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Abstract
Patients with high risk melanoma and neuroblastoma frequently recur despite surgical resection and
appropriate adjuvant therapies. Immunotherapy with the immunocytokine, hu14.18-IL2, was
developed via fusion of two molecules of IL2 to the monoclonal antibody, 14.18, that recognizes
GD2, expressed on the above malignancies. This article will discuss the results of preclinical work
utilizing hu14.18-IL2 therapy, including data suggesting that intratumoral therapy may have
enhanced antitumor benefit compared with IV therapy. Initial clinical trials in adult melanoma and
pediatric neuroblastoma have demonstrated acceptable toxicity profiles in dosing that induces
immune activation. Preclinical and initial clinical data suggest greater efficacy in the setting of
minimal residual disease, therefore future clinical testing is planned to test the benefit of hu14.18-
IL2 in this setting.

1. Introduction
Immunocytokines (IC) are fusion proteins that genetically fuse immunologically reactive
monoclonal antibodies (mAb) to cytokines. The goal is to retain the functions of both the
cytokine and the antibody components in a single bifunctional molecule, and to ultimately
expand the biologic activities of one component (the antibody) with the biologic function of
the other component of the IC (the cytokine). Hu14.18-IL2 was created, linking IL-2 to the
14.18 mAb that recognizes the GD2 disialoganglioside primarily expressed on human
melanoma and neuroblastoma. Phase I and Phase II studies have been completed in MEL and
NBL patients. Our purpose in this review is to offer background on this IC and to summarize
both the preclinical and clinical testing of 14.18-IL2 IC.

2. Background
Melanoma (MEL) and Neuroblastoma (NBL)

In 2007, there were 59,940 new diagnoses and 8000 deaths in the USA due to melanoma. These
numbers continue to rise, and MEL is estimated to account for 63,480 new diagnoses and claim
approximately 8420 deaths in 2008[1;1;2]. While remission can be accomplished surgically
for most newly diagnosed high risk MEL patients (and for most patients with local or regional
recurrence), many of these high risk patients will recur. Thus far interferon (IFN) is the only
treatment shown to help delay or prevent recurrence in some of these high risk patients[3;4].

Neuroblastoma is the most common extracranial solid tumor of childhood, and high risk
features are present in nearly half of all new diagnoses[5]. Treatment has improved, and for
children under age 15, the 5-year overall survival rates for all newly diagnosed patients went
from 52% in 1975-77, to 69% in 1996–2003[1;6]. With current standard therapy (an aggressive
combination of multi-agent chemotherapy, surgery, radiation therapy and ablative
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chemotherapy followed by autologous hematopoietic stem cell reinfusion), most patients with
high-risk disease achieve a complete response, but undetected amounts of minimal residual
disease(MRD) remain in many. As a result of the remaining residual NBL, most high-risk
patients develop recurrent refractory disease and only ~30% overall are cured[7]. Melanoma,
NBL, and some osteosarcoma, small cell lung cancer, and soft tissue sarcomas express the
disialoganglioside, GD2. These GD2+ diseases account for approximately 8% of all cancer
deaths in the US[8], and therefore, the results from studies looking at the clinical response of
patients treated with hu14.18-IL2 for MEL and NBL might potentially be translatable to all
GD2+ diseases.

2.1 Development of hu14.18-IL2 IC—GD2 disialoganglioside is expressed on
neuroectodermal tumors including MEL and NBL[4;9;10], and on some small-cell lung cancer,
osteosarcoma, and soft tissue sarcomas[4;4;11–13]. In normal tissues, GD2 has limited
expression on neurons, melanocytes, and peripheral pain fibers, and therefore is an appropriate
target for antitumor therapy[9;14;15].

