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Phenethyl isothiocyanate (PEITC), a component in cruciferous vegetables, can block chemical carcinogenesis in animal models.
Our objective was to determine the effect of treatment with PEITC on gene expression changes in MCF-7 human breast cancer
cells in order to evaluate potential mechanisms involved in its chemopreventive effects. MCF-7 cells were treated for 48 hours with
either PEITC (3 uM) or the vehicle. Total RNA was extracted from cell membrane preparations, and labeled cDNA’s representing
the mRNA pool were reverse-transcribed directly from total RNA isolated for use in the microarray hybridizations. Two specific
human GE Array Kits (Superarray Inc.) that both contain 23 marker genes, related to signal transduction pathways or cancer/tumor
suppression, plus 2 housekeeping genes (f-actin and GAPDH), were utilized. Arrays from treated and control cells (n = 4 per
group) were evaluated using a Student’s t-test. Gene expression was significantly induced for tumor protein p53 (p53), cyclin-
dependent kinase inhibitor 1C (p57 Kip2), breast cancer Type 2 early onset (BRCA2), cAMP responsive element binding protein
2 (ATF-2), interleukin 2 (IL-2), heat shock 27 KD protein (hsp27), and CYP19 (aromatase). Induction of p57 Kip2, p53, BRCA2,
IL-2, and ATF-2 would be expected to decrease cellular proliferation and increase tumor suppression and/or apoptosis. PEITC
treatment produced significant alterations in some genes involved in tumor suppression and cellular proliferation/apoptosis that

may be important in explaining the chemopreventive effects of PEITC.

1. Introduction

Diet and environmental factors may represent very sig-
nificant factors in the genesis of breast cancer. Organic
isothiocyanates (ITCs, R-N=C=S), also known as mustard
oils, are present in the form of glucosinolates in Brassica
and other vegetables of the family Cruciferae (e.g., cabbage,
cauliflower, brussels sprouts, watercress, and broccoli, kale)
and the genus Raphanus (radishes and daikons) [1]. When
vegetables are ingested, ITCs are liberated through the
hydrolysis of glucosinolates either by myrosinase that is
released when vegetables are chewed, or by microflora in
the intestinal tract [1, 2]. The human intake of glucosino-
lates, the biological precursors of ITCs, can be as high as
300 mg/day (660 ymol/day) and tens of milligrams of ITCs
are released following the consumption of vegetables in the
diet [3]. Additionally, dietary supplements containing ITCs
or extracts of cruciferous vegetables, such as Cruciferous
Plus and Broccoli Sprouts, are marketed for their health
promotion properties.

More than 20 natural and synthetic ITCs have been
shown to block chemical carcinogenesis induced by environ-
mental carcinogens including polycyclic aromatic hydrocar-
bons and nitrosamines in animal models [3-6]. It has been
reported that urinary ITC levels are significantly associated
with reduced breast cancer risk in pre- and postmenopausal
women [7]. One study demonstrated that Brassica vegetable
consumption increases the ratio of 2-hydroxyestrone (a non-
carcinogenic metabolite of estrogen) to 16a-hydroxyestrone
(a carcinogenic metabolite of estrogen), in healthy post-
menopausal women [8]. The mechanisms underlying the
chemopreventive effects of ITCs are likely diverse and multi-
factorial and remain largely unknown at this time.

Phenethyl isothiocyanate (PEITC, Figurel) is one of
the most extensively studied ITCs; it has been reported
to have effective chemopreventive activity for a wide
variety of tumors, and no apparent toxicity has been
observed in animal models [9]. PEITC can inhibit Phase I
enzymes, including the various cytochrome P450 enzymes
that are responsible for the conversion of procarcinogens



FiGure 1: Chemical structure of phenethyl isothiocyanate (PEITC).

