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Computationally efficient methods of phasing can be used 

without affecting the validity of the test, and simple measures 

of haplotype sharing can be used to infer genotypes at the 

untyped SNPs, making our approach computationally much 

faster than existing approaches for untyped analysis. At the 

same time, we show, using simulated data, that our approach 

often has performance nearly equivalent to hidden Markov 

methods of untyped analysis. The software package ‘un-

typed’ is available to implement our approach. 
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 Introduction 

 The rapid improvement and reduced cost of high-
throughput genotyping have enabled the use of genome-
wide association studies (GWASs) in case-control studies 
to identify genetic variants that increase the risk for many 
complex diseases  [1] . However, while the cost of high-
throughput genotyping has steadily decreased, it is still 
financially impractical to genotype all existing genetic 
polymorphisms throughout the human genome in a large 
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 Abstract 

 Genome-wide association studies (GWASs) aim to genotype 

enough single nucleotide polymorphisms (SNPs) to effective-

ly capture common genetic variants across the genome. Even 

though the number of SNPs genotyped in such studies can 

exceed a million, there is still interest in testing association 

with SNPs that were not genotyped in the study sample. Anal-

yses of such untyped SNPs can assist in signal localization, 

permit cross-platform integration of samples from separate 

studies, and can improve power – especially for rarer SNPs. 

External information on a larger collection of SNPs from an 

appropriate reference panel, comprising both SNPs typed in 

the sample and the untyped SNPs we wish to test for associa-

tion, is necessary for an untyped variant analysis to proceed. 

Linkage disequilibrium patterns observed in the reference 

panel are then used to infer the likely genotype at the un-

typed SNPs in the study sample. We propose here a novel 

statistical approach for testing untyped SNPs in case-control 

GWAS, based on an efficient score function derived from a 

prospective likelihood, that automatically accounts for the 

variability in the process of estimating the untyped variant. 
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study. The commercial platforms used for most GWASs 
select  a  set  of single nucleotide polymorphisms (SNPs) for 
genotyping with the goal of achieving a sufficiently high 
SNP density to map all genomic regions that harbor dis-
ease susceptibility variants. Although the number of SNPs 
available on commercial platforms has been steadily in-
creasing, there remain a large number of potentially inter-
esting SNPs that are not included in any commercial plat-
form. Inference using these ‘untyped’ variants could serve 
several useful purposes in a GWAS of a complex disease. 
Most importantly, studies investigating the value of un-
typed variants suggest that their incorporation into a 
GWAS can improve power to detect rare disease suscepti-
bility loci without compromising the power to detect more 
common susceptibility loci  [2, 3] . Additionally, the analy-
sis of untyped variants could assist in the localization of 
the disease susceptibility signal and suggest additional 
SNPs for genotyping in a replication study. Finally, such 
analyses may facilitate cross-platform comparisons and 
meta-analyses of specific SNPs that may not be genotyped 
in all relevant study samples, especially among studies 
that use different commercial genotyping platforms.

  Several approaches  [2–9]  have been developed for the 
statistical analysis of untyped SNP loci. These methods 
all use the linkage disequilibrium information in a refer-
ence panel (typically, the HapMap Project  [10] ) to facili-
tate this inference. The reference panel contains haplo-

type information from a reference population and in-
cludes information on SNPs that are typed in study 
participants as well as additional untyped SNP loci. 
Knowledge of the typed SNPs in the study population, as 
well as the haplotype structure in the reference popula-
tion, is then used to make inference on the association 
between putative trait loci and untyped loci in the study 
population.  Table 1  illustrates how a reference panel can 
be used to estimate allele frequencies at loci that are un-
typed in a study sample.

  Nicolae  [4, 5]  developed TUNA, the first approach to 
testing for association between trait and untyped alleles 
(see also Zaitlen et al.  [6] ). For each untyped locus, TUNA 
selects a small set of tagSNPs from the typed SNPs and 
then uses the reference panel to construct haplotypes com-
prising the tagSNPs and the untyped locus. Comparing 
the frequency of the tagSNP haplotypes in cases and con-
trols then allows comparison of allele frequencies at the 
untyped locus. Haplotypes must be inferred in the study 
population assuming Hardy-Weinberg equilibrium; at the 
genome-wide scale, this limits the number of tagSNPs per 
untyped locus that can be used. Difficulties arise when the 
study population has haplotypes that do not appear in the 
reference panel or when the untyped SNP is not well 
tagged by a small number of SNPs. A computationally in-
tensive bootstrap procedure is required for inference.

