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Abstract

Background: Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of
Parkinson’s disease, however, the underlying pathogenic mechanisms are poorly understood. Several in vitro studies have
shown that the most frequent mutation, LRRK2(G2019S), increases kinase activity and impairs neuronal survival. LRRK2 has
been linked to the mitogen-activated protein kinase kinase kinase family and the receptor-interacting protein kinases based
on sequence similarity within the kinase domain and in vitro substrate phosphorylation.

Methodology/Principal Findings: We used an unbiased proteomic approach to identify the kinase signaling pathways
wherein LRRK2 may be active. By incubation of protein microarrays containing 260 signal transduction proteins we detected
four arrayed Ste20 serine/threonine kinase family members (TAOK3, STK3, STK24, STK25) as novel LRRK2 substrates and
LRRK2 interacting proteins, respectively. Moreover, we found that protein kinase C (PKC) zeta binds and phosphorylates
LRRK2 both in vitro and in vivo.

Conclusions/Significance: Ste20 kinases and PKC zeta contribute to neuronal Tau phosphorylation, neurite outgrowth and
synaptic plasticity under physiological conditions. Our data suggest that these kinases may also be involved in synaptic
dysfunction and neurite fragmentation in transgenic mice and in human PD patients carrying toxic gain-of-function LRRK2
mutations.
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Introduction

Parkinson’s disease (PD) is the second most prevalent neurode-

generative disorder and is pathologically characterized by the

selective loss of dopaminergic neurons in the substantia nigra

causing motor dysfunction. Although the etiology of PD is

incompletely understood, genetic studies have identified mutations

in several genes that segregate with rare familial forms of the

disease [1]. Mutations in the PARK8 gene encoding leucine-rich

repeat kinase 2 (LRRK2) are the most prevalent cause of

autosomal dominantly inherited PD and are characterised by

typical brainstem Lewy body pathology [2]. The most frequent

mutation, LRRK2(G2019S), is found in the kinase domain and is

responsible for approximately 1% of sporadic PD and 5% of

familial cases in Caucasians. LRRK2 is a 286 kDa protein

containing an N-terminal leucine-rich repeat, a Ras of complex

protein (Roc) GTPase domain, a C-terminal of Roc (Cor) region, a

kinase domain, and a WD40 protein interaction domain. Several

studies have shown that the G2019S mutation enhances kinase

activity in vitro and that kinase activity mediates degeneration in

transfected neurons. Although the kinase domain of LRRK2

exhibits some sequence homology to the mitogen-activated protein

(MAP) kinase kinase kinase family, LRRK2 does not seem to act

within classical MAP kinase signaling cascades and its upstream

regulators / downstream effectors remain to be identified [3,4]. By

protein-protein interaction analysis binding of LRRK2 to the

Hsp90/Cdc37 chaperone complex, C-terminus of Hsp70-inter-

acting protein, and parkin has been detected which may influence

the folding and degradation of LRRK2 [5,6]. Potential LRRK2

protein substrates include moesin, eukaryotic initiation factor 4E-

binding protein (4E-BP), and tubulin-beta, however their physi-

ological relevance remains unclear [7]. In the present study, we

used protein microarrays containing about 260 human signal

transduction proteins in order to identify the signaling networks

wherein LRRK2 may be active.

Methods

Expression and purification of recombinant proteins
Full-length human LRRK2 expression constructs were gener-

ated as described in detail elsewhere [8]. The PD-linked

LRRK2(G2019S) mutation was introduced by site-directed

mutagenesis. LRRK2 constructs were tagged with a StrepII/Flag

tag at their C-terminus and cloned into a pFastBac vector for
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expression in insect cell cultures. Recombinant LRRK2 Bacmid

DNA was generated by transformation of competent DH10Bac E.

coli cells using the Bac-to-Bac expression system according to the

manufacturer’s protocol (Invitrogen, Carlsbad, USA). Recombi-

nant baculovirus was isolated from Sf9 cell culture supernatant five

days after transfection with LRRK2 Bacmid DNA. Viral titer was

determined using the BaculoTiter assay kit (Invitrogen, Carlsbad,

USA).