to highly reactive electrophilic carcinogens that can form
DNA adducts; PEITC can also induce Phase II enzymes,
including glutathione S-transferase and quinone reductase,
that inactivate carcinogens and promote their excretion [10,
11]. More recently, it has been found that PEITC could
induce cell cycle arrest and apoptotic cell death [12-17]. The
ICsq value of PEITC for inhibition of cell growth of human
breast cancer MCF-7 cells (evaluated over a 48-h period)
is 6.51 = 0.86uM [16]. Interestingly, PEITC acts more
potently than the pure antiestrogen ICI 182,780 (Fulvestrant;
Faslodex) to inhibit the growth of estrogen receptor positive
breast cancer MCF-7 and H3396 cells and ER-negative MDA-
MB-231 and SK-BR-3 cells [17]. In addition, PEITC, but
not ICI 182,780, can downregulate the steady state levels of
ER-a36 protein (36 kDa variant of the ER-a, which mediates
membrane-initiated estrogen and antiestrogen signaling) in
breast cancer cells [17]. The exact mechanism underlying
the effect of PEITC on the ER-a36 protein is unknown
[17]. PEITC is known to selectively kill cancer cells, but not
normal cells, by generating reactive oxygen species (ROS)
to trigger signal transduction, resulting in cell cycle arrest
and/or apoptosis [18]. PEITC is also an effective inhibitor
of hypoxia inducible factor (HIF), a transcription factor that
plays an important role in the expression of proangiogenic
factors [19].

To better understand the precise molecular mecha-
nism(s) by which PEITC exerts its effects on MCEF-7
human breast cancer cells, we utilized cDNA gene arrays
to assess the gene expression profiles of breast cancer cells
treated with physiologically relevant levels (3 uM) of PEITC.
Studies have examined the mechanisms underlying the cell
growth inhibitory effects of PEITC in human leukemia [20],
lung cancer [21], Hela cervical cancer [22], HT-29 colon
adenocarcinoma [15], pancreatic cancer [23], and human
prostate cancer PC-3 [24] cells. However, few studies have
used breast cancer cells for investigating the effect of PEITC
on gene expression. In the present study, genes involved in
cell cycle pathways, apoptosis, and metastasis, important for
chemoprevention, were evaluated by gene-array expression
technology.

2. Methods

2.1. Materials. PEITC and dimethyl sulfoxide (DMSO) were
purchased from Sigma-Aldrich (St. Louis, MO). RPMI
1640 medium, fetal bovine serum, and PBS were from
Invitrogen (Carlsbad, CA). MCF-7 cells were obtained from
the National Cancer Institute.

Evidence-Based Complementary and Alternative Medicine

2.2. Cell Culture. MCF-7 cells were grown in 75cm? cell
culture flasks in RPMI 1640 culture media supplemented
with 10% FBS, 100 units/ml penicillin and 100 yg/ml of
streptomycin, in a 37°C incubator in a humidified atmo-
sphere of 5% C0,/95% air. MCEF-7 cells, with passage
numbers of 16 to 24, were used in the experiments. Cells
were treated with either 3uM PEITC or 0.015% DMSO
(vehicle control) for 48 h. The rationale for choosing this
time point was to capture gene expression profiles of genes
involved during the onset of growth inhibition and apoptotic
processes. The concentration of PEITC used is one that
is achievable in plasma after the consumption of food or
dietary supplements. Plasma concentration of up to 1 uM has
been reported after the ingestion of watercress 100 g [25].

2.3. Total RNA Isolation. Total RNA from each sam-
ple was isolated using a SV Total RNA Isolation Sys-
tem (Promega, Cat.#23100), following the manufacturer’s
instructions. Total RNA was quantitated spectrophotomet-
rically at 260 nm.

2.4. Gene Array. Two specific human GEArray Kits (Super-
Array Inc., Frederick, MD, signal transduction pathway array
and cancer/tumor suppressor array), were utilized. Each
array consists of 23 genes in duplicate, as well as control spots
(PUCI18 as negative control;  actin and glyceraldehyde-
3-phosphate dehydrogenase (G3PDH)) (Table 1). The gene
arrays were used according to the manufacturer’s instruc-
tions. In brief, using the reagents provided (i.e., 5X GEAla-
beling Buffer, RNase-free water, RT Primer, RNase Inhibitor,
and the array-specific reagent), gene specific cDNAs were
prepared and labeled from total RNA by reverse transcription
with MMLV reverse transcriptase (Invitrogen, Carlsbad, CA)
and chemiluminescence-labeled biotin dUTP (Invitrogen,
Carlsbad, CA). Relative expression levels of each gene were
analyzed using a Kodak Image Station 440CE. f3 actin was
used for normalization. Each experiment was repeated four
times.

