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 Studies of isolated glial cells and in vitro enzymatic 
assays indicate that Ca 2+ -independent phospholipase A 2  
(iPLA 2 , EC 3.1.1.4) can selectively release docosahexaenoic 
acid (DHA, 22:6n-3) from the stereospecifi cally numbered 
( sn )-2 position of phospholipids and that iPLA 2  can be 
activated via G-protein-coupled neuroreceptors in cells 
( 1–4 ). In brain, iPLA 2  has a postsynaptic location and is 
thought to participate in neurotransmission ( 5–10 ). In 
smooth muscle, iPLA 2  also mediates arginine vasopressin-
induced release of arachidonic acid (AA, 20:4n-6), another 
PUFA ( 11 ). 

 Two iPLA 2  isoforms have been identifi ed in mammalian 
brain: iPLA 2  �  (also PARK14, PNPLA9, or iPLA 2 -VIA) and 
iPLA 2  �  (iPLA 2 -VIB also PNPLA8). iPLA 2  �  is an 84 � 88 kDa 
enzyme localized in the cell cytosol and endoplasmic re-
ticulum. It is not activated by extracellular-derived Ca 2+  
but may be activated when Ca 2+  is released from intracel-
lular stores to displace inhibitory calmodulin from it ( 6, 
12–17 ). Mutations in the PLA2G6 gene encoding iPLA 2  �  
have been associated with infantile neuroaxonal dystro-
phy, idiopathic neurodegeneration with brain iron accu-
mulation ( 18, 19 ), and adult-onset dystonia-parkinsonism 
without brain iron accumulation ( 20–22 ). 

 The contributions of the iPLA 2  isoforms to in vivo brain 
DHA signaling and metabolism remain to be clarifi ed. 
Thus, it would be of interest to examine these contribu-
tions with a validated in vivo imaging method and model 
( 8, 23 ) in homozygous (iPLA 2  �   � / �  ) and heterozygous 
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 Unanesthetized mice received intraperitoneally   0.9% NaCl 
(Abbott Laboratories, North Chicago, IL) or 30 mg/kg ip areco-
line hydrobromide (Sigma, St. Louis, MO) in an injection vol-
ume of 0.01 ml/g body weight. The arecoline dose was chosen 
from a prior study in mice ( 34 ); lower doses gave less robust re-
sults (data not shown). Three minutes after injecting arecoline 
or saline, 45  � l [1- 14 C]DHA (300  � Ci/kg; 56 mCi/mmol, >98% 
pure, Moravek Biochemicals, Brea, CA) in 5 mM HEPES buffer 
(pH 7.4) with 50 mg/ml fatty acid-free BSA was infused (3 min) 
via the femoral vein catheter (rate of 15  � l/min) with a Hamilton 
syringe and infusion pump (Harvard Apparatus, Model 22, Hol-
liston, MA). Methylatropine bromide (Sigma), a competitive 
cholinergic muscarinic receptor antagonist that does not enter 
brain, was administered (4 mg/kg sc) 17 min before arecoline to 
block peripheral autonomic effects ( 7, 34 ). Ten arterial blood 
samples (15–20  � l) were collected (at 0, 0.25, 1.0, 1.5, 2.0, 2.8, 
3.2, 5.0, 10, and 19 min) to determine the radioactivity of unest-
erifi ed plasma DHA. At 20 min, the mouse was euthanized with 
Nembutal® (50 mg/kg, i.v.), and its brain was removed within 
30 s, frozen in 2-methylbutane dry ice at  � 40°C, and stored at 
 � 80°C until sectioned. 

 Chemical analysis 
 Arterial blood samples collected before, during, and after 

[1- 14 C]DHA infusion were centrifuged immediately (30 s, 18,000 
 g ). For each sample, total lipids were extracted ( 37 ) from plasma 
(5 µl) with chloroform-methanol (1 ml, 2:1, v/v) and 0.1 M KCl 
(0.5 ml). Radioactivity was determined in an organic phase ali-
quot (100 µl) by liquid scintillation spectrometry. After the 3 min 
[1- 14 C]DHA infusion, at least 98% of total plasma radioactivity 
was unmetabolized [1- 14 C]DHA, and 95% of the total brain ra-
dioactivity was in the form of esterifi ed [1- 14 C]DHA in phospho-
lipid ( 25 ). Concentrations of unlabeled unesterifi ed DHA also 
were determined in arterial plasma (100 µl) to calculate  J in  . Total 
lipids were extracted ( 37 ) and separated by thin layer chroma-
tography on silica gel-60 plates by using the solvent system 
heptane:diethylether:glacial acetic acid (60:40:3, v/v/v). Unest-
erifi ed fatty acids were scraped from the plate and converted to 
methyl ester derivatives (1% H 2 SO 4  in methanol, 3 h, 70°C), 
which then were analyzed by gas chromatography with fl ame ion-
ization detection and quantifi ed relative to an internal standard, 
heptadecanoic acid (17:0). 