The originally described IgG3 murine anti-GD2 mAbs were 3F8 and 14.18[4;9;10]. Initial
clinical testing was performed with 3F8 and 14.G2a(the murine IgG2a class switch variant of
14.18.,and with human/mouse chimeric 14.18 (designated ch14.18) in patients with NBL and
MEL[4;16–23]. The ch14.18, was created to decrease the immunogenicity associated with the
murine antibody[14;24]. Two trials were performed with ch14.18 mAb as a single agent for
patients with stage 4 NBL[14;19;20]. Ch14.18 was well tolerated, with similar toxicities as
seen with the murine antibody (pain, fever, hypertension, tachycardia, urticaria and transient
neuropathy)[14;19;20]. In the Pediatric Oncology Group study, the chimeric antibody was less
immunogenic than the murine antibody, with a longer half-life[14;25]. Antitumor effects of
these anti-GD2 mAbs were observed in phase-I and-II trials, and include shrinkage of
measurable MEL or NBL[4;17–23;26] and improved microscopic metastatic disease in bone
marrows of children with NBL[4;17;19;27].

Interleukin 2(IL-2) is a strong pro-inflammatory agent that activates immune cells to mediate
antitumor effects[4;14;28–30], and is approved as a single agent treatment for metastatic MEL
as well as renal cell carcinoma. IL-2 activates NK cells in a dose dependent fashion, whereby
using a tumor reactive monoclonal antibody(mAb) to better direct the lytic activity of activated
NK cells[4;31–33]. Activated NK cells bind the Fc portion of the mAb through their FcγRIII
and mediate ADCC[14;34;35]. In murine models, mice receiving IL-2 and tumor specific mAb
had improved antitumor effects compared with either agent alone[32;33;36;37]. Because
systemic cytokine administration causes toxicity arising from nonspecific inflammatory
activation[38], immunocytokines (IC) were created to both limit toxicity associated with
systemic cytokine administration, and to augment the antitumor effect of IL-2 and mAb.

2.2 Immunocytokine—IC links cytokine proteins to the Fc portion of the mAb. Preclinical
in vitro and in vivo studies demonstrated greater ADCC when mAb is linked to IL-2, versus
both therapies administered together as separate agents[39–41]. The IC retains the antigen-
binding specificity of the mAb, and delivers cytokine directly to the tumor microenvironment
providing both the antibody effector function and the cytokine effect[14;41], allowing NK cell
activation via the IL-2 component. IL-2 also stimulates antigen-specific T cells to kill tumor
cells[14;35;42]. This allows for a lower dose of cytokine than with systemic administration of
the cytokine alone[12;14;43;44].

The 14.G2a, ch14.18 and 3F8 mAbs all demonstrated enhanced ADCC with effector cells
activated by IL-2[12;36]. This led to adding anti-GD2 mAbs with vivo IL-2 therapy[45;46].
Blood from patients in these studies demonstrated ADCC could be mediated in vitro[47], and
occasional patients receiving these therapies had decrease in measurable tumor.
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The ch14.18-IL2, is an IC that is formed by linking the gene sequence of IL-2 to DNA encoding
the carboxyl end of the constant region of the chimeric mouse-human IgG1 molecule that
composes the ch14.18 mAb[14;43;43;48]. ADCC depends on the number and function of FcRs
on effector cells including NK cells, and when NK cells are activated and expanded with IL-2
in vivo, they mediate augmented ADCC[4;12;36;49]. These activated NK cells have
augmented IL-2Rα expression[50] and have a dramatic in vitro response to IL-2[51]. This
should result in effector cells binding tumor, followed by activation of effector cell mediated
lysis for T-cells with IL-2Rs and NK cells via Fc and IL- receptors.[48;52]. Anti-MEL activity
is induced by ch14.18-IL-2 in a murine SCID human-tumor-xenograft model[53], and in mice
bearing syngeneic tumors transfected to express GD2[54;55].

The IL2 component of this IC can activate NK cells without Fc receptors, through their IL2
receptors[56]. Up to 50% of NK cells from cancer patients do not have FcRs after IL-2
treatment, and these FcR(−) cells are more lytic to tumor cells in direct assays not dependent
on mAb and FcRs[4;56]. The antitumor effect against B78MEL is predominantly T-cell
mediated after ch14.18-IL-2[57]. Thus, ch14.18-IL-2 can function as both a T-cell inducing
vaccine, as well as an activator of NK mediated ADCC. These data provided the basis for
initiating clinical testing of this 14.18 based IC molecule as therapy for NBL and MEL[4].

