of eight projections. (f,g,h) Comparison of lower-value,
backprojection and HBLV (k=8) reconstructions of the Cα/Cβ plane of the HNCACB
experiment for residue K126. The lower-value reconstruction is free from artifacts, but shows
only the strong intra-residue correlation. The backprojection reconstruction detects the inter-
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residue correlation to T125 as well, but its intensity is equal to that of the backprojection ridges.
Additionally, all nearby crosspeaks are obscured through the broadening of the intraresidue
peak. The HBLV reconstruction shows the K126 intra- and interresidue correlations, as well
as all nearby crosspeaks, clearly, with no visible artifacts and no line broadening. Reprinted,
with permission, from [72] (© 2005 American Chemical Society).
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Figure 29. Projection-Reconstruction Methyl/Amide NOESY of HCA II
Data are shown for residue S50. (a) Strip from the 3-D conventional experiment at the (HN,N)
coordinates of residue S50. (b) Contour plot of the equivalent HM/CM plane from the (4,2)-
D reconstruction, computed from 100 projections using FBP. (c) Comparison of peak volumes
between the conventional 3-D experiment and the (4,2)-D reconstruction. (d) Stacked plot. (e)
Stacked plot from a BP reconstruction. The comparison with (d) shows the advantages of using
the filter function. Panels (a)–(d) reprinted, with permission, from [71] (© 2005 American
Chemical Society).
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Figure 30. The Algebraic Reconstruction Technique
ART is based on the fact that projection values are integrals of the spectrum along lines. The
spectrum is divided into discrete elements, here 2-D pixels numbered S(x, y). For an individual
observed projection value, such as point A at left, one can write a linear equation describing
the projection intensity as the sum of weighted contributions from the pixels of the spectrum.
To determine the weight for a specific pixel on a specific projection point, one extends vectors
from the projection across the spectrum (dashed lines) and determines the overlap integral. For
example, the weight of pixel S(2, 2) on the orange projection point is determined by the area
of the region U, while that of S(3, 3) on point B is determined by the area of region V. After
defining this system of linear equations, ART proceeds by adjusting the values of S iteratively
until the calculated sums agree with the observed data.
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Figure 31. NMR Spectra Computed from Radial Samples with the Polar Fourier Transform
(a) C/N plane at HN=6.28 ppm from the HNCO spectrum of ubiquitin recorded on a 500 MHz
spectrometer, as calculated from radial spokes at 4.5°, 45° and 85.5° by a hypercomplex Fourier
transform. Note that the hypercomplex transform supplied with data for the +tx +ty quadrant
automatically produces the symmetric ridges one would expect using a complex transform with
data for both the +tx +ty and +tx −ty quadrants. (b) C/N plane at HN=8.54 ppm from the
HNCO spectrum of ubiquitin recorded at 600 MHz, calculated in subpanel (1) from 18 radial
spokes with artificially added noise, in (2) from 18 radial spokes with the natural experimental
noise, and in (3) from a subset of 6 out of the 18 radial spokes, in all cases by a hypercomplex
transform. Panel (a) is reprinted from [14]. Panel (b) is reprinted, with permission, from [75]
(© 2006 Springer).
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Table 1

Accordion Experiments

Measurement Sample Experiment Ref.

Ring inversion rate cis-decalin derived from EXSY [82]

Ring inversion rate cis-decalin derived from EXSY [83]

Enzyme-catalyzed exchange phosphocreatine and ATP derived from EXSY [84]

Spin-lattice (T1) relaxation N-myristyl-F-alanine DQF-COSY [85]

Multisite chemical exchange 4-germa-3a,4,4a,8-tetrahydro-4,4,8,8-
tetramethyl-S-indacene

derived from EXSY [86]

15N spin-lattice relaxation Ca2+-loaded calbindin D9k derived from EXSY [87]

Number of successive couplings gramicidin S Taylored TOCSY [88]

1H/15N scalar coupling constants acyl carrier protein CE-HSQC
SCE-HSQC

[89]

Heternuclear coupling constants Sucrose HECADE [90]

