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Abstract
Gold nanoparticles (AuNPs) are a suitable platform for development of efficient delivery systems.
AuNPs can be easily synthesized, functionalized, and are biocompatible. The tunability of the
AuNP monolayer allows for complete control of surface properties for targeting and stability/
release using these nanocarriers. This review will discuss several delivery strategies utilizing
AuNPs.

1. Introduction
One of the greatest challenges facing chemotherapy today is developing drug delivery
systems (DDSs) that are efficacious and have therapeutic selectivity [1]. Both passive and
active targeting approaches have been utilized with nanocarriers such as dendrimers [2,3],
liposomes [4], metal nanoparticles [5], polymer micelles and vesicles [6,7]. These DDSs
have improved in the targeted delivery of the therapeutics for cancer treatment.

The application of gold nanoparticles (AuNPs) as a DDS is a rapidly expanding field [8,9].
Their inherent properties make them a very promising vehicle for drug delivery. Controlled
fabrication of various sized particles (1–150 nm) with limited size dispersity has been
established [10], and using ligand place exchange reactions [11], multifunctional
monolayers can be fabricated. This structural diversity enables particle surfaces to contain
multiple targeting agents and/or chemotherapeutics. In addition the core in essence is non-
toxic, biocompatible, and inert [12–14].

The diverse functional possibilities of AuNPs allows for a variety of approaches for DDS
design. Hydrophobic drugs can be loaded onto AuNPs through non-covalent interactions,
requiring no structural modification to the drug for drug release [15]. Likewise, covalent
conjugation to the AuNP through cleavable linkages can be used to deliver prodrugs to the
cell and the drug can then be released by external [16] or internal [17] stimuli. Regardless of
the approach used, the tunability of the AuNP monolayer is crucial for internal or external
release mechanisms.

The use of AuNPs for therapy, biosensing, and diagnostics has been reviewed [18–22]. This
review will focus on the use of AuNPs as a viable DDS and the influence on the overall
function provided by the monolayer.
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2. Synthetic approaches for AuNP fabrication
The fabrication of AuNPs with varying core sizes makes them an appealing platform for
DDSs. A variety of synthetic methods exist for the fabrication of core-shell AuNPs, as
summarized in Table 1. The one-pot method of Brust and Schiffrin et al. allows for the rapid
and scalable synthesis of monolayer protected AuNPs [23]. AuCl4− salts are reduced by
NaBH4 in solution with the desired ligands. By changing the ligand to gold stoichiometry
core sizes from 1.5 nm to 6 nm can be fabricated. To create larger particles citrate reduction
of gold salts[24,25] or ripening approaches [26] are widely used. Improved diversity of
AuNPs is achieved by synthesizing a mixed monolayer by post-functionalization or directly
functionalizing with appropriate ligands. A widely utilized method for the formation of
mixed monolayer protected AuNPs is using a place-exchange reaction developed by Murray
et al. [11]. In this method, ligands with thiol functionality exchange in equilibrium with the
bound ligands of AuNPs. The tunability of the ligand structure allows for enhanced delivery
applications, such as the use of poly(ethylene glycol) and oligo(ethylene glycol) moieties to
create a more biocompatible particle [27–33].

3. Cell membrane penetration by gold nanoparticles
For a DDS to be effective, the interaction between cells and the delivery particles must be
understood. Charge [34], size and surface functionality [35] affect the intracellular fate and
cellular uptake of AuNPs. Rotello and Vachet have shown charge and hydrophobicity
contributed to determining the cellular uptake of functionalized AuNPs [36]. Chan et al.
have reported cellular uptake is likewise dependent on the size of nanoparticles [37]. In
these studies, AuNPs ranging in size from 2–100 nm were coated with Herceptin and were
tested for breast cell internalization mediated by the ErbB2 receptor. The most efficient
cellular uptake was observed with particles ranging from 20–50 nm. Apoptosis was also
enhanced by 40–50 nm particles. In vivo studies of passive targeting of tumors was also
performed with AuNPs ranging from 10–100 nm [38]. The authors found smaller AuNPs
rapidly diffused into the tumor matrix, whereas larger AuNPs stayed near the vasculature
(Figure 1).