2.5. Real-Time Quantitative Reverse Transcriptase-Polymerase
Chain Reaction (RTQ RT-PCR). Real-time quantitative
reverse transcriptase polymerase chain reaction was per-
formed on f actin (for normalization) and CYP19 using
Stratagene’s Mx4000 Multiplex Quantitative PCR System
(Stratagene, La Jolla, CA). The same total RNA prepared
for the gene arrays was also used for RTQ RT-PCR. Total
RNA (560 ng) from each sample was reverse transcribed into
cDNA using a Superscript first strand cDNA synthesis kit
(Invitrogen, Carlsbad, CA) according to the manufacturer’s
protocol. PCR reactions for CYP19 and f actin were
carried out by mixing 5uL of ¢cDNA, 5uL of 10 x PCR
buffer, 2uL of deoxynucleoside triphosphate mix (5mM
each dATP, dCTP, dGTP, and dTTP), 1 uL each of 10uM
primer, 0.5 yL reference dye rhodamine-X (1/500 dilution,
Molecular Probes, Eugene, OR), 0.5 uL SYBR green I (1/750
dilution, Molecular Probes, Eugene, Or), 2 U Taq polymerase
(Eppendorf, Westbury, NY) and 34.75 yL H,O, and amplified
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TasLE 1: List of genes present in superarrays.

(a) Cancer/tumor suppressor array

APC

BRCA1

BRCA2

CBP

DPC4

IRF-1

MSH2

NEF2

p18 (cdk4 inhibitor)
p19Ink4d
p21Wafl (p21Cipl)
p27Kipl

p300

p53

p57Kip2

PTEN

Rb

TGFbR1 (ALK-5)
TGFbR2

TSC-1

TSC-2

VHL

WT1

Adenomatosis polyposis coli

Breast cancer 1, early onset

Breast cancer 2, early onset

Human CREB-binding protein

Human homozygous deletion target in pancreatic carcinoma (DPC4)
Interferon regulatory factor 1

mut$ (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)
Neurofibromin 2 (bilateral acoustic neuroma)

Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
Cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)
Cyclin-dependent kinase inhibitor 1A (p21, Cipl)

Cyclin-dependent kinase inhibitor 1B (p27, Kip1)

CREB-binding protein

Tumor protein p53 (Li-Fraumeni syndrome)

Cyclin-dependent kinase inhibitor 1C (p57, Kip2)

Phosphatase and tensin homolog (mutated in multiple advanced cancers 1

Retinoblastoma 1 (including osteosarcoma)

Transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53 kD)

Transforming growth factor, beta receptor II (70-80 kD)
Tuberous sclerosis 1

Tuberous sclerosis 2

Von Hippel-Lindau syndrome

Wilms tumor 1

(b) Signal transduction pathway array

ATF-2 (creb-2)
bax

CD5

c-fos

c-myc

CYP19 (aromatase p450) (p450XIX)
egr-1

Fas (Apo-1) (CD95)
gadd45

hsf1 (tcf5)
hsp27 (hsp bl)
hsp90 (CDw52)
IxkBa(mad3)
1L-2

iNOS

mdm?2

NF«xB

p1omKsd

p21"all (p21Cipt
p53

p57KiP2

pig7

pig8

cAMP responsive element binding protein 2
BCL2-associated X protein

T-cell surface glycoprotein CD5

Human cellular oncogene c-fos

v-myc avian myelocytomatosis viral oncogene homolog
cytochrome P450, subfamily XIX (aromatization of androgens)
Early growth response 1

Tumor necrosis factor receptor superfamily, member 6
DNA-damage-inducible transcript 1

HSF1 (TCF5, Heat shock factor protein)

Heat shock 27 KD protein

Hsp90 (Human mRNA for 90-kDa heat-shock protein)