1H/13C coupling constants sucrose and strychnine ACCORD-HMBC [91]

15N/13CO T1 relaxation rates fibronectin type III domain of
human tenascin

derived from 3-D
HNCO

[92]

Translational diffusion
coefficients

BOC-resorcinarene tetraurea and
peptide T

GAUDI [93]

Heteronuclear coupling constants various small molecules IMPEACH-MBC
Cigar-HMBC
2J,3J-HMBC
ACCORD-HMBC

[94–97]

1H/13C coupling constants Cefuroxime INEPT [57]

Heteronuclear coupling constants 15N urea, Cd-EDTA and mouse
(Cd7] metallothionein-1

ACCORD-HMBC [98]

J(H,H) and J(X,H) couplings ethyl trans-cinnamate XLOC
ACCORD J-
HMBC

[99]

13C/13C couplings ethyl trans-crotonate and
jamaicamide A

ACCORD-
ADEQUATE

[100]

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2011 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Coggins et al. Page 83

Table 2

Reduced Dimensionality Experiments without Full Quadrature Detection

Measurement Sample Experiment(s)† Type‡ Ref.

Backbone assignment mixed disulfide of E.
coli glutaredoxin-
(C14S) and glutathione

(4,3)-D HACANH MQ [47]

Backbone assignment mixed disulfide of E.
coli glutaredoxin-
(C14S) and glutathione

(4,3)-D HACANH, (3,2)-D
HNCA

IEPs [48]

Backbone assignment DnaJ, residues 2-108 (4,3)-D Hα/βCα/β(CO)NH IEPs [110]

Backbone assignment Rhodobacter capsulatus
cytochrome c2

(3,2)-D HNCA, HNCO MQ [56]

Backbone assignment Rhodobacter capsulatus
ferrocytochrome c2

(3,2)-D HNCO,
HN(CO)CA, H(N)COCA,
HN(COCA)H, HNCA,
HN(CA)CO and HN(CA)H

both [111]

Backbone assignment Desulfovibrio vulgaris
flavodoxin

(5,3)-{HACA}{CON}H IEPs [108]

Backbone assignment Rhodobacter capsulatus
cytochrome c′

(4,3)-D HNCOCA IEPs [112]

Backbone assignment P14A (4,3)-D HN<CO,CA> with
central peaks, originally
named COHNNCA

IEPs [101]

Uridine HN/H6 assignment
Cytidine H2N/H6 assignment

leadzyme (4,3)-D H(NCC)CH IEPs [113]

Backbone assignment N-terminal 63-residue
polypeptide fragment of
the 434 repressor

(4,3)-D Hα/βCα/β(CO)NH
with central peaks

IEPs [59]

Scalar coupling constants rhodniin (3,2)-D DQ/ZQ+SQ-HNCA both [104]

Backbone assignment ubiquitin (4,3)-D HN(COCA)NH MQ [114]

Sidechain carboxylate
assignment and titration

N-terminal 63-residue
polypeptide fragment of
the 434 repressor

(3,2)-D HCCCO2 IEPs [115]

1H/13C assignments cyclosporin A (3,2)-D HC(C)H-COSY
with central peaks

IEPs [116]

Backbone assignment N-terminal 63-residue
polypeptide fragment of
the 434 repressor

HNCAHA, plus previously
described (4,3)-D
HN<CO,CA> and (4,3)-D
Hα/βCα/β(CO)NH), with
central peaks

IEPs [102]

Solid state backbone
assignments

N-acetyl-Valine-Leucine (3,2)-D CONCA; (3,2)-D
CANCOCA (simultaneous
direct acquisition of CO and
CA)

IEPs [117]

Backbone assignments TM1112 (4,3)-D HNCOCA and
HNCACO, as a suite with
time-shared 3-D
HN[CA/HA] and
HN(CO)[CA/HA]

IEPs [118]

Backbone assignment GB1 (4,2)-D HN(CO)CAHA,
HN(COCA)CAHA; (3,2)-D
HN(CO)Cα/β, intra-
HN(COCA)Cα/β

both [57]