Stellacci et al. found ligand shell morphology affects cell membrane penetration of AuNPs
[39]. It was shown that cytotoxic AuNPs with structured ligand shells could directly pass
through the plasma membrane of cells without the creation of pores. Surface modifications
to the ligand shell allow for targeting of specific organelles. Brust et al. utilized transmission
electron microscopy to demonstrate that modifying the AuNP surface with cell penetrating
peptides the nucleus and other organelles could be specifically targeted [40](Figure 2).
Feldheim et al. have also shown nuclear targeting of AuNPs by modifying the surface with a
nuclear localization sequence [41].

4. Drug delivery strategies using gold nanoparticle platforms
Drug release and transport are major factors for creating an efficient DDS. Nanocarriers can
be loaded with drugs through non-covalent interactions or by covalent conjugation [42].
using a prodrug that is processed by the cell [43]. AuNPs provide an excellent platform for
DDS design due to the functional versatility of their monolayers.

4-1. Photo-regulated release
Regulation of drug release is crucial for DDSs [5]. One useful approach for controlling the
rate and site of release is to use an external stimulus to trigger release [44–49].
Photocleavable “cages” have been used to reduce the activity of a drug, with activation
occurring upon uncaging [50,51]. Nakanishi et al. have used this approach to develop a
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photoresponsive nanocarrier of amines[52]. Using near-UV irradiation, a carbamate linkage
could be dissociated by the photocleavable reaction of the 2-nitrobenzyl group. They found
histamine had no biological activity while caged but after irradiation it became active.

Rotello et al. have demonstrated an AuNP platform with a photo-cleavable o-nitrobenzyl
ester moiety that upon light irradiation dissociates changing the surface potential to negative
from positive, intracellularly releasing adsorbed DNA [16]. In further studies the authors
observed light-controlled release of the anticancer drug 5-fluorouracil from AuNPs (Figure
3) [53]. The mixed monolayer of the AuNPs was composed of photocleavable moieties and
zwitterionic ligands. Improved solubility and limited cellular uptake was achieved by the use
of the zwitterionic ligand. Using near-UV irradiation (365 nm) the photocleavable
orthonitrobenzyl group could efficiently cleave the 5-fluorouracil from the AuNP. The
observed IC50 value on a per particle basis for the AuNP was 0.7 μM. No significant cell
death was observed in cells treated with only light AuNPs or only light.

4-2. Glutathione-mediated release in covalent conjugation
DDSs have been created utilizing glutathione (GSH) as an endogenous agent for drug
release. These systems rely on the drastic difference between intracellular GSH
concentrations (1–10 mM) [54,55] and extracellular thiol concentrations (cysteine 8 μM,
GSH 2 μM) [56,57]. Disulfide exchange or place-exchange reactions with the intracellular
GSH can release prodrugs bound to the AuNP. Also the monolayer of the AuNP limits
reactivity with cysteine residues of proteins in the bloodstream [58–60].

A DDS utilizing glutathione (GSH) for payload release was developed by Rotello et al. [17].
A mixed monolayer of fluorogenic ligands (HSBDP) and cationic ligands (TTMA) was
attached to AuNPs with a core diameter of 2 nm (Figure 4). Cellular penetration was
assisted by the TTMA ligands on the surface of the nanoparticle. When attached, the Au
core quenches the fluorescence of the BODIPY moiety of the HSDBP [61,62].
Fluorogenesis occurred after cellular uptake through the intracellular GSH in human liver
cells (Hep G2) or GSH treatment in cuvette. Treatment of mouse embryonic fibroblast cells
(containing greater than 50% lower intracellular GSH levels than Hep G2) with varying
levels of glutathione monoester (GSH-OEt) verified GSH-mediated release of the dye.
Increasing concentrations of GSH-OEt showed a dose dependent relationship in
fluorescence signal. Regulation of intracellular GSH levels likewise controlled the
effectiveness of AuNP-mediated DNA transfection [63].

The surface charge and monolayer structure of AuNPs heavily influence the rate of ligand-
displacement by intracellular thiols (e.g. GSH), giving rise to a controlled release of payload
[64,65]. Kotov et al. observed the anti-proliferative effect against K-562 leukemia cells of 6-
mercaptopurine-9-β-D-ribofuranoside was notably increased when attached to an AuNP in
comparison to the free form drug [66]. Improved intracellular transport of the AuNPs
preceding the GSH-mediated release in the lysosomes and cytoplasm was used to explain
the enhancement.

