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Diabetes mellitus increases the risk of developing cardiovascular diseases such as coronary artery disease and heart failure. Studies have
shown that the heart failure risk is increased in diabetic patients even after adjusting for coronary artery disease and hypertension. Although
the cause of this increased heart failure risk is multifactorial, increasing evidence suggests that derangements in cardiac energy metabolism
play an important role. In particular, abnormalities in cardiomyocyte mitochondrial energetics appear to contribute substantially to the devel-
opment of cardiac dysfunction in diabetes. This review will summarize these abnormalities in mitochondrial function and discuss potential
underlying mechanisms.
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1. Introduction
It is increasingly recognized that mechanisms independent of coronary
artery disease and hypertension contribute to an increased risk for
the development of heart failure in diabetic subjects. Already 40
years ago, Rubler et al.1 described four diabetic patients suffering
from heart failure, with normal coronary arteries and no other
obvious aetiologies for heart failure. This finding has been confirmed
in several subsequent studies.2,3 Other studies have shown that the
increased risk for developing heart failure persists in diabetic patients
after adjusting for age, blood pressure, weight, cholesterol, and coron-
ary artery disease.4,5 These observations led to the introduction of
the term ‘diabetic cardiomyopathy’, which describes ventricular dys-
function occurring in diabetic patients that might not be attributable
to underlying coronary artery disease and hypertension. It has also
been used to describe changes in the heart that amplifies left ventri-
cular dysfunction that occurs in diabetic subjects following pressure
overload or ischaemia, relative to similarly affected non-diabetics.6,7

The term now includes diabetic individuals with diastolic dysfunction,
the prevalence of which may be as high as 60% in well-controlled
Type 2 diabetic patients.6

Although the pathophysiological mechanisms leading to the
increased risk for the development of heart failure are certainly multi-
factorial, emerging evidence suggests that derangements in cardiac
energy metabolism play a fundamental role in the pathogenesis of dia-
betic cardiomyopathy. Recent studies focusing on mitochondrial func-
tion point towards an important role of abnormalities in cardiac
mitochondria. The current review will describe these mitochondrial

abnormalities and discuss potential underlying mechanisms that lead
to cardiac mitochondrial dysfunction.

2. Myocardial mitochondrial
dysfunction in humans with diabetes
Although only few studies have attempted to examine myocardial
mitochondrial function in human diabetes, several studies conducted
in recent years suggest that mitochondrial dysfunction likely occurs
in the hearts of humans with diabetes or insulin resistance. Peterson
et al.8 reported that in young females with obesity and insulin resist-
ance, increased body mass index and impaired glucose tolerance are
associated with increased myocardial oxygen consumption, reduced
cardiac efficiency (¼ratio of cardiac work to O2 consumption), and
increased fatty acid utilization. Since both O2 consumption and fatty
acid oxidation occur in mitochondria, this study pointed towards
alterations in mitochondrial energy metabolism. Support for impair-
ment in cardiac mitochondrial bioenergetics in Type 2 diabetes has
come from studies using 31P nuclear magnetic resonance (NMR) spec-
troscopy, demonstrating that Type 2 diabetic patients had reduced
cardiac phosphocreatine (pCr)/ATP ratios, suggesting that mitochon-
drial high-energy phosphate metabolism may be impaired, although
changes in the total creatine pool and increased ATP utilization, as
opposed to ATP generation, may also contribute.9,10 These findings
are however similar to observations in failing hearts, which are
also characterized by decreased pCr/ATP ratios and impairment in
mitochondrial respiratory capacity.11– 13 In contrast, studies of
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well-controlled Type 2 diabetics did not reveal significant changes in
pCr/ATP ratios.14,15 These studies do not rule out the absence of
mitochondrial dysfunction as they could be confounded by changes
in the creatine pool or changes in the pCr shuttle. Thus, the possibility
exists that 31P nuclear NMR might lack the sensitivity to detect subtle
changes in mitochondrial energetics. The most compelling evidence to
date comes from a recent study by Anderson et al.16 who directly
demonstrated impaired mitochondrial respiratory capacity with
palmitoyl-carnitine and glutamate in atrial tissue of Type 2 diabetic
patients using the permeabilized cardiac myofibres technique. Mito-
chondrial dysfunction was present in all diabetics even in those with
HbA1c as low as 6.0 and an inverse relationship between HbA1c
and mitochondrial respiratory capacity was observed. In addition,
they also demonstrated increased mitochondrial H2O2 emission,
depletion of glutathione, and increased levels of hydroxynonenal-
modified proteins and 3-nitrotyrosine-modified proteins. This study
not only provides good evidence for the presence of mitochondrial
dysfunction in human diabetic hearts, but also recapitulates data gen-
erated in animal models of diabetes mellitus.

3. Mitochondrial dysfunction in
animal models of diabetes
Owing to the intrinsic limitations in generating appropriate human
samples and performing mechanistic studies in human tissue, most
studies addressing the pathogenesis of diabetic cardiomyopathy have
been performed in rodent models of Type 1 and Type 2 diabetes
(Table 1).17 Early studies in the 1980s by Kuo et al.18,19 demonstrated
impaired state 3 respiration of mitochondria isolated from Type 2 dia-
betic db/db mouse hearts. More recent studies also demonstrated
impairment in myocardial mitochondrial state 3 respiration and/or
mitochondrial ATP synthesis rates in Type 2 diabetic ob/ob mice, as
well as in insulin-resistant pre-diabetic uncoupling protein diphtheria
toxin A chain (UCP-DTA) mice.20,21 In addition, reduced expression
of respiratory chain complexes was observed in ob/ob and db/db
hearts. In some but not all studies, increased myocardial expression

of mitochondrial UCPs 2 and 3 was reported for db/db mice or
Zucker diabetic fatty (ZDF) rats, and mitochondrial ultrastructural
defects and mitochondrial proliferation were demonstrated in ob/ob,
db/db, and UCP-DTA mouse hearts.20– 22 Similar observations have
also been made in hearts of Type 1 diabetic animal models.
Impairment in mitochondrial respiratory capacity, pronounced
alterations in mitochondrial structure, and altered expression of
respiratory chain complexes have been observed in hearts of
streptozotocin-induced diabetic rodents, Ins2+/2 Akita mice, and
OVE26 mice.23–27 Taken together, these studies clearly indicate the
presence of myocardial mitochondrial abnormalities in animal
models of Type 1 and Type 2 diabetes mellitus. In the next sections,
potential molecular mechanisms underlying these abnormalities will
be discussed.