Suspension cultures of High Five insect cells were infected with

baculovirus at a multiplicity of infection of 10. Two days later cells

were lysed in a buffer containing 100 mM Tris, pH 7.4, 130 mM

NaCl, 1 mM sodium fluoride, 1% Triton X-100 and protease

inhibitor cocktail (Sigma, Taufkirchen, Germany). Recombinant

LRRK2 was purified from the supernatant by StrepTactin

Superflow affinity chromatography according to the manufactur-

er’s instructions (IBA GmbH, Göttingen, Germany). Purified

protein was stored at 280uC in elution buffer (100 mM Tris,

pH 8.0, 150 mM NaCl, 1 mM EDTA) containing 10% glycerol,

0.1 mM EGTA, 0.3% Brij-35.

N-terminal GST-tagged human LRRK2 fragments (amino

acids 970-2527) were purchased from Invitrogen (Invitrogen,

Carlsbad, USA). N-terminal His-tagged MARKK(K57A) was

acquired from the Max-Planck-Institute for Structural Molecular

Biology (Hamburg, Germany). The kinase-dead MARKK mutant

was generated as described elsewhere [9]. Storage buffer was

exchanged to kinase assay buffer using Vivaspin 500 columns

(Sartorius, Goettingen, Germany). N-terminal His-tagged human

PKC zeta was provided by the University of Dundee (UK).

Kinase substrate identification using protein arrays
Panorama Human Protein Function Array – Signal Transduc-

tion (Sigma, Saint Louis, USA) were used according to the

manufacturer’s protocol with modifications. These arrays contain

a set of 259 full-length human signaling proteins tagged with a

biotin-carboxyl carrier protein. The tag is biotinylated only when

the fusion protein is correctly folded during expression in insect

cells and enables oriented immobilization on streptavidin-coated

glass slides. Arrays were washed twice for 5 min in 5 ml assay

buffer (250 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 0.1 mM

EGTA, 2 mM DTT, 1 mM NaO3V, 0.1% BSA, 20% glycerol

and 0.1% Triton X-100)., To prevent interference with the

detection of LRRK2-specific signals, autophosphorylation of

active kinases spotted on the arrays was completed by pre-

incubation in assay buffer containing 100 mM cold ATP only. It

should be noted that this pre-incubation step will also preclude

detection of a potential LRRK2-mediated phosphorylation of

kinase autophosphorylation sites. GST-tagged LRRK2(G2019S)

(970-2527) or inactive LRRK2-(D1994A) (970-2527) (Invitrogen,

Carlsbad, USA) were diluted in assay buffer containing cold ATP

(final concentration 10 mM) and [c-33P]ATP (30 mCi final activity)

in a total volume of 120 ml. Kinases (130 nM) or buffer only

(negative control) were overlaid on the arrays, covered with

HybriSlipTM cover slips (Aldrich, St. Louis, USA), placed in

quadriPerm culture vessels, and incubated for 1 hour at 30uC.

Subsequently, arrays were washed in 0.5% sodium dodecyl sulfate

(SDS) in assay buffer, followed by assay buffer and ultra-pure

water. After centrifugation at 8006g for 4 minutes, arrays were

exposed to phosphoscreens (GE Healthcare, Munich, Germany)

or X-ray films (Kodak, Stuttgart, Germany). The phosphoscreens

were scanned on a Typhoon 9400 laser scanner (GE Healthcare,

Munich, Germany) at a resolution of 25 mm and analyzed using

Genepix Pro 6.0 software (Molecular Devices Corporation,

Sunnyvale, USA) followed by ProtoArray Prospector Analyzer

3.0 software (Invitrogen, Carlsbad, USA). Potential kinase

substrates are defined as spotted proteins exhibiting a normalized

phosphorylation signal greater 150% of the phosphorylation signal

observed on the negative control array and greater 2 standard

deviations than the median signal/background value for all negative

control spots on the array. Further information about protein

array content and data analysis are available from http://www.

sigmaaldrich.com/etc/medialib/docs/Sigma/General_Information/

hpfm4techbulletin.Par.0001.File.tmp/hpfm4techbulletin.pdf.