  Lin et al.  [8]  developed a retrospective likelihood  [11]  
framework for testing and estimating the effects of un-
typed SNPs in case-control studies, implemented in the 
programs HAPSTAT and SNPMstat. This approach re-
quires joint estimation of haplotype frequencies and as-
sociation parameters among the study participants along 
with samples from the reference panel (e.g. HapMap), 
which can be slow and limits haplotypes to a small num-
ber of SNPs. Although HAPSTAT and SNPMstat have 
higher power than TUNA, their genome-wide appli-
cation can be computationally intensive. Further, like 
TUNA, HAPSTAT and SNPMstat implicitly assume that 
untyped SNPs are well tagged by a few adjacent SNPs.

  Several computationally intensive approaches have 
been proposed for imputing genotypes at an untyped lo-
cus using hidden Markov models  [2, 3, 7, 9] . These ap-
proaches use population genetics theory  [12]  to impute 
the genotype at the untyped locus, then test for associa-
tion between the imputed genotype and case-control sta-
tus. Because chromosome level data are used, there is no 
implicit assumption that nearby SNPs tag an untyped 
variant, which is an important advantage, especially 
when considering untyped variants having low minor al-
lele frequency (MAF). Simulations indicate that these 

Table 1. Reference sample to estimate allele frequencies at loci that 
are untyped in a study sample

Sample haplotype Reference haplotypes

10?00 11100
11100
00000
00000
00000
10100
10000
10000
10000
11100

Q uestion mark denotes location of untyped locus in the study 
sample. Bold 0 or 1 denote alleles in the reference sample at the 
untyped locus. Underlined reference haplotypes are those with 
the same allelic states at those loci observed in the sample haplo-
type. Restricting computations to these haplotypes gives an allele 
frequency estimate (1/4) that is quite different from the allele fre-
quency in the reference population (4/10).
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hidden Markov methods typically reconstruct missing 
genotypes with high accuracy  [2, 3] .

  Here, we consider the problem of association testing 
for an untyped variant as a type of haplotype regression. 
We are thus able to use the efficient score framework of 
Allen and Satten  [13]  as the basis for inference. This frame-
work allows us to explicitly address several issues. First, 
the tests we develop are robust to misspecification of the 
distribution of haplotypes given the observed genotype 
data. Second, estimation of this distribution requires no 
further variance adjustment; one can simply ‘plug in’ an 
estimate and the variance of the efficient score remains 
valid. These two facts allow us to use computationally ef-
ficient estimators that may not correspond to maximum 
likelihood estimators nor elicit simple variance formulas. 
In particular, our approach is able to utilize information 
from an entire chromosome without fitting a computa-
tionally expensive hidden Markov model. As a result, the 
computation time required to analyze untyped SNPs us-
ing our efficient score method is a tiny fraction of the 
computation time required for competing untyped meth-
ods, requiring only approximately 90 min to analyze 1.6 
million untyped, unphased SNPs in a case-control data-
set of 1,000 subjects on a single processor. At the same 
time, we show, using simulated data, that our efficient 
score test performs almost as well as hidden Markov 
methods in nearly all situations considered. Finally, the 
haplotype regression framework provides a  natural ap-
proach to incorporating covariates into the analysis.

  A Framework for Testing Hypotheses about 

Association with an Unmeasured Locus 

 Testing for association at an unobserved locus using observed 
genotypes at nearby loci can be considered as a type of haplotype 
regression. Haplotype regression analysis of case-control data 
seeks to determine the effect of individual haplotypes or diplo-
types (haplotype pairs) on the risk of disease, by making inference 
on parameters in a model for the odds of disease, given diplotype 
and possibly other covariates. We consider haplotypes for  L  bial-
lelic loci. For simplicity, we assume the alleles are labeled ‘0’ and 
‘1’. For an individual, let  h  denote a pair of haplotypes (a diplotype) 
and let  g  denote the genotypes at the  L -typed loci, ignoring phase 
information. Let  e  denote environmental covariates that may be 
confounders but are not effect modifiers. Then, the odds of dis-
ease can be written as 
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 where  X ( h ) and  Z ( e ) are design vectors that code the genetic and 
environmental contributions to risk, respectively, and  �  and  �  are 

parameters. The haplotype regression analysis seeks methods for 
inference about parameters  �  and  �  in model (1). 