4. Molecular mechanisms of
myocardial mitochondrial
dysfunction in diabetes

4.1 Fatty acid oxidation, cardiac efficiency,
and mitochondrial uncoupling
The heart depends on continuous oxidation of energy metabolic sub-
strates for sufficient generation of ATP to maintain contractile func-
tion. Under physiological conditions, the normal heart generates
ATP mainly from the mitochondrial oxidation of fatty acids (60–
70% of ATP generated) and to a lesser extent from glucose, lactate,
and other substrates (30–40%). In contrast, hearts of diabetic
animals use relatively more fatty acids to generate ATP, while
glucose oxidation rates are decreased.28 –30 The increase in myocar-
dial fatty acid oxidative capacity is mediated in part by increased
activity of the nuclear hormone receptor peroxisome proliferator-
activated receptor a (PPARa). PPARa increases the expression of
genes involved in virtually every step of cardiac fatty acid utiliz-
ation.31,32 Cardiac-specific overexpression of PPARa (MHC-PPARa
mice) resulted in increased expression of fatty acid utilization genes
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Table 1 Cardiac traits of selected animal models of diabetes mellitus and transgenic animal models mimicking metabolic
alterations of diabetic hearts

Cardiac
function

Cardiac
efficiency

Mitochondrial
function

Mitochondrial
content

Fatty acid
oxidation

Glucose
oxidation

Oxidative
stress

Calcium
handling

Type 1 diabetes

Streptozotocin �121,122 �37 �25,26 �37 �37 �123,124 �125,126

OVE26 �67,68 �27,68 �27,68 �67 �67

Ins2+/2 Akita �23 ¼23 �23,24 �23,24 �23 �23 ¼23

Type 2 diabetes

db/db �22,95 �22 �22 �22 �22,28 �22,28 �22 �97

ob/ob �/�28,29 �29 �20 �103 �28,29 �28,29 65 �65

UCP-DTA �21 �21

ZDF �127 �30 �127

Goto-Kakizaki ¼/�128,129 �69 �130

Transgenic

MHC-PPARa �33 �33 �33 �131 �33

CIRKO �52,109 ¼52 �52 �52 �109 �109 �52
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and increased fatty acid oxidation.33 Conversely, cardiac expression of
genes encoding for proteins of glucose utilization was decreased in
parallel with reduced glucose utilization. Thus, mice with cardiac over-
expression of PPARa mimicked the metabolic phenotype of the dia-
betic heart, thereby implicating PPARa in the regulation of cardiac
metabolism in the diabetic heart. Indeed, cardiac PPARa expression
is increased in ZDF rats, and PPARa target gene expression is
increased in 10-week-old db/db mice.28,34 However, increased fatty
acid oxidation in 4-week-old ob/ob and db/db mice in the absence of
increased PPARa and PPARa target gene expression suggests the
presence of additional mechanisms in early Type 2 diabetes.28

Early work by Mjos35,36 in the 1970s demonstrated that increasing
cardiac fatty acid uptake by lipid infusion results in higher oxygen
extraction but unchanged myocardial contractility in healthy dogs,
thus resulting in reduced cardiac efficiency. This phenomenon can
similarly be observed in Type 2 diabetes. Myocardial O2 consumption
and fatty acid oxidation are increased, and cardiac efficiency is
reduced in ob/ob and db/db mice, as well as in obese
humans.8,20,22,28,29,37 Thus, reduced cardiac efficiency is a hallmark
in obesity and Type 2 diabetes both in rodents and humans. The
ZDF rat does not show increased myocardial O2 consumption or
reduced cardiac efficiency, but the mechanisms for these differences
may be species-related or unique to the ZDF model.30,38

Recent findings suggest increased mitochondrial uncoupling as one
underlying mechanism for increased myocardial O2 consumption and
reduced cardiac efficiency in Type 2 diabetic hearts. Before presenting
the evidence for this, it is important to note that the role of UCPs in
the heart is controversial and incompletely understood. Activation of
UCPs in the context of increased mitochondrial substrate flux serves
a physiological role to decrease the proton gradient and reduce
ROS.39,40 We believe, though, that in certain models of diabetes, par-
ticularly those that are associated with obesity and insulin resistance,
the increase in ROS production is not simply a consequence of an
increase in substrate flux, but is also exacerbated by diabetes-induced
defects in the electron transport chain (ETC) that promote ROS
overproduction. The persistent increase in ROS chronically activates
UCPs that might not necessarily reduce flux via the ETC to normalize
ROS production (because of ETC defects). However, dissipation of
the proton gradient may still reduce ATP generation. Thus, in ob/ob
mice, perfused with glucose and palmitate, an increase in oxygen con-
sumption, without a concomitant increase in contractile performance,
was observed relative to hearts that were perfused with glucose
only.20 This fatty acid-induced increase in myocardial O2 consumption
occurred, despite reduced expression of complexes I, III, and V of the
respiratory chain of oxidative phosphorylation (OXPHOS). Since
ATP/O ratios were decreased and mitochondrial state 4 respiration
rates were increased, these data suggest that increased oxygen con-
sumption in ob/ob hearts after addition of fatty acids to the perfusion
medium may be the consequence of fatty acid-mediated mitochon-
drial uncoupling. Mitochondrial uncoupling may increase oxygen con-
sumption without proportionately increasing mitochondrial ATP
production. The resulting energy deficit may explain the lack of
increase in cardiac contractile function, resulting in reduced cardiac
efficiency. Similar results were obtained in a study performed in db/db
mice,22 and Duncan et al.21 also reported reduced ATP/O ratios in
cardiac mitochondria of insulin-resistant pre-diabetic UCP-DTA mice.
Unfortunately, fatty acid oxidation, myocardial O2 consumption, and
contractile function in intact hearts were not investigated in
UCP-DTA mice.

