
Regulation of Vascular Smooth Muscle Cell Growth Targeting the
Final Common Pathway

Angela M. Taylor and Coleen A. McNamara
University of Virginia Health Sciences Center, Charlottes-ville, Va

Arterial injury initiates a complex series of events including proliferation of smooth muscle
cells (SMCs) that culminates in the formation of the neointima. Neointimal formation can be
a clinically problematic event, significantly narrowing the vessel lumen after angioplasty,
bypass vein grafting, and transplant. Numerous growth factors and cytokines trigger the
complex and redundant signaling pathways that lead to cell cycle entry.1–6 Because of the
redundancy of these signaling pathways, targeting individual growth factors and cytokines has
failed to affect neointimal proliferation and has obviated the need to target the “final common
pathway” of events.1

Growth factor–stimulated proliferation is mediated by an early upregulation in transcription
of the proto-oncogenes c-fos, c-myc, c-myb, B-myb, and ras.1,7–10 The gene products then act
as transcription factors that increase expression of cell cycle regulatory genes, including the
cyclins, that when complexed with cyclin-dependent kinases (CDKs), coordinate cell cycle
progression.7,11–14 Certain proto-oncogene gene products also have the ability to augment
cyclin-associated kinase activity and to couple growth regulatory signals to second messenger
pathways.15,16 Early upregulation of proliferating cell nuclear antigen (PCNA) occurs as well,
stimulating DNA-polymerase-δ ability. In opposition to cell cycle progression are the cyclin-
dependent kinase inhibitors (CKIs), such as p27kip1 and p21cip1. Transcription factors, such as
p53, GAX, GATA-6, E2A, and Id, are expressed in the developing neointima after vascular
injury and regulate the expression of the CKIs.17–20 The final common pathway, therefore,
involves regulation of the cell cycle through transcription and translation of cell cycle proteins.
In addition, regulation of cell cycle protein function through post-translational modifications,
such as phosphorylation, is also important.

The study by Zhang et al21 in this issue of Arteriosclerosis, Thrombosis, and Vascular
Biology describes the role of Grb2 in vascular neointimal formation and provides further
evidence underscoring the rationale of targeting the final common pathway. The authors focus
mainly on inhibiting downstream results of ras activation including activation of the Raf-MEK-
ERK MAPK cascade, PI3 kinase-PDK1-Akt cascade, ral cascade, JNK, and p38 MAPKs all
of which culminate in affecting gene expression, cytoskeletal regulation, metabolism, and cell
cycle progression (Figure). In order to accomplish this, they focus on the protein Grb2, which
facilitates ras activation in response to activation of several upstream receptors. Clearly Grb2
is important to normal development in that the knockout mice do not survive embryogenesis
due to defective endoderm and inability to develop epiblast. The authors demonstrate that Grb2
is, indeed, important to SMC proliferation and neointimal development following injury.
Through use of morpholino anti-sense oligodeoxynucleotides (ODNs) directed against Grb2,
it is clearly shown that reducing Grb2 levels results in decreased SMC growth in culture. They
further demonstrate that Grb+/− animals develop less neointima in response to injury. They
nicely show that this likely occurs through decreased activation of p38, ERK and JNK, thus
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creating a break in the series of events involved in the final pathway leading to cellular
proliferation. Grb2, therefore, represents a possibly useful target for in vivo oligonucleotide or
pharmacologic therapy as it appears to have multiple effects on downstream participants in the
final common pathway of events.