 To see the connection between haplotype regression and test-
ing association at untyped loci, suppose that we let  X ( h ) be a func-
tion of reference panel data that encodes information about the 
chance that the haplotypes comprising diplotype  h  would have 
the ‘1’ allele at the untyped locus. For example,  X ( h ) could be the 
average number of ‘1’ alleles among persons with diplotype  h  in a 
reference panel where the untyped locus was in fact genotyped. 
For such a model, a test of the (composite) null hypothesis  H  0 : 
 �  = 0 is a test of the effect of the number of ‘1’ alleles at the un-
measured locus.

  To develop methods for inference on  �  we use the (prospec-
tive) likelihood. Given (multilocus) genotypes  g  and environmen-
tal covariates  e , the contribution to the (prospective) likelihood 
from a single individual  i  is 
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 where  H  ( g ) is the set of diplotypes that are consistent with geno-
type  g  and  � ( h   �   g ,  e ) = Pr( H  =  h   �   g  =  g ,  E  =  e ). The score function 
implied by (2) has the form 
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 where  U ( e ,  h ) = ( X ( h ) T ,  Z ( e ) T ) T . The total information matrix im-
plied by (2) has the form 
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 Under the (composite) null hypothesis  H  0 :  �  = 0 we have
 � ( h ,  e  �  �  = 0, �  ̂  ) =  � ( e  �  � ̂  ) , where  � ̂      is the maximum likelihood es-
timator for  �  when  �  is fixed at 0. Factoring    into blocks accord-
ing to whether the parameters  �  or  �  are being referenced, we find 
that under the null hypothesis, the  �  �  block simplifies to 
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 where  Z  i  =  Z ( e  i ), and the  �  �  block simplifies to 
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 We base all inference on the efficient score function evaluated 
under the (composite) null hypothesis  H  0 :  �  = 0 
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 where    
    (0)  i   ( g   �   e ,  d ) is the score function evaluated at the (compos-

ite) null hypothesis given by 
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 Inference Based on the Efficient Score Function 

 Inference based on (3) explicitly accounts for the effect of es-
timating  �  on inference on  � . However, at first glance, it does not 
seem to address the effect of estimation of  � ( h   �   g ,  e ). Fortunately, 
the likelihood (2) is identical to that considered by Allen and Sat-
ten  [13] . Therefore, if we assume a saturated (categorical) model 
for  � ( h   �   g ,  e ), then (3) remains the efficient score function for  �  
under this extended model. Further,   

~   
 � has mean zero under the 

null hypothesis even if  � ( h   �   g ,  e ) is misspecified. Thus, improper 
specification of  � ( h   �   g ,  e ) can only affect the power and not the 
validity of the test. Because of these properties, the nuisance pa-
rameters  � ( h   �   g ,  e ) can be replaced by estimates from some work-
ing models (that may or may not be correct) without affecting 
inference based on   

~   
 �. These properties are important in the un-

typed variant problem as they allow  � ( h   �   g ,  e ) to be estimated us-
ing computationally efficient methods which, although not nec-
essarily statistically optimal, enable an extremely fast procedure.

  Tests based on the efficient score function can be constructed 
as follows. We first obtain an estimate of  � ( h   �   g ,  e ) in any conve-
nient way. We note that explicitly modeling  � ( h   �   g ,  e ) as a function 
of  e  is difficult and may require restrictive modeling assumptions 
in order to arrive at an identifiable model, especially when  e  is 
made up of continuous covariates. However, as noted above, a 
particular strength of our approach is that it is robust to mis-
specification of  � ( h   �   g ,  e ). In fact, we will often ignore  e  in speci-
fying  � ( h   �   g ,  e ), replacing  � ( h   �   g ,  e ) with  � ( h   �   g ) throughout, se-
cure in the knowledge that by doing so, we will not impact the 
validity of our procedure. Using this estimate, we calculate  m  i  for 

each study participant. If  �  is a scalar, a test of the (composite) null 
hypothesis  H  0 :  �  = 0 can be constructed as 
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 which has an asymptotic  �  2  1  distribution. If  �  is not a scalar, then 
we can test using 
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 where  � ̂  is the empirical variance-covariance matrix of   
~   
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 A useful observation is that 0 ; �  �   and    (0)  i  , �    do not depend on 

the locus in question (under the (composite) null hypothesis  H  0 : 
 �  = 0, the estimate  �  ̂   is the same for all loci). Hence, they need only 
be calculated once per genome. If we define

    V   i  =     –1  0; �  �         (0)  i  , �      ,

  then we need only store  V  i  (a matrix having as many rows as ele-
ments of  �  and having as many columns as elements of  � ). In the 
most important case ( �  is a scalar),  V  i  is a vector. For this case, we 
calculate the (row) vector    0; �  �   for each locus and then compute 
the efficient score as 

          (0)  i  , �      ,      –      0; �  �    �    V   i .