4.3 Additional covalent attachment strategies
Enhanced selectivity and potency can be achieved by targeting overexpressed receptors in
cancer cells. El-Sayed et al. observed selective delivery and enhanced potency of conjugated
tamoxifen to their AuNPs [67]. The increased potency is attributed to an enhancement of
cellular uptake of their AuNPs compared to the passive diffusion of the free drug. The
binding of the estrogen receptor alpha in the plasma membrane facilitated improved
selectivity for drug delivery. Alemzadeh et al. utilized the overexpressed folate-receptor in
cancer cells to develop targeted delivery system for doxorubicin [68]. Folate-modified PEG
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ligands were conjugated to doxorubicin to comprise the monolayer of their AuNP. The
AuNPs had increased cytotoxicity to cells with overexpression of folate-receptors and
reduced cytotoxicity to healthy cells when compared to free doxorubicin.

Mukherjee et al. also developed a system to deliver the platinum containing drug cisplatin
targeting the folate-receptor [69]. The delivery system targets cancer cells preferentially and
enhances cytotoxicity. The cisplatin retains its cytotoxic effects while conjugated, and the
folic acid protects healthy cells from the cisplatin. Lippard et al. combined DNA
functionalized AuNPs with Pt(IV) prodrugs for a novel DDS [70]. After the Pt-DNA-AuNPs
enters the cell the Pt(IV) is reduced to release cytotoxic cisplatin. The Pt(IV) species exhibit
greater biological stability when compared to the more reactive Pt(II) species leading to less
side effects. Wheate et. al observed enhanced cytotoxicity of oxaliplatin when tethered to
AuNPs [71]. The tumor cell concentrations of oxaliplatin were greater for the AuNP
delivered drug than when compared to the free drug.

4-4. Therapeutics incorporated into the monolayer of AuNPs
Encapsulating unmodified drugs into the monolayer of the AuNP non-covalently avoids
potential issues associated with using a prodrug strategy. Using appropriate ligands, a
hydrophobic environment is created to incorporate the drugs into the monolayer. The further
one goes from the gold core, the smaller the ligand density becomes [72,73]. Using EPR
spectroscopy, Pasquato et al. observed the partitioning of radical, lipophilic probes between
bulk water and the monolayer of an AuNP. As seen in Figure 5, they found that guest
encapsulation was favored by the greater radial monolayers of smaller particle cores [74,75].

Rotello et al. fabricated a biocompatible AuNP to deliver drugs to cancer cells via their
incorporation into the monolayer [76]. The 2.5 nm core AuNPs were functionalized with a
hydrophobic alkanethiol interior and a tetra(ethylene glycol) (TEG) hydrophilic shell. The
ligands possessed zwitterionic headgroup which minimized nonspecific binding with cell
surface functionalities and biomacromolecules [77,78] (Figure 6). Kinetically encapsulated
in the monolayer, the hydrophobic payloads were stable in serum and buffer. Fluorescence
microscopy, using a hydrophobic fluorophore, and drug efficacy measurements of
therapeutics verified membrane-mediated diffusion into cells without cellular uptake of the
particles. These DDS are great candidates for passive targeting utilizing the enhanced
permeability and retention effect [79].

Inducing necrosis and apoptosis using reactive oxygen species is a potential strategy for
therapeutics. Burda et al. utilized this strategy to develop a photodynamic therapy (PDT)
with PEGylated AuNP-Pc4 (Si-phthalocyanine) [80]. The PEG ligands serve multiple
purposes. First they inhibit non-specific binging to biomacromolecules and prevent colloidal
aggregation. Theligands also, through Van der Waals interactions, encapsulate the
phthalocyanine photosensitizing agent (Figure 7a). An efficient delivery process was
verified by monitoring the release of Pc4 from the nanocarrier in vitro in a two-phase
solution system and in vivo in cancer-bearing mice with enhanced accumulation of Pc4 in
tumor sites. The Au NP-Pc4 conjugates decreased the time necessary for PDT from 2 days
to 2 hours versus the free drug (Figure 7b).

Kim et al. developed a DDS using non-covalently loaded anti-cancer drugs which are
released by glutathione [15]. β-Lapachone, an anti-cancer drug, was encapsulated in the
cyclodextrin moieties. Poly(ethylene glycol) was used to prevent degradation before
delivery. The AuNPs were also functionalized with an anti-epidermal growth factor receptor
antibody as a targeting agent. In addition to this, the targeting antibody increased the extent
of apoptosis. Schoenfisch et al. have developed a pH responsive system which at acidic pHs
releases nitric oxide from AuNPs [81]. This potentially gives the ability to control cellular
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processes such as immune response, angiogenesis, and vasodilation [82,83]. Using a
phosphate linker Hwu et al. conjugated paclitaxel to Fe3O4 particles and AuNPs [84].
Phosphodiesterase could then release the paclitaxel.