Protein-protein binding studies using protein arrays
For protein-protein binding studies, GST-tagged LRRK2(G2019S)

(970-2527) was autophosphorylated in assay buffer containing 10 mM

cold ATP for 1 h at 30uC. Arrays were washed and equilibrated in

assay buffer as described above. Thereafter, arrays were overlaid with

autophosphorylated LRRK2 for 1 h at 30uC. Incubation with

recombinant GST (GenWay, San Diego, USA) expressed in E. coli

was tested as control. After washing in 0.5% SDS containing buffer,

arrays were blocked 5 min in blocking buffer (phosphate-buffered

saline, 0.1% Tween, 20% glycerol, 2% BSA and 1 mM dithiothreitol)

twice. Arrays were then incubated with an anti-GST Alexa 488-

conjugated antibody (Millipore, Schwalbach, Germany) (1:250) over

night at 4uC. After two washing steps in blocking buffer and one in

PBS, arrays were scanned using a Typhoon 9400 laser at 488 nm

excitation and 520 nm emission at a resolution of 100 mm. Cy3-

labeled reference protein spots which alleviate grid orientation in

analysis were scanned at 532 nm excitation and 580 nm emission.

Spotted proteins are considered as potential interactors, if the

normalized fluorescence signal is greater 150% of the fluorescence

signal observed in the negative control assay and greater 2 standard

deviations than the median signal/background value for all negative

control spots on the array.

Kinase assay in solution
Kinase assay were performed in 15 ml assay buffer (25 mM

Tris-HCl, pH 7.5, 10 mM MgCl2, 1 mM EGTA, 2 mM dithio-

threitol, 1 mM Na3VO4) containing 0.25 mg GST-tagged

LRRK2, 30 mCi [c-33P]ATP and 100 mM ATP at 30uC for

45 min. Both recombinant His-tagged PKC zeta and His-tagged

MARKK(K57A) were tested as substrates (1 mg each). Full-length

LRRK2, recombinant GST (GenWay, San Diego, USA), and

GST-tagged moesin (University of Dundee, Dundee, UK) were

assayed as well. The kinase reaction was stopped with 46Laemmli

buffer, and the samples were heated for 10 minutes to 75uC.

Subsequently, proteins were separated on 4–12% sodium dodecyl

sulphate, Bis-Tris polyacrylamide minigels (Invitrogen, Karlsruhe,

Germany). The gels were dried for 1 h at 80uC in a vacuum gel

dryer (Model 583, Biorad, Hercules, USA), and were exposed to

phosphoscreens for 24 h at 280uC. Phosphoscreens were imaged

on a Typhoon 9400 laser scanner (GE Healthcare, Freiburg,

Germany) and quantified using Quantity One software (Biorad,

Munich, Germany).

Immunoprecipitation
Animal work was approved by the Regierungspraesidium

Tuebingen (ID 10-004). C75BL/6 mice were killed by cervical

dislocation followed by decapitation. The brains were rapidly

removed and placed into ice-cold PBS. The brains were

homogenized in 1:5 (w/v) ice-cold lysis buffer (50 mM Tris

pH 7.5, 0.27 M sucrose, 1 mM EDTA, 1 mM EGTA, 1 mM

Na3VO4, 5 mM sodium pyrophosphate, 50 mM sodium fluorid,

1% Triton X-100, 0.1% 2-mercaptoethanol, 1 mM benzamidine,

1 mM PMSF) in a Teflon-glass douncer. Lysates were centrifuged

at 160006g for 15 min at 4uC. Aliquots of the supernatants were
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taken for protein determination using the Bio-Rad protein assay

(Biorad, Munich, Germany).

Three mg total protein were used per reaction. Lysate volume

was made up to 700 ml with lysate buffer. PKC zeta was

immunoprecipitated using an affinity-purified goat polyclonal

antibody (Santa Cruz Biotechnology, Heidelberg, Germany). Pre-

immune serum was used as negative control. Protein G-agarose

beads (Protein G Immunoprecipitation Kit, Sigma, Saint-Louis,

USA) were incubated with antibody or pre-immunue serum for

4 h at 4uC under constant agitation. The beads were pelleted by

centrifugation at 40006g for 3 min at 4uC. The supernatants were

removed, and the beads were resuspended in 1 ml of lysis buffer.