  The Special Case of Stratified Data 

 The efficient score can be calculated in closed form when  �  
corresponds to stratification with no additional covariates. As-
sume that there are  K  strata. To simplify the presentation, we will 
continue to consider the case when  �  is a scalar. Let  Z ( e ) = ( I [ e  = 
1],  I [ e  = 2], ...,  I [ e  =  K ]). Under the (composite) null  �  = 0, we have 
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   where  n  dk  and  n  k  are the number of cases and total participants in 
the  k -th stratum, respectively. Because each person can belong to 
only one stratum,  0  ; �  �   is a diagonal matrix. The  k -th element is 
given by 
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 where  n  ck  =  n  k  –  n  dk . Similarly, the vector  0  ; �  �   has the  k -th com-
ponent 

0; 2
,k dk ck dk ck

i i k
i k k

n n n n
m I e k m

n n
��

 where 

1
.k i i

ik

m m I e k
n



 Association Tests for Untyped SNPs  Hum Hered 2010;70:167–176 171

 Thus, the efficient score is 
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 where  k  i  denotes the stratum for the  i -th participant. Of course, 
when there is only one stratum, we have 
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 Thus,  the  test  statistic  for   association   at   an   unmeasured   lo-
cus is 
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 which compares with the logistic regression test for trend for a 
covariate  m  i  that is separately centered in each stratum. 

 Specifying  X ( h ) Using Haplotype Sharing 

 We consider here possible choices for  X ( h ) and the subsequent 
computation of 
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 The design matrix  X ( h ) uses information from a reference panel 
comprising individuals who have available genotypes at a larger 
number of loci than those observed in the study population. Data 
on genotypes at loci that are typed in the reference panel but un-
typed in the study population are used to construct  X ( h ). Here, we 
give a general approach to constructing design matrices and ad-
vocate the use of haplotype sharing to construct  X ( h ). 

 Let  h  r  j  denote the  j -th haplotype in the reference panel com-
prised of loci that are typed in the study population. Let  a  r  j   be the 
allele at an untyped locus of interest corresponding to the refer-
ence panel’s  j -th haplotype. We denote the individual haplotypes 
comprising a sample diplotype  h  by ( h  1 ,  h  2 ) and note, as observed 
by Nicolae  [4, 5] , that 
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 gives the frequency of the ‘1’ allele at the untyped locus among 
reference panel haplotypes that are identical by state at the typed 
loci to haplotype  h  1 . This forms a reasonable estimate of the like-
lihood that haplotype  h  1  contains the ‘1’ allele at the untyped locus 
and suggests a particularly simple approach to specifying  X ( h ). 
For example, an additive model (at the untyped locus) can be 
specified by taking  X ( h ) to be 

1 2

1 2

1 1

. 

r r r r

j j j j
j j

r r

j j
j j

I h h I a I h h I a

X h
I h h I h h

        
(6)

 Other models, including recessive and dominant models, can 
similarly be constructed using equation (5). 

 When the additive model given by (6) is used, the proposed un-
typed variant test compares the average number of ‘1’ alleles in cas-
es to the average number of ‘1’ alleles in controls. To see this, write 
the score function by summing (4) over study participants to yield 
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 where the term involving  m–  can be ignored after summing over 
individuals. We can rewrite 
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   When the additive model given by (6) is used,  m
_

  d  is the average 
number of estimated ‘1’ alleles among the cases, while  m

_
   c  is the 

average number of estimated ‘1’ alleles among the controls. Equa-
tion (7) establishes a connection between the efficient score and 
TUNA; for phase-certain data, TUNA also compares the average 
number of estimated ‘1’ alleles in the case and control popula-
tions. Our approach generalizes this comparison to phase-uncer-
tain data, while also easily allowing for covariates. 