A problem with mouse mAb therapy has been the development of blocking antibodies to the
mAb itself, called a HAMA(human anti-mouse antibody) response[14;24]. The development
of a HAMA response has been detected within 7 days of treatment and can neutralize any
further treatments with the mouse anti-GD2 antibody[4;14]. This phenomenon has led to the
progressive development of increasingly human antibodies for therapy. Chimeric human-
mouse antibodies that retain the Fab fragment of the mouse antibody with its antigen binding
specificity, were bound to the Fc portion of human antibodies in order to create mAbs which
were less immunogenic. However, HACA(human anti-chimeric antibody) response was still
detected[14;58]. Therefore, the current humanized mAb, hu14.18, was developed retaining
only the complementarity-determining regions of the original mouse antibody so that it is
otherwise ~ 98% human amino acid sequence(Fig 1) [4;14;59]. This humanized form of IC,
hu14.18-IL-2, was made with hopes of reducing immunogenicity of the IC in patients and has
been studied in a recently completed Phase I trial[14;60].

3. Clinical Efficacy (Testing of hu14.18-IL-2 in Melanoma)
3.1 Preclinical Development and Study Design

When murine or chimeric anti-GD2 IgG mAbs were injected IV, the half-life was 2–5 days
[19;45]. In contrast, the half-life of the ch14.18-IL-2 IC in mice was only approximately 4
hours[61]. Both the ch14.18-IL-2 and hu14.18-IL-2 were sensitive to enzymatic cleavage by
proteases in mouse serum, where the IL-2 component was cleaved from the mAb, leaving
hu14.18 and IL-2 as separate moieties. When intact IC is injected IV into mice, the half-life is
about 4 hours as is the half-life of IL-2 bound to IC, whereas the half-life of the hu14.18
component of the IC is 27 hours. This all suggests that the IC circulates intact for approximately
4 hours and then is cleaved. After the IL-2 is cleaved and cleared after 4 hours, the hu14.18
IgG circulates for a longer half-life. These data led to hu14.18-IL2 IC being given frequently
(daily) to maintain both IL-2 and hu14.18 in vivo activity[4].

3.2 Phase I Testing in MEL
3.2.1 Dosage—In this phase I study, 33 adults with refractory, metastatic MEL were treated
with hu14.18-IL2 with the purpose of evaluating this IC for safety, toxicity, maximal tolerated
dose(MTD), and immune activation after treatment[62]. The IC was administered for 3 days
as 4-hour IV infusions during week 1, because slower infusions have demonstrated less
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neuropathic pain than faster infusions of anti-GD2 mAb[63]. If patients demonstrated stable
or regressed disease, they could receive a second course at week 5. In nonhuman primate studies
[4] an MTD of 16 mg/m2/d demonstrated toxicity primarily due to IL-2 (hypotension and
capillary leak). To minimize unexpected toxicity in human studies, the starting dose in the
phase I trial was 1/20 of the daily MTD in primates (0.8 mg/m2/d) [4;46;62]. Therefore, dose
levels evaluated included 0.8, 1.6.3.2, 4.8, 6.0, and 7.5 mg/m2/day.

3.2.2 Toxicity/Safety—In 33 patients, 19 patients completed their first course with stable
disease and received a second course of IC, and of these 8 patients had stable disease after
completion of course 2. All patients had grade 2 fever. Most patients in the three highest dose
levels had pain (pelvic, abdominal, chest, or extremity) that resolved with IV opioids. Grade
3 adverse events included asymptomatic hypophosphatemia (11 patients), hyperglycemia
(three patients), hypotension (two patients), thrombocytopenia (one patient), hypoxia (three
patients), elevated hepatic transaminases (two patients), and hyperbilirubinemia (one patient).
There were no grade 4 adverse events. Dose-limiting toxicities at the MTD included reversible
hypoxia, transient hypotension, and transiently elevated ALT/AST. Two of six patients
developing DLT at 7.5 mg/m2, this dose level met the study criteria for MTD[4]. The grade 3
toxicities were similar to what has been previously reported for IL-2 and anti-GD2 mAb
treatments[30;45;46;58;64]. Dose limiting toxicities (DLT) caused by anti-GD2 mAbs include
fever, chills, nausea, and anaphylactoid reactions due to the cytokine activation. The most
characteristic DLT for anti-GD2 mAbs is transient neuropathic pain[4;65;66].