Regarding the mechanism leading to mitochondrial uncoupling in
diabetic mice, a current concept is the activation of mitochondrial
UCPs. In the brown adipose tissue, mitochondrial uncoupling is
mediated by uncoupling protein 1 (UCP1) and serves non-shivering
thermogenesis.41 UCP1 is an H+ translocase, which channels
protons from the intermembrane space back into the matrix space,
thereby bypassing the F0F1-ATPase, reducing ATP production with
the generation of heat (i.e. uncoupling of oxygen consumption from
ATP production). About 20 years after the discovery of UCP1, four
more UCP homologues have been identified (UCP2, UCP3, UCP4,
and UCP5/BCMP1), two of which (UCP2 and UCP3) are expressed
in myocardial tissue.42– 44 Several studies have demonstrated uncou-
pling activity for UCP3 in muscle tissue.45,46 The group of
Brand47,48 also demonstrated that both fatty acids and superoxide
can activate UCP3 protein activity in skeletal muscle. Superoxides
can activate UCP3 activity either by direct interaction with the
protein or indirectly by generating lipid peroxidation products,
which then activate UCP3.

In a recent study, Boudina et al.22 directly demonstrated that mito-
chondrial uncoupling occurs in hearts of diabetic db/db mice and that
this uncoupling is mainly mediated by increased UCP activity. Mito-
chondria from Type 2 diabetic db/db mouse hearts pre-perfused
with glucose and palmitate exhibited increased respiration in the pres-
ence of oligomycin, reduced ATP synthesis, and reduced ATP/O
ratios, compared with similarly perfused wild-type mice. In addition,
pre-perfusion of db/db hearts with glucose and palmitate increased
mitochondrial ADP-stimulated oxygen consumption compared with
hearts that were perfused with glucose only. These data suggest the
presence of fatty acid-induced mitochondrial uncoupling in db/db
mouse hearts. Finally, Boudina et al. demonstrated that mitochondrial
proton leak was increased in db/db mitochondria and that the addition
of GDP, an inhibitor of UCPs, almost completely restored proton leak
to wild-type levels. The remaining proton leak could be attributed to
activation of the adenine nucleotide translocase (ANT), another
protein capable of uncoupling mitochondrial respiration.49 Although
UCP3 protein levels were not increased in db/db mice in this study,
this does not preclude the fact that increased cardiac UCP expression,
as observed under conditions of increased fatty acid delivery and util-
ization, may also additionally increase mitochondrial uncoupling
activity.

Importantly, db/db hearts exhibited increased mitochondrial H2O2

generation, and overproduction of mitochondrial ROS occurring in
conjunction with augmented electron delivery from increased fatty
acid oxidation.50 On the basis of the capability of superoxide to acti-
vate UCP activity, we propose a model in which ROS-induced mito-
chondrial uncoupling may reduce cardiac efficiency in Type 2 diabetic
hearts (illustrated in Figure 1). The increased cardiac fatty acid uptake
and b-oxidation that characterizes many models of Type 2 diabetes
increase the delivery of reducing equivalents to the ETC. However,
defects in the ETC increase the likelihood that excessive ROS gener-
ation leading to increased lipid peroxidation will occur as a result of
increased fatty acid utilization, which in turn increases UCP and
ANT activity. Increased mitochondrial uncoupling will increase
cardiac oxygen consumption and may thereby increase fatty acid oxi-
dation rates further. However, the increase in oxygen consumption
would not be accompanied by an appropriate increase in ATP syn-
thesis. Therefore, cardiac work would not increase and cardiac effi-
ciency would be reduced. Ultimately, mitochondrial uncoupling may
result in reduced myocardial high-energy reserves and thereby
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contribute to the development of cardiac contractile dysfunction in
Type 2 diabetes.

In contrast to Type 2 diabetic models, impaired cardiac efficiency
and mitochondrial uncoupling were not observed in some models
of Type 1 diabetes. Thus, in Ins2+/2 Akita mice, cardiac efficiency
was not reduced, despite increased cardiac fatty acid utilization.23 In
addition, pre-perfusion of Akita hearts with fatty acids did not increase
oxygen consumption rates in the presence of oligomycin, did not
decrease ATP/O ratios, and did not increase mitochondrial proton
leak, despite increased expression of UCP3. Similarly, Herlein
et al.51 reported decreased mitochondrial state 4 respiration and
unchanged ADP/O ratios, associated with increased UCP3 expression
in rats rendered diabetic by streptozotocin injections for 2 months.
Thus, it is tempting to speculate that, despite increased fatty acid oxi-
dation and UCP3 expression, Type 1 diabetic hearts may not develop
fatty acid-induced mitochondrial uncoupling leading to impaired
cardiac efficiency. Of note, How et al.37 reported that cardiac effi-
ciency was reduced in streptozotocin-diabetic mice, but mitochon-
drial uncoupling was also not observed. More studies are needed
to evaluate whether fatty acid-induced uncoupling is indeed unique
to models of Type 2 diabetes, and if so, what differences may
underlie a predisposition of Type 2 diabetic models to develop fatty

acid-induced mitochondrial uncoupling. Studies in mice with
cardiomyocyte-restricted deletion of insulin receptors, which
develop fatty acid-induced mitochondrial uncoupling in the absence
of hyperglycaemia, suggest that a potential mechanism for the differ-
ence between models of Type 1 and Type 2 diabetes could be
insulin resistance.52