 The approach of exactly matching sample haplotypes to refer-
ence panel haplotypes implied by (6), though intuitive, is limited 
to a relatively small number of tagSNPs flanking the untyped lo-
cus. Otherwise, it will often be the case that no haplotypes in the 
reference panel will exactly match up with sample haplotypes, 
and  X ( h ) will fail to be well defined. This problem can be miti-
gated somewhat by restricting calculations concerning a given in-
dividual’s data to the largest subset of the tagSNP loci that allow 
exact matching between the sample and reference panel haplo-
types. Unfortunately, computational demands preclude this ap-
proach from being a whole-scale remedy, and one is forced to con-
sider cases where exact matching is likely, e.g. by severely limiting 
the number of tagSNPs used for each untyped locus. Moreover, 
simulations (see Results section below) demonstrate that a small 
number of tagSNPs often fail to capture the information in the 
sample concerning the untyped locus, leading to a loss of power. 
Approaches based on hidden Markov models avoid these difficul-
ties by using chromosome-scale information when imputing gen-
otypes. The program MACH  [3]  can be used to estimate  m  i  by 
using the ‘–dosage’ flag to output the expected number of ‘1’ al-
leles averaged over the sampled Markov chains. However, the 
computational requirements can be prohibitive.
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  To develop a method that captures the chromosome-scale in-
formation used in the hidden Markov chain approaches but is 
easily calculated, we relax the exact matching between sample and 
reference panel haplotypes and instead characterize the likeli-
hood that haplotype  h  1  contains the ‘1’ allele at the untyped locus 
by 

1

1

, 1
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j
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j
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(8)

 where  w ( h  1 ,  h  r  j  ) is a weight function that characterizes how ‘simi-
lar’  h  1  is to  h r  j   . Here, we take  w ( h , h r  j  ) =  I [ h r  j     �  { h r k      �    ( h ,  h r k    )  6  ( h , 
 h r k      �) C  k �  }], where ( h  1 ,  h  2 ) is the number of loci that are identical 
by state moving up- and downstream from the untyped loci (cor-
responding to the information length criterion commonly used 
in haplotype sharing analyses  [14] ). Thus,  w ( h  1 ,  h r  j  )  selects the set 
of reference panel haplotypes that have the largest information 
length in common with  h  1 , so that (8) corresponds to the propor-
tion of ‘1’ alleles among this set.  Table 2  illustrates how haplotype 
sharing can be used to estimate allele frequencies at an untyped 
locus. 

 By analogy with equation (6), we characterize  X  by an additive 
model by writing 
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(9)

 Other models, including recessive and dominant models, can 
similarly be constructed using (8). 

 When the observed sample data consist of unphased multilo-
cus genotypes, computing  m  i  requires that  X ( h ) be summed over 
the conditional distribution of diplotypes, given the observed 
genotype data  � ( h   �   g ,  e ). Thus, we are forced to specify a ‘working 

model’ for  � ( h    �    g ,  e ). However, since the efficient score is valid 
even when this working model is misspecified, we are able to 
choose estimators that are computationally simple, secure in the 
knowledge that misspecification will not affect the validity of the 
test. One approach, which we utilize in the simulation experiment 
below, is to estimate  � ( h    �    g ,  e ) by computing full-chromosome 
diplotypes for each study participant using a fast phasing pro-
gram (for example,  ent   [15] ), and then letting  � ( h   �   g ,  e ) be the de-
generate distribution that puts all mass on the imputed diplotype.

  Simulations 

 To evaluate the performance of our efficient score approach 
for testing untyped SNPs and to compare our simple haplotype 
sharing-based imputation to imputation using hidden Markov 
models, we used simulated datasets that were previously created 
by Li et al.  [3]  to examine the performance of their hidden Markov 
approach MACH. Using the coalescent simulation program of 
Schaffner et al.  [16] , Li et al.  [3]  generated 10,000 chromosomes 
for a series of 100 different 1-Mb regions with linkage disequilib-
rium patterns similar to those of the HapMap CEU sample. For 
each 1-Mb region, they chose 120 chromosomes to serve as the 
phased haplotypes of the reference panel. Within these reference 
panel haplotypes, they thinned the set of SNPs to have similar 
density to the Phase II HapMap sample, resulting in a mean (me-
dian) number of 932 (952) SNPs per 1-Mb region. From this 
thinned set of SNPs, they selected a panel of 100 tagSNPs that 
captured approximately 78% of variants with MAF  1 5% in the 
reference panel.