The wash step was repeated once. Thereafter, brain lysates were

added and incubated over night at 4uC under constant agitation.

Beads were pelleted and washed sequentially with lysis buffer plus

0.5 M NaCl, lysis buffer alone, and PBS. After a final

centrifugation step beads were resuspended in 20 ml Laemmli

buffer (1% sodium dodecyl sulfate, 100 mM dithiothreitol, 50 mM

Tris, pH 7.5) and heated to 50uC for 15 min. The supernantants

were separated from the beads by centrifugation in spin columns

(Protein G Immunoprecipitation Kit, Sigma, Saint-Louis, USA),

heated up to 75uC for 10 min and subjected to gel electrophoresis

followed by immunoblotting.

Gel Electrophoresis and Immunoblotting
Samples were resolved by electrophoresis on 4–12% NuPAGE

Bis-Tris gradient gels according to manufacturer’s instructions

using NuPAGE MOPS running buffer (Invitrogen, Carlsbad,

USA). After transfer to nitrocellulose membranes (Protran,

Schleicher and Schuell, Dassel, Germany) membranes were

blocked for 1 h at 20uC in 5% skimmed milk powder in Tris-

buffered saline and 0.1% Tween. Membranes were then incubated

overnight at 4uC with either an goat polyclonal antibody against

PKC zeta (Santa Cruz Biotechnology, Heidelberg, Germany) or a

rat monoclonal antibody against LRRK2 (clone 1E11, GSF,

Munich, Germany) (1 mg/ml each). Horseradish peroxidase-

conjugated secondary antibodies and enhanced chemilumines-

cence reagents (ECL kit, GE Healthcare, Freiburg, Germany)

were used for detection. Membranes were checked for protein load

and protein transfer using a protein staining kit (MemCode,

Pierce, Rockford, USA) that reversibly stains for total protein.

Densitometric analysis of immunoblots was performed using

Quantity One software (Biorad, Munich, Germany).

Statistical analysis
All experiments were performed at least twice. Statistical

significance was determined by performing a two-tailed Student’s

t-test using GraphPad Prism Version 5.00 (GraphPad software, La

Jolla, USA). A p-value,0.05 was considered significant.

Results

Panorama Human Protein Functional Arrays were incubated in

assay buffer containing [c-33P]-ATP and either GST-tagged

LRRK2(G2019S) or buffer only. After several washing steps the

arrays were imaged using phosphoscreens and a Typhoon 9400

laser scanner. Genepix Pro digital image analysis followed by

ProtoArray Prospector Analyzer statistical analysis (see Table S1)

revealed a significant increase in radioactive signal intensity on the

LRRK2-treated protein microarrays in the spotted proteins that

are listed in Table 1. Four members of the Ste20 serine/threonine

kinase family (TAOK3, STK3, STK24, STK25) [10] were

identified as potential LRRK2 substrates. LRRK2 has been

classified as receptor-interacting protein kinase 7 (RIP7) and trans-

phosphorylation between RIP kinases has been demonstrated by

others [11]. Consistently, receptor-interacting protein kinase 2

(RIP2), the only RIP kinase family member spotted, is phosphor-

ylated by LRRK2. Magnified sections of the arrays are shown in

Figure 1 and 2. In addition, increased signal intensity of the

quadruplicate spots of PKC zeta on the LRRK2-treated arrays is

shown in Figure 3A.

In order to confirm the data from protein array analysis, we first

tested whether LRRK2 was able to phosphorylate PKC zeta in a

kinase assay in solution, since PKC zeta plays a central role in

neuronal physiology [12]. Surprisingly, incubation of recombinant

full-length PKC zeta with LRRK2(G2019S) did not result in

LRRK2-mediated PKC zeta phosphorylation (data not shown).

These findings led us to assume that the radioactive signal on the

protein arrays resulted from binding of 33P-autophosphorylated

LRRK2(G2019S) to spotted PKC zeta. For protein-protein

Table 1. Proteins spotted on functional human protein arrays showing increased signal intensity following incubation with
recombinant LRRK2(G2019S).