3.2.3 Tumor Response—In terms of tumor response, no patient demonstrated either a
complete or partial response(CR or PR). Eight patients had stable disease following two courses
of treatment. One subject had an objective decrease in a lung nodule following two courses of
therapy, but the overall disease response was scored as disease progression due to growth in a
distant node. The node was resected following hu14.18-IL2 therapy, and the subject remained
free from disease progression for 3 years, after which disease progression was noted and
alternate therapy begun.

Five of the 33 subjects entered the study with no measurable disease following surgical
resection of recurrences or metastases. Two of these 5 subjects (treated at 0.8 and 6.0 mg/m2/
day) continue with no evidence of disease (69–102 months). The other 3 showed recurrence
at 2, 6 and 92 months after starting hu14.18-IL2 treatment. One additional subject entered the
study following resection of proven pulmonary and nodal metastases, with residual small lung
abnormalities that were potentially residual melanoma. This subject had no evidence of
progressive disease for 59 months after treatment (4.8 mg/m2/day), when recurrent disease was
noted. The findings are consistent with the hypothesis that clinical benefit from an
immunotherapeutic intervention is more likely in subjects with a low tumor burden, as has
been shown for tumor bearing mice treated with this agent[67].

3.2.4 Pharmacokinetics and immune activation—Serum analyses for all 33 patients
was performed in order to evaluate pharmacokinetics and immune activation as measured by
lymphocytosis, peripheral-blood NK activity, and serum levels of the soluble alpha chain of
the IL-2R complex.

In order to evaluate pharmacokinetics, serum samples were obtained from all patients on days
1 and 3 at each of the following times: before the 4-hr infusion, 0.5 h into and at the completion
of the 4h infusion, and then 0.5h, 1h, 2h, 4h, 12h, and 20h after completion of the 4hr infusion.
All specimens were tested in an ELISA assay using an anti-id mAb(1A7) to capture and an
anti-IL2 mAb to measure intact hu14.18-IL-2 IC[44;68;69]. The peak serum levels of IC show
a progressive, nearly linear, increase with the first dose of IC. After Course-1,day-1 (C1D1),
the half-life of IC was 3.7±0.9hrs, which was between the half-life of 45 minutes for IL-2 and
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2–3 days for ch14.18mAb, and comparable to the half-life of ch14.18-IL-2 in mice[61].
ELISAs were performed for hu14.18mAb and had similar PK curves as for the intact IC,
differing from mice data. In mice, once cleaved from intact IC the residual ch14.18mAb
circulates with a half-life of 27 hours[61]. These data confirmed that the hu14.18-IL2 molecule
did not undergo cleavage of its IL2 component, either in vivo when administered IV to patients
or in human serum.

For both courses, there was an initial peripheral blood lymphopenia on days 2–4 that was
followed by a rebound lymphocytosis on days 5–22 in course 1. Both changes were dose-
dependent, and similarly occurred during course 2. Soluble IL-2Rα (sIL-2Rα) levels[70;71]
were obtained and were significantly increased over baseline at each time point from days 2–
8 in course 1 and 2. SIL-2Rα levels peaked at day 4–5 then declined, and the increase in levels
was dose-dependent(p<0.0014).

3.3 Phase I Testing in NBL
The Children’s Oncology Group has completed a trial using hu14.18-IL-2 in 27 pediatric
patients with recurrent NBL and MEL, using the same administration schedule of IC as the
previous adult MEL study except that 4 courses could be administered for those with stable
disease[60]. The clinical toxicities were similar to those in the adult MEL trial. The MTD was
12 mg/m2/d, and DLTs of hypotension(one patient requiring dopamine), allergic reaction,
blurred vision, neutropenia, thrombocytopenia, and leucopenia. All toxicities were reversible,
and there were no treatment-related deaths. Immune activation was noted with elevated
sIL2Rα and lymphocytosis. Again, no CR or PR was noted, however, three patients had clinical
changes suggestive of antitumor activity with radiographic and bone marrow response.