  Li et al.  [3]  used the remaining chromosomes in a given 1-Mb 
region to form test datasets comprised of 500 cases and 500 con-
trols. For each region, the authors generated 20 null datasets and 
then 25 alternative datasets having a randomly selected SNP that 

Table 2. E stimating untyped allele frequencies using haplotype sharing

Subject’s haplotype h1 j Reference haplotypes h r  j  a r  j  w(h1, h r  j  ) w(h1, h r  j  ) I[a r  j   = 1]

...1010?0001... 1 ...001110000... ...00110000... 1 0 0
2 ...001110000... ...00110000... 1 0 0
3 ...000000000... ...00000000... 0 0 0
4 ...000000000... ...00000000... 0 0 0
5 ...000000000... ...00000000... 0 0 0
6 ...001010000... ...00100000... 1 1 1
7 ...001000000... ...00100000... 0 1 0
8 ...001000000... ...00100000... 0 1 0
9 ...001000000... ...00100000... 0 1 0

10 ...001110000... ...00111000... 1 0 0

Total 4 1

Q uestion mark denotes location of untyped locus in the study sample. Bold 0 or 1 denote alleles in the reference sample at the un-
typed locus. Underlined loci indicate regions of sharing between the subject’s haplotype and the reference haplotypes about the un-
typed locus. An estimate of the frequency of the ‘1’ allele at the untyped locus among individuals with the subject’s haplotype using 
the haplotype sharing weighted estimator (1/4) differs considerably from the frequency among all reference haplotypes (4/10).
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serves as the disease susceptibility locus. The susceptibility locus 
need not occur in either the test sample or the reference panel 
haplotypes. The MAF of the susceptibility variant was varied be-
tween 5 values (2.5, 5, 10, 20, 50%), and the genotype-relative risk 
of the variant was tuned so that the power of a single-SNP test of 
association at the true susceptibility locus was 80% at a type-I er-
ror rate of 0.0005 on average.

  Using these simulated datasets, we investigated the power of 
our haplotype sharing-based efficient score approach for testing 
untyped SNPs using the same strategy that Li et al.  [3]  used to 
evaluate the power of MACH. In the analysis of SNPs across a 
1-Mb region for a specific dataset, we tested each tagSNP in the 
region using a single-marker allelic test and tested each untyped 
SNP using our efficient score approach. From these analyses, we 
then identified the most significant SNP (either a tagSNP or an 
untyped SNP) and recorded the corresponding minimum p val-
ue. We used the minimum p values obtained for the 2,000 null 
datasets (20 datasets per each 1-Mb region) to establish an em-
pirical p value threshold that led to an overall type-I error rate of 
5% when applied to the most significant result in each region. Us-
ing this empirical p value threshold, we evaluated the power un-
der each specific alternative design (categorized by the MAF of 
the disease susceptibility allele) as the proportion of datasets 
when the minimum p value across a region was smaller than the 
empirical p value threshold. By assessing the significance of the 
minimum p value across a region in this manner, we inherently 
adjust for the testing of multiple SNPs within each region.

  We compared the power of our efficient score approach (using 
4 different approaches to estimating  m  i ) to the power of simply 
analyzing the tagSNPs alone (ignoring the untyped SNPs for the 
purpose of analysis). Two approaches to estimating  m  i  involved 
selecting tagSNPs for each particular untyped SNP. The first of 
these applied the approach of Nicolae  [5]  implemented in the 
 tuna_db  component of the TUNA software package (see Web Re-
sources) using both the suggested options (maximum number of 
4 tagSNPs per untyped SNP across a 400-kb window) as well as 
other options (increasing the maximum number of tagSNPs per 
untyped SNP by 7–10 and varying the window size between 400 
kb and 1 Mb). The second approach to choosing tagSNPs was a 
simple ad hoc flanking strategy where the 2–4 closest SNPs on 
each side of the untyped SNP were used to tag the untyped vari-
ant. For both of these selection approaches,  m  i  was computed us-
ing equation (6) .  The third approach was to estimate  m  i  using 
equation (9) and the sharing weight detailed in the section above. 
Finally, we estimated  m  i  using the estimated allelic count output 
by MACH. To facilitate analyses, we used the same counts previ-
ously computed and applied by Li et al.  [3] . These estimates were 
generated from MACH assuming 100 rounds of the Markov sam-
pler and using all available haplotypes to update a subject’s geno-
types [Yun Li, personal communication].

  In addition to examining power, we were also interested in the 
ability of these four approaches to localize the disease locus. For 
each method, we used the physical position of the most significant 
SNP in each region as an estimate of the location of the disease 
locus. We then computed the mean squared error (average of 
squared differences between the estimated location and the true 
physical position of the disease variant) using all datasets, and 
also restricting to those datasets for which the method being in-
vestigated showed a significant result.