4.2 Oxidative stress
The mitochondrial respiratory chain is the principal source of cellular
oxygen radicals (ROS), such as superoxide and hydroxyl anions. The
primary factor governing mitochondrial ROS generation is the redox
state of the respiratory chain.53 If the membrane potential across the
inner mitochondrial membrane rises above a certain threshold value,
a large stimulation of ROS generation occurs.54 Electrons mainly leak
from complexes I and III of the ETC and thereby generate incomple-
tely reduced forms of oxygen.39,55 A rise in membrane potential can
occur as a consequence of augmented delivery of electrons to the
respiratory chain, which can result either from increased glucose or
fatty acid oxidation, or also occur as a result of changes in ETC stoi-
chiometry that could, for example, lead to an increase in reverse elec-
tron flow.39,54,56 There is also evidence that increased cytosolic
generation of ROS might precipitate increased mitochondrial ROS

Figure 1 Fatty acid-induced mitochondrial uncoupling and impaired cardiac efficiency. In Type 2 diabetes, increased delivery of fatty acids to the
heart may result in increased fatty acid uptake and oxidation. The resulting increase in reducing equivalent delivery to the respiratory chain may
increase ROS production, leading to activation of UCPs and proton leak via ANT. The resulting increase in mitochondrial uncoupling leads to
increased mitochondrial O2 consumption, thereby increasing fatty acid oxidation even further. Since the increase in O2 consumption results from
mitochondrial uncoupling, ATP synthesis would not increase proportionately, resulting in reduced cardiac efficiency, subsequent cardiac energy
deficit, and ultimately contractile dysfunction. FAO, fatty acid oxidation; GO, glucose oxidation; ROS, reactive oxygen species, UCP, uncoupling
protein; ANT, adenine nucleotide translocator.
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overproduction, which underscores the pathogenic importance of
ROS generation from mitochondrial and non-mitochondrial
sources.57,58 ROS can induce cellular damage by direct oxidation of
proteins, by conversion of lipids to reactive lipid peroxidation pro-
ducts, by increasing protein tyrosine nitration by generation of reac-
tive nitrogen species, and by interaction with DNA. Mitochondrial
DNA has been proposed to be particularly susceptible to oxidative
damage.59 Increased levels of ROS not only result from overproduc-
tion of ROS, but may also be the consequence of decreased efficiency
of inhibitory scavenger systems, such as superoxide dismutases (Cu/
Zn-SOD and Mn-SOD), catalase, and the glutathione peroxidase
system.

There is convincing experimental and clinical evidence that the pro-
duction of ROS is increased in multiple tissues in models of Type 1
and Type 2 diabetes. Numerous studies demonstrated an association
between increased free radical production and the progression of dia-
betic complications in various tissues including the heart.60– 62 Several
pathways have been identified by which increased serum glucose
levels can increase ROS production, including glucose auto-oxidation,
formation of advanced glycation end products, increased polyol
pathway flux, increased hexosamine pathway flux, and activation of
protein kinase C.63 Brownlee’s64 group provided strong evidence
that ROS from mitochondria activates many of these pathological
pathways that induce diabetic complications. Although most of the
ROS may be predominantly derived from mitochondria, evidence
for increased activity of cytosolic ROS generation via NADPH
oxidase also exists.65 Since ROS have a very short half-life, they are
believed to cause damage close to their origin. Thus, mitochondria
would not only be the origin but also the target of oxidative stress.

Most studies investigating the contribution of oxidative stress to
diabetic cardiomyopathy have been performed in Type 1 diabetic
models. Lashin et al.26 showed that 4-hydroxy-2-nonenal is produced
within cardiac mitochondria and forms an adduct with complex II of
the respiratory chain, and that this modification was associated with
decreased succinate-supported respiration and complex II enzymatic
activity in streptozotocin-induced Type 1 diabetic rats. A proteomic
approach by Turko et al.66 revealed tyrosine nitration of several
cardiac mitochondrial proteins in alloxan-induced Type 1 diabetic
rats, including proteins involved in energy metabolism (succinyl-
CoA:3-oxoacid CoA transferase, creatine kinase). Ye et al.67 demon-
strated that catalase overexpression restores impaired mitochondrial
morphology and cardiomyocyte contractility of Type 1 diabetic
OVE26 mice. It was further shown that incubation of cardiomyocytes
from OVE26 mice in a high-glucose medium results in increased ROS
production and that this increase could be prevented either by cata-
lase overexpression or by inhibition of electron transport at complex I
or II, indicating a mitochondrial source for ROS production in OVE26
mouse hearts. Another recent report from this group demonstrated
that reductions in OVE26 cardiomyocyte contractility could be com-
pletely reversed and that impaired mitochondrial state 3 respiration
could, at least in part, be restored, by the overexpression of the mito-
chondrial SOD isoform (Mn-SOD).68 The accompanying changes in
mitochondrial morphology (swelling, mottled matrix, broken mito-
chondrial membrane) and the increase in mitochondrial biogenesis
could be reversed as well. Taken together, these studies suggest
that in Type 1 diabetic hearts, ROS may be produced within mito-
chondria and that these ROS may have varied effects on mitochon-
drial function. Many of these studies have examined downstream
consequences of ROS overproduction on mitochondrial function