3.4 Phase II Testing in MEL and NBL
Based on the results from the phase I trials in MEL and NBL, phase II trials have recently been
completed in these settings as well. Both studies have been reported in abstract form[72;73].
The MEL trial treated 14 patients at 6 mg/m2/d for three days, repeated every 28 days and the
Children’s Oncology Group administered hu14.18-IL2 at 12 mg/m2/d for three days, repeated
every 28 days in 37 pediatric patients with recurrent or refractory stage 4 NBL. The toxicities
seen were similar to that seen in the Phase I study, there was 1 PR in the MEL study, and 5
CRs in the NBL study, particularly in children without bulky disease. Immunological
monitoring in the phase II MEL study had similar findings as reported in the phase I study
including a peripheral blood lymphocytosis on day 8 and increased C-reactive protein. Since
greater efficacy was seen in the MRD setting in mice and in patients with NBL, subsequent
testing in MEL is planned to evaluate patients in MRD. A recently initiated pilot MEL study
will determine the histological response to hu14.18-IL2 administered IV to patients with
resectable metastatic MEL. We will collect pilot data on the time to recurrence and survival
for patients with MEL in complete remission following surgery and treatment with hu14.18-
IL2. Subsequent studies to further explore IV administration of hu14.18-IL2 for patients with
non-bulky, MRD NBL or MEL are also being planned.

4. Future Direction
Intratumoral hu14.18-IL-2 IC

Recent preclinical work demonstrated that intratumorally (IT) administered hu14.18-IL-2 IC
results in enhanced antitumor effects against murine NXS2 NBL and human M21 MEL
xenografts compared to intravenous (IV) IC[74]. Mice were injected subcutaneously with
NXS2 NBL cells, and treated with either IT or IV IC for five days, for a total dose of 75ug of
IC. Mice receiving IT IC demonstrated a significantly decreased tumor volume compared to
mice receiving comparable IV doses (p<0.02, days 11–18). Tumor regressions were seen in a
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majority of mice (12 of 17) receiving IT IC(Fig 2)[74]. Rechallenges with NXS2 and YAC-1
were performed in tumor-free mice to test for specific anti-NXS2 memory development. Two
of the three re-challenged mice remained NXS2 tumor-free for over 30 days while the YAC-1
tumor challenges were not rejected.

To test for which cells are involved in the antitumor repsonse, GD2+ human M21 melanoma
tumors were xenografted into nude mice and treated with IT IC. Even in the absence of mature
T cells, IT IC resulted in significant antitumor effects, mimicking what has been demonstrated
in previous studies[40;74;75]. Clinical application of this concept is now being planned.

5. Mechanisms of Antitumor Efficacy and Tumor Escape in Tumor-Bearing
Mice

Mechanisms involved with tumor recurrence have been studied[76;77]. Administration of a
suboptimal IC dose of immunotherapy results in either NK- based antitumor responses in mice
where the NXS2 NBL tumors transiently regress and subsequently recurs. This model was
used to evaluate recurrent NXS2 tumors. In mice with recurrence after suboptimal hu14.18-
IL-2 therapy, tumors were noted to have enhanced MHC class I antigen expression compared
with tumors in PBS-treated mice. This contrasts with mice treated with Flt3-ligand (produces
T-cell-dependent antitumor memory), demonstrating recurrent tumor with decreased MHC
class I antigen expression. This suggests that tumors may have a selective advantage in resisting
the antitumor activity of therapy depending on in vivo immunoediting; NXS2 tumors appear
to modulate their phenotype to express higher or lower levels of MHC class I antigen in order
to resist either NK- or T-cell-mediated antitumor responses, respectively(Fig 3)[76]. When a
combined regimen was administered to recurrent NXS2 tumor-bearing mice, IC plus Flt3-L
therapy provided greater antitumor benefit and demonstrated protection from NXS2
rechallenge[77].

These preclinical studies have further demonstrated the mechanism of the antitumor effects of
this IC. Further studies will need to address how intratumoral therapy and T-cell-mediated
therapies can be incorporated into clinical trials for MEL and NBL.