Protein Accession number Signal/Control

Protein phosphorylation

Thousand-and-one amino acids kinase 3 (TAOK3) Q9UHG7 2.2

Receptor-interacting serine-threonine kinase 2 (RIPK2) O43353 2.0

Protein kinase C, zeta (PRKCZ) Q05513 1.5

Serine/threonine kinase 3 (STE20 homolog, yeast (STK3) Q13188 1.5

Serine/threonine kinase 24 (STE20 homolog, yeast (STK24) Q9Y6E0 1.5

Serine/threonine kinase 25 (STE20 homolog, yeast (STK25) O00506 1.5

Protein-protein interaction

Serine/threonine kinase 25 (STE20 homolog, yeast) (STK25) Q00506 2.3

Protein kinase C, zeta (PRKCZ) Q05513 2.1

Heat shock 90kDa protein, alpha (HSPCA) P07900 1.6

Serine/threonine kinase 24 (STE20 homolog, yeast) (STK24) Q9Y6E0 1.6

TNF receptor-associated factor 2, transcript variant 1 (TRAF2) Q12933 1.5

doi:10.1371/journal.pone.0013191.t001
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interaction analysis, Panorama Human Protein Functional Arrays

were incubated with GST-tagged LRRK2(G2019S) or recombi-

nant GST as control in the presence of cold ATP. Binding of

LRRK2(G2019S) to arrayed proteins was analyzed by a

subsequent incubation with an Alexa 488-conjugated anti-GST

antibody. The arrays were imaged directly on a Typhoon 9400

laser scanner and analysed by Genepix Pro followed by

ProtoArray Prospector software (see Table S2). As can be seen

from Figure 3B, a significantly higher green fluorescence signal of

the quadruplicate PKC zeta spots was detected when compared to

the corresponding spots on the control arrays. In addition, STK24

and STK25, which were already identified as potential LRRK2

substrates (shown above), were detected as LRRK2 binding

proteins (Table 1; Figure 1B). Interacting proteins also included

heat shock protein 90, which has already been identified as

LRRK2 binding/stablising protein by others [13], and tumor

necrosis factor receptor-associated factor 2 (TRAF2) (Table 1).

At this stage of our study, kinase-inactive LRRK2(D1994A)

became commercially available. We confirmed that GST-tagged

LRRK2(D1994A) lacks autophosphorylation activity in a solution

kinase assay (data not shown). Thereafter, substrate identification

studies on protein arrays were repeated using active

LRRK2(G2019S) and kinase-dead LRRK2(D1994A) as negative

control. Surprisingly, protein arrays incubated with inactive

LRRK2(D1994A) showed a significant increase in the radioactive

signals on the PKC zeta spots compared to buffer controls, which

is similar to arrays treated with active kinase (Figure 3C). These

findings so far allowed us only to conclude that LRRK2 binds to

spotted PKC zeta and becomes phosphorylated by PKC zeta on

the array during incubation. This conclusion was tested in a kinase

assay in solution. By incubating LRRK2(G2019S), inactive

LRRK2(D1994A), or wildtype LRRK2 with recombinant PKC

zeta and [c-33P]ATP, we could demonstrate that LRRK2 was

efficiently phosphorylated by PKC zeta in vitro (Figure 4). In order

to exclude that the GST-tag on recombinant LRRK2 is

phophorylated by PKC zeta, kinase assays were performed using

recombinant GST and GST-tagged proteins leading to negative

results (Figure 4). We also confirmed that PKC zeta is able to

phosphorylate full-length LRRK2 (Figure 5). To demonstrate in

vivo interaction between LRRK2 and PKC zeta, we used brain

homogenates of wildtype C75BL/6 mice, since PKC zeta is highly

expressed in the brain. As shown in Figure 6, endogenous LRRK2

can be co-immunoprecipitated with PKC zeta indicating physi-

ological relevance. The functional consequence of PKC zeta-

mediated LRRK2 phosphorylation on LRRK2 enzymatic activity

could not be clarified, since PKC zeta efficiently phosphorylated

heat-treated moesin (Fig. S1), a validated LRRK2 substrate

[14,15].