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

Interleukin 2

Inducible nitric oxide synthase (NOS)

Mouse double minute 2, human homolog of; p53-binding protein

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)
Cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4)
Cyclin-dependent kinase inhibitor 1A (p21, Cip1)

Tumor protein p53 (Li-Fraumeni syndrome)

Cyclin-dependent kinase inhibitor 1C (p57, Kip2)

LPS-induced TNF-alpha factor

etoposide-induced mRNA
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F1GURE 2: Significantly altered genes by PEITC from the current study are presented in yellow boxes, and the effects of PEITC that have
already been reported in previous studies are presented in blue boxes. All genes (ATF-2, p53, Hsp27, p57, BRCA2, IL-2) were upregulated.
ATF-2, p53, Hsp27 are transcription factors which are all located downstream of MAPK signaling pathway (http://david.abcc.ncifcrf.gov/).
Induction of ATF-2, p53 and Hsp27 in response to various stresses correlates with increased resistance to subsequent cellular damage [27].
Transcriptional activation of the p53 target genes plays a critical role in the cellular response to DNA damage, cellular stress and other signals
regulating the cell cycle and apoptosis [28, 29]. IL-2 induces G2 cell cycle arrest via Akt pathway [30]. BRCA2 is essential for the maintenance

of genetic stability through a function in DNA repair [31].

TasLE 2: Significantly changed genes following treatment with 3 uM
of PEITC (n =4, *P < .05, ***P < .001). Results are expressed
as fold change as compared to vehicle controls and represent the
average of five independent microarray experiments.

Gene name Description Fold + S.D.
p57 cyclin-dependent kinase inhibitor IC ~ 5.23*+ 2.74
CYP19 cytochrome P450, subfamily XIX 5.22%**+ 0.988
BRCA2 Breast Cancer 2, early-onset 4.22%+2.30
IL-2 Interleukin-2, T-cell growth factor 3.16%+ 1.22
ATF2 Activating Transcription Factor 2 2.60* = 0.900
p53 Tumor protein p53 2.12*+ 1.46
Hsp27 Heat shock 27 KD protein 1.84* + 0.409

for 40 cycles. Primers for § actin (forward: 5'-CTGGCC-
GGGACCTGACT-3', Reverse: 5'- TCCTTAATGTCACGC-
ACGATTT-3’, annealing temperature: 57°C) were designed
using the computer program Primer Express (Perkin-
Elmer Applied Biosystems, Foster City, CA). Primers for
CYP19 (Forward: 5'-TGGAAAACAACTCGACCCTTCT-3’,
Reverse: 5'-CACAGACTGTGACCATACGAACAA-3") have
been described [26]. The PCR products were resolved by
electrophoresis through a 2% agarose gel to confirm target
size and the presence of single PCR product.

The PCR product of each gene was cloned into a pCR 2.1
TOPO vector (Invitrogen, Carlsbad, CA) and transformed
into One Shot chemically competent Escherichia coli cells
(Invitrogen, Carlsbad, CA). Cloned PCR products were con-
firmed by sequencing and used to construct standard curves
for absolute quantification of copy number. The standard
curves were run in triplicate concurrently on the same plate

with samples, which were also run in triplicate. The reported
copy number was estimated from the linear regression of the
standard curve on the same plate.

2.6. Statistical Analysis. Student’s t-tests with P < .05 was
used for statistical analysis for both arrays and RTQ RT-PCR.

3. Results

Treatment of MCF-7 cells for 48 hours with PEITC (3 uM)
significantly altered the expression of seven of the 46 genes
present on the two arrays: p53, ATF-2, hsp27, BRCA2, IL-
2, p57, and CYP19 (Table 2 and Figure 2). All 7 genes were
upregulated by ~2- to 5-fold. Alterations in 5 of these genes
(p53, ATF2, BRCA2, IL-2, and p57) could be considered
to have beneficial effects for cancer prevention. A listing of
genes tested using Superarrays (Cancer/Tumor suppressor
array and Signal transduction pathway array) can be found
in Table 1.