Summary
AuNPs show great potential for the creation of DDSs. Their stability, tunable monolayers,
functional flexibility, low toxicity, and ability to control the release of drugs offer many
possibilities for further development of DDSs. Additional investigations of these systems
will be required to fully understand their pharmacokinetics, interactions with the immune
system, and the extent of cytotoxicity due to surface and size of the AuNPs. Continued
research into these nanoscale delivery vehicles will expand the understanding of the
interactions of these materials with biological systems, and promoting the development of
more effective DDSs.
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Figure 1.
Particle size-dependent permeation of the tumor interstitial space. (A–C) Histological
samples were obtained for 20, 60, and 100 nm particle sizes at 8 h postinjection (HPI). (D)
ImageJ software was used to generate contrast-enhanced images for densitometry analysis.
(E) Densitometry signal was quantified at 10 μm distances away from blood vessel centers 8
HPI and was normalized to the signal at 0–10 _m. Reprinted with permission from Ref. 38.
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Figure 2.
Nuclear targeting (A) by PEG-modified nanoparticles functionalized with a combination of
CPPs (2% TAT and 2% Pntn) and 2% NLS. Nanoparticles are highlighted by red circles.
The nuclear envelope with nuclear pores (arrows) is clearly shown in this image. The
nucleus is denoted n, and the cytosol c. Unusual perinuclear membranous structures (B and
C) that are highly loaded with nanoparticles are typically also observed under these
conditions. Nuclear targeting is enhanced in comparison with experiments in the absence of
CPPs (D). Scale bars are 200 nm. Reprinted with permission from Ref. 40.
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Figure 3.
(A) Photochemical reaction (365 nm) of Au_PCFU and delivery of payload to cell. (B)
Cytotoxicity of different concentrations of Au_PCFU under uncaging and control
conditions. The IC50 value was 0.7 μM per particle, 11.9 μM per drug.
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Figure 4.
(A) Schematic illustration of GSH-mediated surface monolayer exchange reaction/payload
release. (B) Fluorescence images of MEF cells displaying GSH-controlled release of the
fluorophore after incubation with 0, 5, and 20 mM GSH-OEt.
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Figure 5.
(A) Schematic representation of AuNP and the nitroxide probe inclusion. (B) Plot of the
ratio between the concentration of 2 partitioned in the monolayer and that of the free species
(● 1.6 nm; ▼ 3.4 nm; ■ 5.3 nm) as a function of [HS-C8-TEG] bound to the gold. Reprinted
with permission from Ref. 75.
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Figure 6.
(A) Structure of particles and guest compounds: Bodipy, TAF, and LAP, the number of
encapsulated guests per particle (B) Cytotoxicity of AuNPZwit complexes measured by
Alamar blue assay after 24 h incubation with MCF-7 cells. IC50 of AuNP (NP), equivalent
drugs (Drug), and free drugs are shown in table.
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Figure 7.
(A) Structure of the water-soluble Au NPs as a PDT drug delivery agent, Pc 4 structure (B)
Fluorescence images of a tumor-bearing mouse after being injected with Au NP-Pc 4
conjugates in normal saline (0.9% NaCl, pH 7.2), (a) 1 min, (b) 30 min, and (c) 120 min
after intravenous tail injection. Any bright signal is due to Pc 4 fluorescence. For
comparison, a mouse that got only a Pc 4 formulation without the Au NP vector injected is
shown in panel (d). No circulation of the drug in the body or into the tumor was detectable 2
h after injection without the Au NP as drug vector. Reprinted with permission from Ref. 80.
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Table 1

Synthetic methods and capping agents for AuNPs of varying core sizes.

Core Synthetic methods Capping agents References

1–2 nm Reduction of AuCl(PPh3) with diborane of sodium borohydride Phosphine 10

1.5–5 nm Biphasic reduction of thiol capping agents Alkanethiol 23

3.5–10 nm Heat-induced size ripening method Alkanethiol 26

10–150 nm Reduction of HAuCl4 with sodium citrate in water Citrate 24
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