and protein modifications. However, they do not exclude the possi-
bility that an increase in mitochondrial ROS production in vivo in
these models of Type 1 diabetes could result from an initial increase
in cytosol ROS generation. Indeed, results from recent reports in
which mitochondrial ROS levels were directly measured suggest
that there is no intrinsic increase in mitochondrial ROS generation
in Type 1 diabetes. Thus, studies in the Type 1 diabetes Akita
mouse model and streptozotocin-diabetic rats revealed no evidence
for increased mitochondrial ROS generation when directly measured
using a variety of approaches.23,51 Mitochondrial respiratory dysfunc-
tion and severe mitochondrial morphological abnormalities were
nonetheless present in those hearts. Although some of these differ-
ences may be related to unique characteristics of the animal models
used, they also suggest that additional (ROS-independent) mechan-
isms might impair mitochondrial function in these models.17

Reports of increased mitochondrial ROS production in models of
Type 2 diabetes are limited. Increased lipid peroxidation and
reduced mitochondrial levels of glutathione and coenzyme Q have
been reported in hearts of Goto-Kakizaki rats.69 Ye et al.67 showed
that overexpression of mitochondrial catalase in insulin-resistant and
obese Ay mice restores impaired cardiomyocyte contractility. Conti
et al.70 reported induction of the mitochondrial antioxidant defence
system in obese Zucker rats. Most compelling evidence to date
comes from Boudina et al.22 who recently reported that db/db mice
show increased mitochondrial H2O2 production, increased levels of
malondialdehyde and 4-hydroxy-2-nonenal protein adducts, and
increased mitochondrial Mn-SOD expression in the heart. Thus, it
is likely that increased mitochondrial ROS production and subsequent
oxidative stress occur in hearts of Type 2 diabetic animal models.
Interestingly, similar changes were observed in mitochondria obtained
from mice with cardiomyocyte-restricted deletion of insulin recep-
tors, suggesting a potential role for insulin resistance in this process.52

Taken together, these studies suggest that oxidative stress may
contribute to myocardial mitochondrial dysfunction in diabetes.
However, the underlying mechanisms of ROS-induced mitochondrial
dysfunction may only partially overlap between models of Type 1 and
Type 2 diabetes. ROS-mediated damage leading to mitochondrial dys-
function may ultimately result in reduced ATP production and thereby
impair contractility. In Type 2 diabetic hearts, mitochondrial ROS may
play an even more central role in impairing mitochondrial energy
metabolism due to additional existence of fatty acid-induced mito-
chondrial uncoupling (Figure 1).

4.3 Mitochondrial calcium handling
Cardiomyocyte contraction relies upon intricate interactions between
Ca2+ and ATP, both of which must be present in adequate amounts.
Excitation of the cardiomyocyte results in increased Ca2+ influx via
L-type Ca2+ channels, which in turn triggers the release of significant
amounts of Ca2+ from the sarcoplasmic reticulum, resulting in binding
of Ca2+ to troponin C on actin filaments and subsequent confor-
mational changes in contractile-regulatory proteins which allow inter-
action between actin and myosin cross-bridges. ATP is required for
the dissociation of the actomyosin interaction to allow the start of
a new contractile cycle and for Ca2+-re-uptake into the sarcoplasmic
reticulum by the sarcoendoplasmic reticulum Ca2+-ATPase 2a
(SERCA2a).

In addition to its role in E–C coupling, Ca2+ also regulates energy
metabolism, i.e. ATP production. After a cytosolic increase in Ca2+

concentration, intramitochondrial Ca2+ concentration rises as well.
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There is growing evidence that the mitochondrial Ca2+ concentration
can track cytosolic Ca2+ concentrations during the cardiac cycle,
although the rapid influx and efflux mechanisms participating in
Ca2+ exchange between the cytosol and mitochondria are still
unclear.71 –73 Ca2+ exchange between these subcellular compart-
ments is believed to provide a mechanism for matching energy pro-
duction to energy demand under physiological conditions or
increased workload and is termed the ‘parallel activation model’.71

Ca2+ can up-regulate the activity of several Ca2+-sensitive metabolic
enzymes, including the mitochondrial dehydrogenases pyruvate
dehydrogenase, isocitrate dehydrogenase, and a-ketoglutarate dehy-
drogenase.74,75 Activation of intramitochondrial Ca2+-sensitive dehy-
drogenases by Ca2+ has been directly documented in isolated cardiac
mitochondria, and mitochondrial membrane potential, ATP gener-
ation, and tricarboxylic acid (TCA) cycle activity (measured by mito-
chondrial NADH content) all increase following an elevation in
mitochondrial Ca2+.76–79 In addition, Territo et al.80 demonstrated
in isolated cardiac mitochondria that Ca2+ is required for ATP pro-
duction via the F0F1-ATPase and that the Ca2+ Km for activation of
the F0F1-ATPase falls within physiological levels. This study also esti-
mated that the activation of F0F1-ATPase may have been responsible
for .60% of the Ca2+-induced activation of OXPHOS, whereas the
contribution of Ca2+-sensitive dehydrogenases accounted for �40%.
Thus, Ca2+-mediated activation of oxidative metabolism likely results
in increased energy substrate oxidation and ATP production, and
Ca2+ exchange between the cytosol and the mitochondria has
therefore been suggested to provide a simple but elegant way to
coordinate the rate of ATP production with its use for cardiac
contraction.81

Given the importance of the regulatory interactions between mito-
chondrial energy metabolism and Ca2+ handling, it seems plausible
that impaired mitochondrial Ca2+ handling may contribute to the
development of contractile dysfunction in diabetes. In streptozoto-
cin-induced diabetes, the rate of Ca2+ uptake into rat heart mitochon-
dria is low compared with normal rats and is accompanied by a
reduction of a-ketoglutarate-supported mitochondrial state 3 respir-
ation.25,77,82,83 In contrast, succinate-supported respiration, which is
initiated by the Ca2+-insensitive enzyme succinate dehydrogenase,
was unaffected.25 Importantly, mitochondrial Ca2+ concentrations in
diabetic hearts were in the range where modulation of dehydrogenase
activation occurs, suggesting that decreased flux through Ca2+-
sensitive dehydrogenases may indeed contribute to impaired ATP
generation in these hearts.