4. Discussion

PEITC increased the expression of p53, a tumor suppressor
gene, by 2.12 fold [32]. Tumor suppressor genes encode
for proteins whose normal function is to inhibit cell
transformation and whose inactivation results in tumor cell
growth and survival [32]. Located on chromosome band
17p13, p53 encodes a 53-kd multifunctional transcription
factor that regulates the expression of genes involved in
cell cycle control, apoptosis, DNA repair, and angiogenesis
[32]. Induction of p53 by PEITC at a low concentrations
(=10uM) is consistent with the findings of a publication
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that reported the effects of PEITC in human nonsmall cell
lung carcinoma A549 cells [33]. In these cells, induction
of apoptosis occurred at low concentrations of PEITC
(=10uM), and Western blot analyses demonstrated that
increased expression of p53 protein was associated with
PEITC-induced apoptosis [33]. c-Jun N-terminal kinase
(JNK) is involved in PEITC-induced apoptosis, and p53
is known as a substrate of JNK [34]. In contrast, recent
immunoblot analyses showed that PEITC 3uM did not
increase the protein expression of p53 in MCF-7 cells [35].
However, the shorter incubation times (12, 24, and 36 hours)
used in this study may not have been long enough to produce
changes in protein expression. The treatment of MCF-7 cells
with PEITC (10 or 30 uM for 24 or 36 h) suppressed the
expression of p53 [35], suggesting that the effect of PEITC
on p53 expression may be dose- and time-dependent.

Although we did not investigate the effect of PEITC on
P53 activity, it is possible that PEITC also induces p53 activity
through GADD34 (Growth Arrest and DNA Damage-
Inducible Protein), a proapoptotic gene. In a previous study,
25uM PEITC upregulated expression of GADD34 mRNA
[36], and GADD34 is known to induce p53 phosphorylation
[37]. In fact, it has recently been reported that PEITC can
selectively deplete mutant p53 and restore wild type function
to p53 in a variety of tumor cells [38]. In this study, tumor
cell lines with mutant p53 became more sensitive to PEITC-
induced cytotoxicity than tumor cells with wild type p53,
suggesting that the normal p53 checkpoint control pathways
have been restored in the mutant p53-expressing tumor cells.

Expression of ATF-2 was increased by PEITC (2.60-fold).
ATE-2 is a member of the ATF/CREB family of proteins. It
is also known as a cAMP response element-binding protein
(CREBP-1). It acts as a transcription factor which regulates
transcription in response to the extracellular signals and
has a decisive role in cell proliferation, tumorigenesis and
apoptosis. Breast cancer frequently develops in mutant mice
heterozygous for the ATF-2 gene [39]. Therefore, the ATF-2
gene is considered as a candidate tumor suppressor gene [39].
Changes in gene expression may be mediated through the
mitogen-activated protein kinase (MAPK) pathway. PEITC
can regulate MAPK—mediated luciferase reporter gene
activities [40]. MAPKs can phosphorylate many transcrip-
tion factors, including c-Jun and ATF-2, and ultimately lead
to changes in gene expression [40].

PEITC exposure resulted in the upregulation of Hsp27
by 1.84-fold in MCF-7 cells in this study. The induction
of Hsp27 in response to various types of stress correlates
with increased resistance to subsequent cellular damage [27].
Hsp27 has also been reported to inhibit apoptosis in NFxB
and p53 signaling pathways [41]. However, activation of
Hsp27 by PEITC may not result in inhibition of apoptosis,
as reported for PEITC-treated human hepatoma HepG2 cells
[41].

p57 is a tight-binding inhibitor of several G1 cyclin/Cdk
complexes and a negative regulator of cell proliferation [42].
Even though information is lacking regarding the effect of
PEITC on p57 gene expression, there are several studies
which have shown that PEITC can induce other regulators
of cell cycle progression at G1, such as p21WAF-1/Cip-1

and p27Kipl, resulting in a cell-cycle arrest in the GI-
phase in vascular smooth muscle cells in vitro [43], and
prostate cancer cells in xenograft mice [44]. PEITC can also
induce G1 cell cycle arrest on HT-29 cells [45]. Mutations of
this gene are implicated in sporadic cancers and Beckwith-
Wiedemann syndrome, suggesting that this gene is a tumor
suppressor candidate [46].