6. Conclusion
Hu14.18-IL-2 is an immunocytokine linking IL-2 to the anti-GD2 mAb, 14.18, targeting GD2
+ tumors including melanoma and neuroblastoma. Preclinical data demonstrate hu14.18-IL2’s
ability to induce potent antitumor activity via NK-mediated ADCC and T-cell mediated
cytotoxicity. Phase I and II clinical trials in both adult MEL and pediatric NBL patients have
been performed demonstrating its safety in patients in doses that are able to induce immune
activation. The Phase II studies in advanced melanoma and recurrent/refractory neuroblastoma
are demonstrating some clinical antitumor effects of hu14.18-IL-2. Preclinical data in MEL,
and initial clinical data in neuroblastoma, suggest greater efficacy in the setting of MRD.
Current clinical testing is planned to test the clinical benefit of hu14.18-IL2 for patients with
MEL and neuroblastoma in MRD.

7. Expert Opinion
Distinct immune therapies for high-risk NBL and MEL are in clinical testing. Some are
technologically complex and difficult to deliver to the many patients potentially needing them
each year, while others have limited applicability. Large phase III trials are needed to determine
which can improve disease free and overall survival in MEL and NBL patients, particularly
those put into remission with standard therapy, but with a high likelihood of relapse. Hu14.18-
IL2 offers the advantages of long-term storage, ease of ordering and administration, broad
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patient applicability (without limitations due to HLA-phenotype of patient, as for certain
vaccines), and the ability to induce both NK and T-cell mediated antitumor effects. With
toxicity studies completed demonstrating acceptable profiles, and phase II studies showing
some antitumor activity, subsequent studies are being planned to evaluate anti-tumor activity
in patients with minimal disease, the setting where IC has been noted in preclinical animal
studies to be the most useful. Also, preclinical studies are investigating mechanisms of IC in
terms of antitumor effect where intratumoral administration of IC has better therapeutic effect
on both primary and distant tumors. Further studies will need to address optimal administration,
given the difficulty with multiple intratumoral injections if translated to the clinical setting for
patients with tumors that are not readily accessable for injection. Also, regimens adding IC
therapy to various chemotherapeutics or other immune therapies are being explored in
preclinical settings. Given the dramatic antitumor effects seen in preclinical studies and the
initial results seen in phase I and II clinical trials, continued clinical testing and development
of hu14.18-IL2 should continue.

Abbreviations

IC immunocytokine

mAb monoclonal antibody

MEL melanoma

NBL neuroblastoma

IL2R IL2 receptors

FcR Fc receptor
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Fig 1. Monoclonal antibodies and immunocytokines
(a) Chimeric monoclonal antibody (mAb) combining the constant region of a human antibody
with the variable domain of a murine antibody. Antigen specificity is conferred by the murine
variable domain. (b) In humanised mAb, human framework determinants, of both the heavy
and light chains replace the murine framework determinants, but the antigen specificity of the
original murine mAb is retained. (c,d) immunocytokines combine the mAb with covalently
linked cytokines, such as molecules of interleukin 2 (lL-2), to the C-terminus of each of the
heavy chains. Adapted, with permission, from Ref 59 (© 1999 Elsevier).
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Fig. 2. Enhanced antitumor effect of IT ICs compared to IV IC
A/J mice (five per group) were implanted with 2 × 10^6 NXS2 cells on day 0, and then treated
with either intratumoral (IT) PBS, IT immunocytokine (IC) at 15 ug/50 uL, or intravenous (IV)
IC (15 ug/200uL) on days 7–11 after tumor implantation. (p<0.0015 for IT hu14.18-IL2 vs IT
PBS, days 11–18; p<0.02 for IT IC vs IV IC on days 11–18.) Adapted from Ref. 73 (With Kind
permission of Springer Science+Business Media, ©2007).
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Fig 3. NXS2 Tumors modulate class I, up or down, to escape T or NK mediated immunotherapy
In mice with recurrence after suboptimal hu14.18-IL-2 therapy(response is mediated by NK
cells), tumors had enhanced MHC class I antigen expression compared with PBS-treated
tumors. In contrast mice treated with Flt3-ligand (produces T-cell-dependent antitumor
memory), demonstrates recurrent tumor with decreased MHC class I expression. Therefore
tumors may have a selective advantage in resisting the antitumor activity of therapy depending
on in vivo immunoediting; NXS2 tumors appear to express higher or lower levels of MHC
class I in order to resist either NK- or T-cell-mediated antitumor responses, respectively.
Adapted from data in Refs 74 and 76.
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