  Results 

 We present the power results of the simulation exper-
iment in  table 3 . As can be seen from this table, common 
disease variants (MAF  6 10%) are detected with compa-
rable power by all methods. In particular, there does not 
appear to be any power advantage in the untyped variant 
analysis over the analysis of tagSNPs only. However, 
when the disease variant is rare, the untyped variant ap-
proach can give a boost in power. This is true for both the 
analysis with MACH-computed estimates of  m  i  and the 
analysis with sharing-computed estimates of  m  i , which 
show a 60 and 38% increase in power, respectively, over a 
tagSNP-only analysis when the disease MAF is 2.5%. We 
note that the power of the efficient score with MACH-
based estimates of  m  i  has virtually the same power as that 
reported by Li et al.  [3] . The flanking SNP- and TUNA-
based approaches have at most a limited power advantage 
over the tagSNP-only analysis.

  The localization results of the simulation experiment 
are presented in  table 4 . As can be seen from this table, all 
approaches show improved localization as the MAF at 
the disease locus increases. Interestingly, the TUNA-
based untyped variant approach led to a poorer localiza-
tion of the disease locus than the analysis using only the 
tagSNPs. However, the other untyped variant approaches 
compared favorably with the tagSNP-only approach. 
From  table 4 , we see that, when considering all simula-
tions, calculating  m  i  using MACH performed best; our 
sharing approach is roughly equivalent to flanking SNPs, 
with the TUNA-based method having the worst perfor-
mance with regard to localization. A similar pattern is 
seen when restricting to localization of the causal locus 
in the presence of a significant finding (results not shown).

  To help make these results more concrete, we illustrate 
the analysis ( fig. 1 ) of one of the simulated datasets where 
the untyped analysis showed a significant signal while 
the tagSNP-only analysis did not. The significance 
threshold used in the simulation study involved the aver-
aging over a large number of datasets that would, of 
course, not be available for a de novo analysis of this da-
taset. Thus, we established a region-wide significance 
threshold via permutation, using only the dataset at hand. 
To establish the threshold, we estimated the permutation 
distribution of the minimum p value across the region by 
randomly permuting the case-control status and captur-
ing the smallest p value across the region. By repeating 
this procedure a large number of times (we used 10,000), 
we were able to precisely estimate the 5th percentile of the 
permutation distribution which is used to establish a sig-
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nificance threshold. These thresholds (for both the typed- 
and untyped-based analyses) are represented by dashed 
horizontal lines in  figure 1 . As can be seen in  figure 1 , 
testing at untyped loci offers an advantage in this dataset 
and identifies a significant SNP within close proximity 
(approx. 32 kB) of the true disease locus. Interestingly, 
even though the closest SNP was only approximately 600 
bases away from the true disease locus, the typed-only 
analysis failed to detect this locus.

  Discussion 

 The analysis of untyped SNPs in a GWAS may have 
many practical benefits for gene mapping of complex dis-
eases, including increased power for detecting rare vari-
ants and the ability to compare SNP results across differ-
ent studies, utilizing different genotyping platforms. In 
this paper, we propose a simple and robust efficient score 
approach for testing untyped SNPs in a case-control 
GWAS. Additionally, we present haplotype sharing-
based approaches that outperform tagSNP approaches 
but are easily calculated. We demonstrated that our ap-
proach has power for analyzing untyped SNPs nearly 
comparable to complex hidden Markov models, while, at 
the same time, yielding statistics that are computation-
ally much simpler. As an example, the efficient score with 

Table 4. M ean square error for localizing disease variant for vari-
ous minor allele frequencies (MAF)

MAF at
disease
locus

TagSNPs
only

E fficient score with mi computed by

MA CH TUNA-
based

flanking
SNPs

max
sharing

2.5% 73,783 58,569 80,633 69,540 72,248
5% 59,736 40,157 59,650 47,836 44,992

10% 36,477 27,799 42,535 31,146 29,728
20% 22,134 14,927 25,372 19,417 21,140
50% 16,589 15,746 20,695 17,811 20,320
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  Fig. 1.  Example showing analysis of a sim-
ulated dataset. Black dots represent effi-
cient score-based testing (using sharing 
method to estimate  m  i ) of untyped loci. 
Red dots represent tests of observed geno-
types. Black and red solid horizontal lines 
represent significance thresholds used in 
simulation study for untyped- and typed-
only analyses, respectively. Black and red 
dashed horizontal lines represent signifi-
cance thresholds for untyped- and typed-
only analyses, respectively, established
by permutation applied to this dataset. 
Dashed vertical line denotes location of 
true disease locus.   
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Table 3. P ower to detect disease variant with various minor allele 
frequencies (MAF)