PEITC upregulated BRCA2 by 4.22-fold in the current
study. BRCA2 functions as a tumor suppressor gene which
stabilizes DNA structures at stalled replication forks [47].
Mutations in BRCA2 have been linked to an elevated risk of
breast cancer in young women, which has been demonstrated
to be due to the inheritance of dominant susceptibility
genes conferring a high risk of breast cancer. An impaired
cellular response to DNA damage appears to be a plausible
mechanism by which BRCA carriers are at an increased risk
of breast cancer [47].

Interleukin-2 (IL-2) was upregulated by PEITC in this
investigation. IL-2 is a cytokine produced by T cells whose
main function is to stimulate the growth and cytotoxic
response of activated T lymphocytes [48]. IL-2 has been
used to stimulate the immune system for the treatment of
a number of different tumors, including breast cancer [48].
Foa et al. [49] reported that the constitutive secretion of IL-2
by tumor cells led to a reduced or abrogated tumorigenicity
in several different tumor models [49]. IL-2 also induces
G2 cell cycle arrest via the Akt pathway [30]. However,
other studies have suggested that IL-2 therapy may stimulate
tumor cell growth. For example, a short 2-day treatment of
low-dose IL-2 resulted in a decrease in tumor load and an
increase in survival, whereas the longer administration of
IL-2 promoted CD8 T cell growth [50]. Also, the addition
of IL-2 to cyclophosphamide therapy reversed the growth
inhibitory effects of cyclophosphamide on B16 melanoma
cells and decreased survival time, compared with treatment
with cyclophosphamide alone [51]. Therefore, IL-2 may have
concentration/time-dependent effects on tumor growth and
cytotoxicity.

The gene CYP19 expression was significantly increased
by PEITC exposure. We confirmed the upregulation of
CYP19 observed in the gene array studies, using RTQ RT-
PCR. After normalization to 8 actin, the increase of CYP19
was 1.8-fold compared to controls (P = .060) by RTQ RT-
PCR, compared to 5.22-fold from the gene array data. The
AP-1 motif, which regulates the CYP19 promoter [52], may
be involved in the CYP19 induction, because 5-10 yuM PEITC
has been reported to activate AP-1 activity in both prostate
and bladder cancer cell lines [53, 54].

The induction of CYP19 (aromatase) which is a key
enzyme involved in the conversion of androgens to estrogens,
would be considered a negative effect with regards to cancer
prevention [55]. Since estrogen causes cellular proliferation
and some estrogen metabolites are considered carcinogens,
local expression of aromatase has been correlated with tumor
initiation and progression [55]. However, the significance of
these results is unknown at this time since it is not known
if increased transcription of the aromatase gene results in
increased activity. Further studies concerning the effect of
PEITC on CYP19 enzyme activity are needed.



5. Conclusions

In conclusion, PEITC treatment (3 yM) can produce sig-
nificant alterations in genes involved in tumor suppression
and cellular proliferation/apoptosis. We report for the first
time transcriptional induction of p53, ATF-2, hsp27, BRCA2,
IL-2, p57, and CYP19 by PEITC in the human breast
cancer cells, and our results are supported by other studies
which have reported increased expression [33] and increased
activity [38] of p53 protein and activation of Hsp27 [41].
These alterations in gene expression may be important in the
mechanism of action of PEITC, especially for its chemopre-
ventive effects. Further study is needed to capture some of the
early response genes. In addition, the overall effect elicited
by beneficial and adverse transcriptional changes needs to be
considered. The present study may be useful as a first step in
understanding the mechanisms underlying the breast cancer
preventive activities of PEITC.

Abbreviations

PEITC: Phenethyl Isothiocyanate
DMSO: Dimethyl sulfoxide

MMLYV: Moloney murine leukemia virus
CYP:  Cytochrome P450

MAPK: Mitogen-activated protein kinase
IL-2:  Interleukin-2.
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