Manipulation of the expression and function of these final common pathway proteins does
indeed lead to reduction in neointimal formation after injury. Inhibition of membrane
adherence of the small G protein p21ras with a farnesyl transferase inhibitor inhibited activation
of MAPK, thus decreasing neointimal size in injured porcine coronary arteries.22 Growth factor
receptor tyrosine kinases have also been shown to be useful targets as inhibitors prevent the
initial phosphorylation event necessary for recruiting downstream cell cycle regulators thus
decreasing cell growth.23 Cdk2 inhibitors have also been successful in inhibiting neointimal
formation through their ability to block induction of cyclin D1, PCNA, and
hyperphosphorylation of the retinoblastoma protein.24,25 Antisense ODNs have been used to
inhibit the cell cycle regulatory genes c-myb, PCNA, c-myc, AP-I, cdc2, and cdk2, resulting
in a decrease in neointimal formation after injury in rat carotid models.26–30 Trans-catheter
delivery of c-myc antisense ODNs in a porcine coronary model was also effective as was the
treatment of vein grafts with antisense ODN against PCNA and Cdk1.31–33 Further, multigene
strategies have been shown to be more effective than targeting a single gene.26,28 ODN decoys
have also been developed to prevent interaction between the transcription factor and its targeted
promoter region and have been used successfully to bind the factors E2F and AP-1 in arterial
balloon injury models.34–36 Conditional expression of a dominant-negative c-myb in
transgenic mice, as well, provided means for decreased neointimal formation.37 Ribozymes
have been used to cleave target mRNA of Cdk1 and PCNA decreasing neointimal formation
in rat carotid injury models.1 Overexpression of inhibitory molecules has also been
implemented via adenoviral vectors and liposome-mediated gene transfer. Overexpression of
the inhibitory molecules p21cip1, p27kip1, GAX, GATA-6, and p53 have all resulted in
decreased neointimal formation in animal arterial injury models.1,17,38–42

In addition to SMC proliferation, multiple other processes are involved in neointimal formation
after vascular injury such as inflammation, matrix formation, migration, and loss of vasoactive
responses.1,8 Indeed, similar decreases in neointimal size in vivo have been attained targeting
these aspects of neointimal formation.43–49 Thus, advances in understanding the molecular
mechanisms involved in neointimal formation have given us many potential targets for limiting
neointimal formation in humans. Yet few of these strategies have been successfully brought
to the clinical arena.

The current armamentarium for targeting the neointimal formation in humans includes
pharmacologic agents and brachytherapy. Pharmacologic agents have been studied in relation
to various components of the pathway. Rapamycin has been shown to inhibit down regulation
of p27kip1 and block enzymatic activation of cyclin-dependent kinases and phosphorylation of
the retinoblastoma gene product thus inhibiting proliferation.50–53 Paclitaxel stabilizes
microtubules and indirectly upregulates p21cip1.54,55 Rapamycin- and paclitaxel-coated stents
have been used successfully as directly delivered pharmacologic therapy in humans, effectively
decreasing neointimal formation after stent placement.56–59 However, pharmacologic stents
have failed to obliterate restenosis as initially suggested and require longer periods of
anticoagulation.60,61 Brachytherapy employs beta and gamma radiation to create breaks in
double stranded DNA halting cell division and successfully decreasing rates of restenosis.62–
64 Edge stenosis and late total occlusion have complicated its use.65,66 Although these therapies
have greatly impacted restenosis, they have clinically problematic limitations and do not
address the issues of vein graft occlusion and transplant arteriopathy. Local delivery of
oligonucleotides that bind the cell cycle regulatory factor E2F has successfully prevented vein
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graft failure in peripheral and coronary vein graft bypasses in human trials representing a unique
class of therapy that may prove useful in multiple cardiovascular disease processes.67,68

It is, therefore, of extreme importance that we continue, as these authors have, to search for
new mechanisms that regulate neointimal proliferation, new targets that may limit this process,
and new mechanisms of therapy. Both our wealth and lack of knowledge present us with the
difficult task of somehow translating this knowledge into clinically relevant and useful
strategies while we still strive to further elucidate the final common pathway.
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Figure.
Schematic diagram showing the results of ras activation by Grb2. Grb2 translocates from the
cytosol to the cell membrane, binds to the internal portion of receptor tyrosine kinases and
facilitates ras activation by delivering SOS, the guanine nucleotide exchange factor to ras.
Activation of ras results in the triggering of several intra-cellular signaling cascades and the
secondary activation of other kinases regulating gene expression and cell cycle progression.
Grb2, critical effectors downstream (boxes) and regulators of gene expression in the nucleus
are all potential therapeutic targets. PDGF indicates platelet derived growth factor; bFGF, basic
fibroblast growth factor; EGF, epidermal growth factor; ATP, adenosine triphosphate; PI3
kinase, phosphatidylinositol-3′ kinase; ralGDS, ral guanine nucleotide dissociation stimulator;
ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; JNK, c-
Jun-NH2-terminal kinase; PCNA, proliferating cell nuclear antigen.
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