Figure 2. LRRK2 phosphorylates receptor interacting kinase 2
on protein microarrays. Magnified sections of Panorama Human
Protein Function Arrays incubated with LRRK2(G2019S) and [c-33P]ATP
(left panel) or buffer and [c-33P]ATP (right panel). The quadruplicate
spots of receptor interacting kinase 2 exhibit an increased radioactive
signal when incubated with recombinant LRRK2(G2019S).
doi:10.1371/journal.pone.0013191.g002

Figure 3. LRRK2 binds to spotted protein kinase C zeta and
becomes phosphorylated. Panorama Human Protein Function
Arrays incubated with (A) GST-tagged LRRK2(G2019S) and [c-33P]ATP
(left panel) or buffer and [c-33P]ATP (right panel), (B) GST-tagged
LRRK2(G2019S) and cold ATP or recombinant GST and cold ATP, (C)
kinase-inactive GST-tagged LRRK2(D1994A) and [c-33P]ATP or buffer
and [c-33P]ATP. (A and C) An increase in radioactive signal intensity is
visibly on the LRRK2-treated protein arrays in the quadruplicate spots of
protein kinase C zeta. (B) GST-tagged LRRK2 bound to spotted protein
kinase C zeta is visualized by an Alexa 488-conjugated anti-GST
antibody. Control arrays show background signal only. Orange
fluorescence of Cy3-labeled duplicate protein spots is visible in the
upper left corner which serve as markers for grid alignment during
image analysis.
doi:10.1371/journal.pone.0013191.g003

Figure 1. Recombinant LRRK2 binds and phosphorylates
arrayed serine/threonine kinase 25. (A) Magnified sections of
Panorama Human Protein Function Arrays incubated with GST-tagged
LRRK2(G2019S) (amino acids 970-2527) and [c-33P]ATP (left panel) or
buffer and [c-33P]ATP (right panel). The phosphoscreen image shows an
increase in radioactive signal intensity on the LRRK2-treated protein
arrays in the quadruplicate spots of serine/threonine kinase 25. (B)
Arrays incubated with GST-tagged LRRK2(G2019S) and cold ATP (left
panel) or recombinant GST and cold ATP (right panel). GST-tagged
LRRK2 bound to spotted serine/threonine kinase 25 is detected by an
Alexa 488-conjugated anti-GST antibody. The GST-treated control array
is negative. Orange fluorescence of Cy3-labeled duplicate protein spots
is visible in the upper left corner which serve as markers for grid
alignment during image analysis.
doi:10.1371/journal.pone.0013191.g001
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Out of the four arrayed Ste20 serine/threonine kinases that we

detected as in vitro LRRK2 substrates, TAOK3 is of particular

interest. TAO kinases exhibit high sequence homology to

microtubule affinity-regulating kinase-activating kinase (MARKK)

[16]. MARKK phosphorylates/activates MARK which phos-

phorylates the microtubule-associated protein Tau [9]. A de-

crease/increase in Tau phosphorylation has been demonstrated in

mouse mutants lacking/overexpressing LRRK2, although Tau is

not a direct substrate of LRRK2 [17,18]. A kinase signaling

cascade LRRK2RMARKKRMARK might explain enhanced

Tau phosphorylation in brains from LRRK2 overexpressing mice

and from human PD patients carrying a gain-of-function

LRRK2(G2019S) mutation [2]. To assess phosphorylation of

recombinant MARKK by LRRK2 in solution, kinase-dead

MARKK(K57A) was incubated with LRRK2(G2019S). As shown

in Figure 7, MARKK(K57A) becomes phosphorylated by LRRK2

to a similar extent as tubulin-beta that is co-purified with

recombinant LRRK2 [18].