Backbone, aliphatic
sidechain and aromatic

Z-domain of
Staphylococcal protein
A

(4,3)-D HACA(CO)NH and
Hα/βCα/βCOHA with central
peaks, HCCH-COSY,

IEPs [103]
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Measurement Sample Experiment(s)† Type‡ Ref.

sidechain assignments HCCH-TOCSY; (3,2)-D
HBCB(CGCD)HD,
TOCSY-relayed-HCH-
COSY, plus previously
described (4,3)-D
Hα/βCα/β(CO)NH,
HNCAHA, HN<CO,CA>

†
(n,m)-D indicates that n dimensions of correlations are collected with m independent evolution times. Underlining indicates coevolved nuclei;

underlined nuclei grouped in {curly braces} indicate independent sets of coevolved nuclei. (Parentheses) indicate nuclei through which magnetization

is passed, without evolving chemical shifts. <Angled brackets> indicate nuclei involved in bifurcated magnetization transfer. CCO2 represents
sidechain carboxylate carbon nuclei. [Square brackets] indicate time-shared evolution of two nuclei, with diagonal slashes separating the nuclei or
sets of nuclei that evolve independently. For the meaning of DQ/ZQ+SQ, please see the text. The names for some experiments have been adjusted
from the original publications to maintain consistency in nomenclature.

‡
MQ indicates that the coevolution is accomplished by evolving a multiple-quantum coherence; IEPs indicates that the coevolution is accomplished

with individual evolution periods.
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Table 3

Full Quadrature Reduced Dimensionality Experiments

Measurement Sample Experiment(s)† Time‡
(hrs.)

Ref.

NOE-derived distance
restraints

Rhodobacter capsulatus
ferrocytochrome c2

(4,3)-D 13C/15N-NOESY
(4,3)-D 15N/15N-NOESY

not
given

[119]

Backbone assignment residues 1-68 of merA
from Ralstonia
metallidurans CH34

(3,2)-D HNCA,
HN(CO)CA, HN(CA)CB,
HN(COCA)CB,
HN(CA)HA,
HN(COCA)HA

14 [50]

Backbone assignment 1.5 mM ubiquitin (3,2)-D HNCA, HN(CO)CA
(4,2)-D HACANH

not
given

[55]

Solid-state backbone
assignment

histidine (3,2)-D MAS NCC not
given

[128]

Backbone assignment 2 mM ubiquitin (5,2)-D HACACONH 2.3 [52]

Backbone assignments 1.5 mM ubiquitin
1.1 mM 21 kDa bovine
S100A1

(4,2)-D HNCACB and
HN(CO)CACB, with Cα and
Cβcoevolved as an MQ
coherence producing only
the DQ (Cα+Cβ) peak

Not
given

[120]

Backbone assignments 1.5 mM ubiquitin (3,2)-D HNCO, HNCA,
HN(CO)CA, H(N)COCA;
(4,2)-D HNCOCA (all MQ)

not
given

[121]

Backbone and sidechain
assignments

1.4 mM ubiquitin (3,2)-D HNCO, HNCACB,
HN(CO)CACB,
HN(CA)CO, HNCA,
HN(CO)CA, CBCANH,
CBCA(CO)NH,
C(CCO)NH, H(CCCO)NH

18 [129]

Backbone and Cβ assignment 2 mM ubiquitin,
1 mM TT212

(5,2)-D intra-HACACONN
and HACACONH; (5,3)-D
intra-<HACA,CO>NH and
HACACONH; (4,3)-D
intra-<CBCA,CO>NH and
CBCACONH

42.6,
62.6

[122]

Backbone and sidechain
assignments

1 mM 17 kDa ER75,
1 mM 13 kDa PfR13,
2 mM ubiquitin

(4,2)-D HCCH; (4,3)-D
Cα/βCα(CO)NH, L-
HN(CO)Cα/βCα, HNCα/βCα

and L-HNCα/βCα; (5,3)-D
Hα/βCα/βCα(CO)NH and
HCCCH; (6,3)-D
Hα/βCα/βCαCONH

224,
32,
68.8

[124]

Backbone and sidechain
assignments [also reported
structures using non-GFT
time-shared NOESY]