The lower mitochondrial concentrations of Ca2+ may be the con-
sequence of the smaller systolic transients in cytosolic Ca2+ concen-
tration which have been observed in several studies in myocytes from
Type 1 diabetic hearts.84,85 This may be the consequence of reduced
Ca2+ loading of the sarcoplasmic reticulum and decreased activity of
SERCA2a in these hearts.86,87 Several studies observed reduced
expression of SERCA2a in streptozotocin-induced diabetic
animals.88,89 In addition, altered phospholamban–SERCA2a inter-
action, free radical-induced damage, and reduced glycolytic ATP
supply to SERCA2a have been observed in diabetic hearts.90– 93

Another possibility may be that mitochondria from Type 1 diabetic
hearts have depressed capacity to accumulate Ca2+, because of an
enhanced sensitivity to induction of MPTP opening. Oliveira et al.94

observed that in response to a Ca2+ stimulus, mitochondria from
both wild-type and streptozotocin-induced diabetic rats accumulated
the same amount of calcium, but mitochondria from the diabetic

hearts were not able to retain the accumulated Ca2+, unless the
MPTP inhibitor cyclosporin was present.

Less conclusive data are available for Type 2 diabetic models.
Recent studies demonstrated reduced intracellular Ca2+ release
upon electrical stimulation, a slowed intracellular Ca2+ decay rate,
and impaired mitochondrial Ca2+ handling in Type 2 diabetic ob/ob
mice.95,96 In db/db mice, Ca2+ transients from isolated myocytes
showed lower systolic and diastolic Ca2+ levels, and the decay rate
of Ca2+ transients was also reduced.97 In the same study, increased
Ca2+ leakage from the sarcoplasmic reticulum was observed, and
the impairment in sarcoplasmic reticulum Ca2+ handling was attribu-
ted to a decline in sarcoplasmic reticulum activity, likely due to a mild
decrease in SERCA2a expression and a large increase in phospholam-
ban expression.97 Data on mitochondrial Ca2+-handling were not
provided in this study.

Taken together, these data support the hypothesis that impaired
mitochondrial Ca2+ handling may compromise cardiac energy metab-
olism and thereby contribute to the development of contractile dys-
function in diabetic hearts. It is tempting to speculate that lower
cytosolic Ca2+ levels may reduce mitochondrial Ca2+ transients,
which may result in reduced activation of mitochondrial metabolic
enzymes and therefore impaired ATP production and contractility
(Figure 2).

4.4 Mitochondrial biogenesis
Mitochondrial biogenesis is a complex and dynamic process that regu-
lates and determines the content and composition of mitochondria in
tissues. Stimuli that increase mitochondrial biogenesis increase mito-
chondrial DNA replication as well as increased incorporation of
nuclear-encoded proteins into mitochondrial membranes and
matrix. There is also a coordinate increase in the biogenesis of mito-
chondrial membranes, which involves increased synthesis of mito-
chondrial phospholipids. The ways in which diabetes may influence
these complex and highly regulated steps in mitochondrial biogenesis
are incompletely understood. A major regulator of mitochondrial bio-
genesis is the highly inducible transcriptional co-activator peroxisome
proliferator-activated receptor g co-activator 1a (PGC-1a), which
docks to a variety of transcription factors to amplify their activity
and their target gene expression, including oestrogen-related recep-
tor a, nuclear respiratory factors 1 and 2, and also PPARa.98 When
ectopically expressed in fat or muscle cells, PGC-1a robustly
increased mitochondrial DNA content, increased the expression of
a large set of nuclear and mitochondrial-encoded mitochondrial
genes, and increased mitochondrial respiration.99 In the heart, high-
level cardiomyocyte-specific overexpression of PGC-1a dramatically
increased cardiomyocyte mitochondrial volume density, but precipi-
tated contractile dysfunction.100,101 Interestingly, knockout of
PGC-1a in the heart resulted in reduced expression of fatty acid oxi-
dation, TCA cycle, and OXPHOS genes, but did not alter mitochon-
drial volume density.102

In hearts of insulin-resistant and/or diabetic animals, mitochondrial
content is increased.21,22 UCP-DTA mice showed increased mito-
chondrial volume density, increased mitochondrial DNA content,
and increased OXPHOS expression. In contrast, ADP-stimulated
mitochondrial respiration was not increased, and ATP synthesis was
reduced.21 Similarly, mitochondrial volume density and mitochondrial
DNA content were increased in ob/ob and db/db mice, but these
alterations were also accompanied by impairment in ADP-stimulated
respiration and ATP synthesis.20,22,103 Thus, cardiac mitochondrial

H. Bugger and E.D. Abel234



biogenesis occurs in insulin-resistant and/or diabetic mice but is not
accompanied by a coordinate increase in mitochondrial function.
These observations suggest that the diabetes-associated changes in
mitochondrial biogenesis might not be associated with a coordinate
increase in all of the processes that are required to generate compe-
tent mitochondria and raise important questions about the underlying
mechanisms that may drive mitochondrial biogenesis in these hearts,
and if the mitochondrial biogenesis observed is adaptive or
maladaptive.