MAF at
disease
locus

TagSNPs
only

E fficient score with mi computed by

MACH TUNA-
based

flanking
SNPs

max
sharing

2.5% 0.266 0.432 0.224 0.326 0.384
5% 0.476 0.580 0.432 0.538 0.544

10% 0.672 0.730 0.638 0.698 0.686
20% 0.762 0.768 0.728 0.766 0.740
50% 0.824 0.806 0.754 0.812 0.792
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sharing-based estimates of  m  i  required approximately 
30 s to analyze one of the simulated 1-Mb datasets on a 
32-bit laptop computer with a dual core 1.66-GHz proces-
sor and 2 GB of ram running Windows XP. This time 
includes the time required to phase the genotype data 
with the haplotyper  ent . In contrast, the same analysis 
using MACH required approximately 30 min on a 64-bit 
desktop computer running Linux with 2 dual core 2.39-
GHz AMD opteron processors and 6 GB of ram.

  Two important properties of the efficient score frame-
work allow us to take computational shortcuts without 
affecting the validity of the test. First, the efficient score 
is robust to misspecification of the imputation model, 
and second, the variance of the efficient score function 
can be estimated empirically without any additional con-
tribution arising from the estimation of parameters used 
in the imputation model. These properties allow the use 
of computationally expedient imputation methods that 
may not, for example, correspond to maximum likeli-
hood estimators. We have outlined several imputation 
methods and have shown that the sharing-based estima-
tor may represent a reasonable compromise between 
computational speed and statistical power.

  The efficient score function has additional computa-
tional advantages. First, covariates are easily included. 
TUNA does not allow for covariates, and it is unclear how 
they could be included in the TUNA framework. Further, 
the part of the efficient score function that accounts for 
the covariate effects need only be calculated once per ge-
nome and then can be used at each locus. Second, permu-
tation testing for genome-wide significance is particular-
ly simple using the efficient score test. If there are no co-
variates, then the case/control status can be permuted 
without recalculating  m  i . The efficient score leads to sim-
ple Monte Carlo tests even in the presence of covariates. 
For stratified data, the case/control status can be permut-
ed in each stratum, again without recalculating  m  i . Fi-
nally, with continuous covariates, when inference is based 
on the efficient score function, the Monte Carlo proce-
dure of Lin  [17]  can be used. The ease of permutation test-
ing using the efficient score function contrasts strongly 
with HAPSTAT and SNPMstat, which require that hap-
lotype frequency parameters be recalculated for each per-
mutation dataset.

  We also considered which method gives a better esti-
mate of the location of an association, where the estimat-
ed corresponds to the most significantly associated SNP. 
When considering all situations, using  m  i  values calcu-
lated by MACH has the best performance. However, 
when considering only situations where a significant as-

sociation was detected, we found that our sharing ap-
proach estimates the location of the true causal SNP bet-
ter than all other approaches.

  We feel there are at least two reasons to develop com-
putationally simple methods for association analysis of 
untyped variants. First, the computational burden of as-
signing genotypes at untyped loci increases both with the 
number of individuals and the number of SNPs in the 
reference panel. Computationally intensive methods are 
already near the limit of what can be computed in a rea-
sonable amount of time for reference panels with the 
sample size and density corresponding to the first-gener-
ation HapMap, requiring cpu weeks even when running 
on Unix or Linux clusters. For example, we estimate that 
analyzing just the null datasets described here would take 
35–40 days on a Linux workstation. Larger, more dense 
reference panels such as the 1000 Genomes Project  [18]  
will further increase the computational burden. Second, 
it is not uncommon to want to run several analyses (e.g. 
with and without certain SNPs, or perhaps using differ-
ent reference panels when trying to impute untyped vari-
ants in structured populations like Hispanic-Americans). 
This common modeling step, prohibitive for Markov 
chain Monte Carlo approaches, is easily accomplished 
 using our method; for example, the null datasets de-
scribed here were completely analyzed in 10 h. For a mul-
tiethnic population such as Hispanic-Americans, the 
ability to try several reference panels for imputation could 
result in further improvement in the power of our meth-
od compared to more computationally intensive ap-
proaches.
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  Web Resources 

 Untyped, a software package implementing the untyped vari-
ant analysis described here, is available for download at http://
www.duke.edu/ � asallen/Software.html. The URLs for other web 
resources presented herein are as follows: International HapMap 
Project, http://www.hapmap.org; ent, http://dna.engr.uconn.edu/
software/ent, and MACH, http://www.sph.umich.edu/csg/abeca-
sis/mach/. 
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