Discussion

Mutations in LRRK2 represent the most prevalent cause of PD,

however the (patho)physiological functions of LRRK2 remain

poorly understood. Based on sequence similarities in the conserved

kinase domains, LRRK2 has been classified as a member of the

receptor-interacting protein (RIP) family kinases that integrate

both extracellular and intracellular stress signals [19]. Like RIP1,

Figure 4. Recombinant protein kinase C zeta phosphorylates a
LRRK2 fragment in solution. (Upper panel) Autoradiogram demon-
strating phosphorylation of GST-tagged LRRK2(G2019S) (amino acids
970-2527) (lane 1), GST-tagged wildtype LRRK2 (lane 2) and kinase-
inactive GST-tagged LRRK2(D1994A) (lane 3) by recombinant protein
kinase C zeta in vitro. Background autophosphorylation of the three
kinases in the absence of protein kinase C zeta is shown in lanes 5–7.
GST-tagged moesin is not a substrate for protein kinase C zeta
excluding GST phosphorylation by protein kinase C zeta (lane 4). (Lower
panel) Coomassie Blue protein staining of the gel shows similar
amounts of recombinant LRRK2.
doi:10.1371/journal.pone.0013191.g004

Figure 5. Protein kinase C zeta phosphorylates full-length LRRK2
in vitro. (Upper panel) Autoradiogram showing phosphorylation of full-
length, wildtype LRRK2 (lane 2, 4) and full-length, kinase-dead
LRRK2(K1906M) (lane 1, 3) by recombinant protein kinase C zeta (lane 1,
2) in vitro. (Lower panel) Coomassie Blue protein staining shows similar
amounts of recombinant LRRK2. Two LRRK2 fragments are visible migrating
below 250 kDa that are also phosphorylated by protein kinase C zeta.
doi:10.1371/journal.pone.0013191.g005

Figure 6. LRRK2 co-immunoprecipitates with protein kinase C
zeta from mouse brain. Homogenates of C57BL/6 mouse brains
were incubated with an anti-protein kinase C zeta antibody (lane 2) or
pre-immune serum as control (lane 1). Immuncomplexes were
precipitated using protein G-sepharose beads and subjected to gel
electrophoresis and immunoblotting using either an anti-LRRK2
antibody (upper panel) or an anti-protein kinase C zeta antibody
(lower panel). Representative results are shown for experiments that
were repeated two times.
doi:10.1371/journal.pone.0013191.g006

Figure 7. LRRK2 phosphorylates MARKK in vitro. (Left panel)
Autoradiogram showing phosphorylation of recombinant, kinase-
inactive MARKK(K57A) by GST-tagged LRRK2(G2019S) (amino acids
970-2527) (lane 2). Kinase-inactive GST-tagged LRRK2(D1994A) was
used as negative control (lane 1). Endogenous tubulin-beta that is co-
purified with LRRK2 becomes phosphorylated as well. (Right panel)
Coomassie Blue protein staining shows similar amounts of recombinant
proteins.
doi:10.1371/journal.pone.0013191.g007
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LRRK2/RIP7 interacts with FADD and TRADD, two central

adaptor proteins of death receptors (e.g. TNF-alpha, Fas),

indicating that LRRK2 may act within the extrinsic cell death

signaling pathway [20]. Imai and colleagues [21] reported that

LRRK2 phosphorylates eukaryotic initiation factor 4E-binding

protein (4E-BP), a key regulator of protein translation during cell

stress, and that LRRK2 genetically interacts with the Rheb

GTPase / Tor kinase / 4E-BP signaling pathway in Drosophila.

Furthermore, mitogen-activated protein kinase kinases (MKK) 4

and 7 become phosphorylated by LRRK2 in vitro suggesting that

LRRK2 may represent an upstream component of the MAP

kinase signaling cascade [22].

In the present study, we used protein microarrays containing a

set of 259 human recombinant proteins that are involved in key

signaling networks (including TNF receptor signaling, MAP kinase

signaling) in order to identify potential LRRK2 substrates or

interactors and to map LRRK2 to specific signaling pathways. Of

the published LRRK2 substrates, both 4E-BP and MKK7 are

spotted on the arrays, however neither protein became phosphor-

ylated following array incubation with recombinant LRRK2.