In UCP-DTA mice, mitochondrial biogenesis was accompanied by a
significant increase in PGC-1a and OXPHOS gene expression,
suggesting that PGC-1a signalling may drive the mitochondrial biogen-
esis in these mice.21 However, PGC-1a expression was not increased
and even decreased at later ages in ob/ob mice that developed
decreased OXPHOS protein content, suggesting that mitochondrial
proliferation may have occurred via a PGC-1a-independent
pathway.20,28 Moreover, in db/db mice, although mitochondrial bio-
genesis was shown to be associated with increased expression of
PGC-1a expression, there was no coordinate up-regulation in
OXPHOS subunit gene expression.22 These discrepancies may
argue against an increase in PGC-1a signalling as a unifying underlying
hypothesis for increased mitochondrial biogenesis in diabetic hearts.
However, model-specific differences between UCP-DTA mice and
models of Type 2 diabetes with impaired leptin action cannot be
ruled out. The question remains if increased mitochondrial biogenesis
per se is beneficial or detrimental. The mitochondrial biogenic
response could represent a compensatory mechanism since mito-
chondrial function is impaired. If true, then this mechanism represents

only a partial adaptation because overall respiratory capacity was not
increased and even impaired in mitochondria from UCP-DTA, ob/ob,
and db/db mice.

Cellular mitochondrial content reflects the balance between degra-
dation of existing mitochondria and generation of new ones. Cellular
processes such as autophagy or increased degradation or turnover of
mitochondrial proteins could contribute to imbalance between mito-
chondrial mass and function as observed in diabetes. There is little
known about the contributions of these processes to altered mito-
chondrial mass or changes in mitochondrial structure in the context
of diabetes. On the basis of studies performed in other cells and
tissues, it can be hypothesized that diabetes-associated changes in
metabolism, such as reduced insulin signalling or increased oxidative
stress, could lead to increased autophagy.104,105 Elucidation of these
questions remains an important area for future research.

4.5 Remodelling and post-translational
modifications of the mitochondrial
proteome
Several comparative proteomic analyses demonstrated that remodel-
ling of the mitochondrial proteome occurs in Type 1 diabetic
hearts.24,27,106 Combining stable isotope labelling and two-
dimensional gel electrophoresis, Turko and Murad106 reported
increased abundance of several proteins involved in mitochondrial
fatty acid oxidation in mitochondria of streptozotocin-diabetic rats,
whereas a selection of OXPHOS subunits was down-regulated. Simi-
larly, increased cardiac levels of mitochondrial fatty acid oxidation

Figure 2 Impaired mitochondrial Ca2+ handling. Impaired sarcoplasmic reticulum Ca2+ release (A) or reduced re-uptake (B) may limit peak cyto-
solic Ca2+ levels, which may limit intramitochondrial Ca2+ accumulation during contraction. This may reduce the attendant increase in dehydrogenase
activation and ATP synthesis. Reduced ATP synthesis and lower cytosolic Ca2+ transients may both contribute to contractile dysfunction or impaired
relaxation in diabetes. PDH, pyruvate dehydrogenase; TCA, tricarboxylic acid; DHPR, dihydropyridine receptor; RyR, ryanodine receptor.
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proteins were observed in two other independent studies using
whole-cell proteomic approaches in Type 1 diabetic OVE26 mice
and streptozotocin-diabetic rats, respectively.27,107 Using
gel-independent label-free mass spectrometry-based expression
analysis of the mitochondrial proteome, we recently reported the
detection of 123 mitochondrial proteins in hearts of wild-type and
Type 1 diabetic Akita mice, 23% of which were significantly different
in abundance between the groups.24 As in previous studies, mitochon-
drial content of fatty acid oxidation proteins was increased in Akita
hearts, although to a lesser extent than in OVE26 mice or
streptozotocin-diabetic rats. In addition, several OXPHOS subunits
and TCA cycle enzymes were down-regulated in diabetic mitochon-
dria, associated with decreased expression of OXPHOS genes, regu-
lators of mitochondrial biogenesis (including PGC-1a and b), and
impairment in mitochondrial respiratory function. Thus, the consist-
ently observed increase in cardiac fatty acid oxidation rates and
impairment in mitochondrial respiration rates may be based on
increased levels of fatty acid oxidation proteins and decreased abun-
dance of OXPHOS subunits in diabetic mitochondria, respectively. In
Akita mice, reduced mitochondrial OXPHOS subunit content may be
related to reduced transcriptional activity of the PGC-1 signalling
cascade, although other mechanisms such as increased protein turn-
over or reduced mitochondrial protein import cannot be ruled out.
Similar studies investigating the mitochondrial proteome in models
of Type 2 diabetes remain to be undertaken.

Post-translational modifications of mitochondrial proteins have
been described in diabetes and include nitrosylation and O-linked gly-
cosylation.66,108 Reversal of O-linked glycosylation by overexpression
of N-acetyl-b-D-glucosaminidase restored the activity of ATP synthase
and increased oxygen consumption in cultured cardiomyocytes that
were exposed to high glucose. Thus, proteomic analyses have shed
important new insights into the pathogenesis of mitochondrial

dysfunction in diabetes. Future studies combining these approaches
with analyses of metabolic intermediates (metabolomics) are likely
to yield additional new insights.