8 targets from the
NESH consortium, at
~1 mM each

(4,3)-D Hα/βCα/β(CO)NH
and HCCH
[plus previously published
(4,3)-D Cα/βCα(CO)NH, L-
HN(CO)Cα/βCα; and (5,2)-D
HACACONH]

26 to
214

[130]

Structure determination:
backbone assignments by
previously published protocols;
distance constraints from GFT
NOESY

1 mM 14 kDa YqfB (4,3)-D [HCali/HN]-
NOESY-[CHali/NH], which
is a time-shared NOESY
experiment detecting
HCali HCali, HN HCali

HCali HN and
HN HN [assignment by
previously published
experiments]

16.9+,
39

[125]

Dynamics of aromatic rings 21 kDa HR41, 13 kDa (4,3)-D L-HCCH and L-
TROSY-HCCH

24,
0.42

[131]
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Measurement Sample Experiment(s)† Time‡
(hrs.)

Ref.

MAR11

Backbone assignments 0.8 mM 17 kDa yqbG,
13.5 kDa rps24e, 8
kDa protein Z-domain,
ubiquitin, 13.5 kDa
rps24e

various combinations of
(5,3)-D HN{NCO} {Cα/βCα},
intra-HN{<N,CO>} {Cα/βCα},
intra-HN{<N,CO>} {Cα/βHα},
{HαCα}{CON}NH
HN{NCα}{Cα/βCα},
HN{N(CO)Cα}{Cα/βCα} and
(6,3)-D
{Hα/βCα/βCα}{CON}NH, with
and without L-optimization
and/or TROSY

7 to 44 [109]

Residual dipolar couplings 8 kDa protein Z-
domain

(6,2)-D (HA-CA-CO)-N-
HN

24 [123]

Sidechain assignments Nck Sh3-1 (4,3)-D HC(CO)NH-
TOCSY, with nonuniform
sampling and MaxEnt
reconstruction in both the
combined HC dimension
and the conventional N
dimension

48 [127]

Membrane protein backbone
And sidechain assignments

Subunit c of F1F0 ATP
synthase in micelles

previously published (3,2)-
D HNNCO; (4,3)-D L-
HNCα/βCα, L-HN(CO)Cα/βCα

HCCH; (4,2)-D
HACA(CO)NH; (5,3)-D
intra-HN{<N,CO>}{Cα/βCα}
and {Cα/βCα}{CON}NH

118 [132]

Scalar coupling constants 9.5 kDa M-crystallin
16.2 kDa Eh-CaBP

(3,2)-D quantitative-J
HNHA, HNHB

1.5 to
18

[133]

Pseudocontact shifts 8.5 kDa calbindin previously published (3,2)-
D HNCO, HN(CO)CA,
HN(COCA)CB, HNHA

7.5 [134]

NOE-derived distance
restraints

1.4 mM ubiquitin (4,3)-D time-shared NOESY
detecting HN CH and
HN NH

48 [126]

†
(n,m)-D indicates that n dimensions of correlations are collected with m independent evolution times. Underlining indicates coevolved nuclei;

underlined nuclei grouped in {curly braces} indicate independen sets of coevolved nuclei. (Parentheses) indicate nuclei through which magnetization
is passed, without evolving chemical shifts. <Angled brackets> indicate nuclei involved in bifurcated magnetization transfer. intra- indicates that only
the intraresidue peaks are detected. [Square brackets] indicate time-shared evolution of two nuclei, with diagonal slashes separating the nuclei or sets
of nuclei that evolve independently. L- indicates that longitudinal relaxation optimization is used. Hyphens between nuclei indicate that the coupling
between the nuclei are evolved. The names for some experiments have been adjusted from the original publications to maintain consistency in
nomenclature.

‡
The measurement times represent the time reported for running the set of experiments on the sample, or a range of times for multiple samples. Where

multiple individual times are listed on separate lines, they correspond to the samples listed in the sample column, and are in the same order. For the
YqfB structure determination, a+b indicates a hours for the assignment experiments and b hours for the NOESY.
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