Recently, Kumar and colleagues [23] reported that the stochio-

metry of LRRK2-mediated 4E-BP phosphorylation in vitro is low

and that 4E-BP phosphorylation in HEK293 cells does not change

following LRRK2 overexpression suggesting that 4E-BP is not a

major substrate of LRRK2. Similarly, we could not detect an

increase in phospho-MKK7(S271/T275) levels in LRRK2

overexpressing HEK293 cells by immunoblot analysis (data not

shown). Novel potential substrates/interactors of LRRK2 that we

identified by protein array analysis included four members of

Ste20 serine/threonine kinase family (TAOK3, STK3, STK24,

STK25) [24]. Other kinases, like AKT, Raf-1, and PKA have

already been shown to bind/phosphorylate STK3 or STK24,

thereby modulating kinase activity [25]. Both STK24 and STK25

are highly expressed in the mammalian brain. STK24 kinase

activity increases during nerve regeneration and is required for

axon outgrowth [26]. In non-neuronal cells, STK24 and STK25

are activated/phosphorylated following oxidative stress promoting

apoptotic cell death [27,28]. It may be hypothesized that the

modulation of neurite outgrowth and oxidative stress resistance by

LRRK2 shown by others [3,4,21] is partly mediated by Ste20

kinases. LRRK2-mediated TAOK/MARKK phosphorylation

could be confirmed in an in-solution kinase assay using a kinase-

inactive TAOK/MARKK mutant. Thus, the present study may

provide the ‘missing link’ of a kinase signaling cascade

LRRK2RTAOK/MARKKRMARKRTau that may partially

explain enhanced Tau phosphorylation and axonal pathology in

brains from LRRK2 overexpressing mice and human PD patients

carrying a gain-of-function LRRK2(G2019S) mutation [4,7,9].

LRRK2 has been classified as receptor-interacting protein

kinase 7 (RIP7) according to sequence homology in the kinase

domain [19]. Our in vitro study indicates that LRRK2/RIP7 also

shares some functional features with other RIP kinases. Like RIP1-

4 [19], LRRK2 interacts with TNF receptor-associated factor 2

which may contribute to LRRK2 ubiquitination and proteasomal

degradation in cells. Similar to RIP3 [11], LRRK2 phosphorylates

other RIP kinase family members. Finally, we demonstrate that

LRRK2 interacts with PKC zeta both on protein arrays and in

mouse brain homogenates. While LRRK2 does not efficiently

phosphorylate PKC zeta in vitro, LRRK2 itself becomes phos-

phorylated by recombinant PKC zeta. Similar in vitro findings have

been reported when RIP4 and PKC beta/delta were tested [29].

Consistently, we identified several PKC consensus phosphoryla-

tion sites (K/RXXS*/T*) [30] within the LRRK2 protein by

sequence analysis. Finally, both PKC zeta (present study) and

LRRK2 [14] phosphorylate moesin on threonine-558 suggesting

that moesin may act as a common effector for regulation of neurite

elongation by brain-specific PKC/PKM zeta and LRRK2,

respectively [15,31].

In summary, our protein microarray analysis functionally links

PD-associated LRRK2 to Ste20 kinases and RIP kinases,

respectively, and identifies novel LRRK2 interactors/effectors

(e.g. STK24, STK25, TAOK/MARKK, PKC zeta) that may

contribute to its function in oxidative stress signaling and

structural/functional plasticity in neurons.

Supporting Information

Figure S1 Both LRRK2 and PKC zeta phosphorylate moesin in

vitro. (Upper panel) Autoradiogram showing phosphorylation of

GST-tagged moesin by co-incubation with: (lane 1 and 2)

recombinant PKC zeta and LRRK2(G2019S), (lane 3 and 4)

PKC zeta and kinase-dead LRRK2(D1994A), (lane 5 and 6) PKC

alone, and (lane 6 and 7) CDK5 as negative control. (Lower panel)

Coomassie Blue protein staining shows similar amounts of

recombinant GST-tagged moesin.

Found at: doi:10.1371/journal.pone.0013191.s001 (0.15 MB TIF)

Table S1 Genepix Pro and ProtoArray Prospector analysis of

protein arrays used for kinase substrate identification.

Found at: doi:10.1371/journal.pone.0013191.s002 (1.15 MB

XLS)

Table S2 Genepix Pro and ProtoArray Prospector analysis of

protein arrays used for protein-protein binding studies.

Found at: doi:10.1371/journal.pone.0013191.s003 (1.15 MB

XLS)
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