4.6 Impaired cardiac insulin signalling
Most rodent models mimicking the metabolic syndrome and Type 2
diabetes exhibit hyperinsulinaemia and insulin resistance in multiple
tissues. These models also exhibit insulin resistance in the heart and
myocardial contractile dysfunction.28,29 Thus, the question arises if
impaired cardiac insulin signalling per se may contribute to the devel-
opment of contractile dysfunction. Since all of these models are
characterized by at least one or several systemic metabolic alterations,
such as hyperlipidaemia, hyperglycaemia, or hormonal alterations, the
evaluation of the contribution of impaired cardiac insulin signalling to
contractile dysfunction is challenging. Thus, we generated mice with a
cardiomyocyte-restricted deletion of the insulin receptor (CIRKO
mice).109 These mice allow the investigation of impaired myocardial
insulin signalling without confounding effects of systemic metabolic
alterations and obesity. CIRKO mice show a modest and age-
dependent decrease in contractile function.52,109 This contractile dys-
function is associated with reduced insulin-stimulated glucose uptake
and a decrease in the oxidation of glucose and fatty acids as they age
and as contractile dysfunction occurs.109 In addition, Boudina et al.52

recently demonstrated that CIRKO hearts have impaired mitochon-
drial respiration and ATP synthesis rates, reduced expression of
genes encoding for OXPHOS subunits, UCPs, and fatty acid oxidation
proteins, as well as decreased mitochondrial levels of fatty acid oxi-
dation proteins, TCA cycle proteins, and remodelling of the
OXPHOS subunit composition. Importantly, CIRKO mice also
exhibit increased mitochondrial H2O2 generation and mitochondrial
uncoupling in the presence of long chain fatty acids, which could be
prevented by pre-treatment of CIRKO mice with the mitochondrial

Figure 3 Proposed and hypothetical/under-explored mechanisms leading to cardiac mitochondrial dysfunction in diabetes.

H. Bugger and E.D. Abel236



superoxide dismutase mimetic manganese[III]tetrakis(4-benzoic acid)-
porphyrin. Since Type 2 diabetic mice exhibit cardiac insulin resist-
ance, this study suggests that fatty acid-induced mitochondrial
uncoupling in Type 2 diabetic mice may be related to impaired
cardiac insulin signalling. Thus, impaired cardiomyocyte insulin signal-
ling has profound effects on cardiac mitochondria and may play a fun-
damental role in the pathogenesis of diabetes-induced abnormalities
in cardiac mitochondrial function.

With respect to the pathogenesis of cardiac insulin resistance and
concomitant mitochondrial dysfunction in diabetic hearts, the role
of adipocytokines deserves mention. Obesity is associated with
altered circulating concentrations of various adipokines such as
leptin and resistin, which might have independent effects on cardiac
metabolism. For example, resistin has been shown to impair cardio-
myocyte glucose uptake.110 The most abundant adipocytokine
secreted by adipose tissue is adiponectin, which may exert diverse
cardiovascular effects. Adiponectin administration may attenuate
cardiac hypertrophy following pressure overload both in adiponectin-
knockout mice and Type 2 diabetic db/db mice,111 and reduces
myocardial infarct area following ischaemia–reperfusion.112 Hypo-
adiponectinaemia is a consistent feature of Type 2 diabetes and
insulin-resistant states, and given the physiological effects of adiponec-
tin to increase FA oxidation in skeletal muscle and liver, the reduced
concentrations might be might be mechanistically linked to the patho-
genesis of insulin resistance.113 –115 Importantly, adiponectin also
regulates mitochondrial function. Adiponectin can increase mitochon-
drial biogenesis, palmitate oxidation, and citrate synthase activity in
primary human myotubes, and adiponectin-knockout mice have
decreased cytochrome c oxidase activity, decreased citrate synthase
activity, reduced mitochondrial DNA content, and reduced PGC-1a
expression in skeletal muscle.116 In addition, a recent report by
Iwabu et al.117 demonstrated that adiponectin and adiponectin recep-
tor 1 regulate PGC-1a expression and acetylation, and thereby mito-
chondrial content via activation of the AMPK/SIRT1 pathway and
activation of CaMKKb. Thus, these studies suggest a link between adi-
ponectin, mitochondrial function, and the pathogenesis of insulin
resistance and Type 2 diabetes. Owing to overlapping metabolic sig-
nalling mechanisms in oxidative skeletal muscle and cardiac muscle,
it is tempting to speculate that reduced adiponectin levels in diabetes
may also negatively impact cardiac mitochondrial function and insulin
sensitivity.

5. Conclusions
We have discussed several potential mechanisms that may contribute
to changes in myocardial mitochondrial energetics in Type 1 and Type
2 diabetic hearts. It is likely that no one single mechanism, but rather
the combination of several mechanisms, may lead to mitochondrial
dysfunction (summarized in Figure 3). We propose that the resultant
mitochondrial dysfunction will compromise cardiac ATP generation,
ultimately leading to contractile dysfunction. We have presented evi-
dence that suggests that important differences may exist between
models of Type 1 and Type 2 diabetes in the pathogenesis of mito-
chondrial dysfunction. Additional studies will be required to comple-
tely elucidate the molecular basis for these differences. Novel but
relatively under-explored hypotheses may include impairment in
mitochondrial dynamics, increased O-linked b-N-acetylglucosamine
glycosylation of mitochondrial proteins, differential roles of myocar-
dial mitochondrial subpopulations, and contributions of increased

mitochondrial permeability transition108,118 – 120 (Figure 3). Given the
dramatic increase in the prevalence of the metabolic syndrome and
subsequent Type 2 diabetes, it might be predicted that our societies
might face an explosive increase in heart disease. Thus, a compelling
case can be made for additional mechanistic studies both in animal
models and in particular also in humans that will address fundamental
underlying pathophysiological mechanisms with the goal to reveal
useful targets for the development of therapeutic strategies that
may ameliorate or prevent cardiac disease in diabetic subjects.
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