 Quantitative autoradiography 
 Frozen brains were cut in serial 20- � m-thick coronal sections 

on a cryostat at  � 20°C, then placed for 4 weeks with calibrated 
[ 14 C]methylmethacrylate standards (Amersham, Arlington Heights, 
IL) on Ektascan C/RA fi lm (Eastman Kodak Co., Rochester, NY). 
Radioactivity (nCi/g wet weight brain) in 81 identifi ed regions 
( 38 ) was measured bilaterally six times by quantitative densitom-
etry by using the public domain NIH Image program 1.62. Regional 
DHA incorporation coeffi cients k* (ml/s/g wet weight brain) 
were calculated as ( 8, 23 ): 
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 where *brainc  (nCi/g wet brain weight) is radioactivity of brain 
lipid at time 20 min (time of termination of experiment), *

plasmac  
(nCi/ml plasma) is the arterial plasma concentration of labeled 
unesterifi ed DHA, and  t  (min) is time after beginning [1- 14 C]
DHA infusion. Integrated plasma radioactivity due to unesteri-
fi ed [1- 14 C]DHA (input function) was determined by trapezoidal 
integration and used to calculate regional values of k*. 

(iPLA 2  �  +/ �  ) defi cient compared with wild-type (iPLA 2  �  +/+ ) 
mice ( 24 ). The method involves infusing the radiolabeled 
unesterifi ed DHA intravenously in unanesthetized ani-
mals, determining radioactivity in different brain regions 
with quantitative autoradiography, then calculating re-
gional brain DHA incorporation coeffi cients k* and rates 
 J in   (product of k* and unesterifi ed unlabeled plasma DHA). 

 Within minutes after [1- 14 C]DHA infusion, 80% of brain 
radioactivity is found as unchanged tracer in the  sn -2 posi-
tion of phospholipid and 10% is in triacylglycerol, with 
only about 10% consisting of aqueous radioactive metabo-
lites ( 7, 10, 25, 26 ).  J in   approximates the regional rate of 
brain DHA consumption, because unesterifi ed but not es-
terifi ed long-chain fatty acids enter the brain from plasma 
( 27–29 ), and DHA, once lost by metabolism after being 
hydrolyzed from phospholipid, cannot be resynthesized 
de novo or signifi cantly elongated in brain (<0.1%) from 
its precursor  � -linolenic acid ( � -LNA, 18:3n-3) ( 8, 30–32 ). 
Administration of the cholinergic muscarinic M 1,3,5  recep-
tor agonist, arecoline, increases [1- 14 C]DHA incorpora-
tion into synaptic membrane phospholipid ( 7, 10 ). 

 In the present study, we imaged k* and  J in   for DHA in 
brains of unanesthetized iPLA 2  �   � / �  , iPLA 2  �  +/ �  , and 
iPLA 2  �  +/+  mice ( 24 ) at baseline and following administra-
tion of arecoline ( 7, 10, 33, 34 ). Based on the in vitro evi-
dence cited above that iPLA 2  �  selectively hydrolyzes DHA 
from phospholipid, we predicted that brain DHA signaling 
would be reduced at rest and following arecoline in the 
iPLA 2  � -defi cient compared with wild-type mice. To mini-
mize the effects of neuropathology that appear in older 
iPLA 2  �   � / �   mice, we studied 4-month-old mice free of sig-
nifi cant histopathology or neurological abnormalities ( 35 ). 
An abstract of part of this work has been published ( 36 ). 

 MATERIALS AND METHODS 

 Animals 
 Procedures were performed under a protocol approved by the 

Animal Care and Use Committee of the  Eunice Kennedy Shriver  
National Institute of Child Health and Human Development in 
accordance with National Institutes of Health guidelines (publi-
cation no. 86-23). Four-month-old male iPLA 2  �   � / �  , iPLA 2  �  +/ �  , 
and littermate iPLA 2  �  +/+  mice, derived from a C57BL/6 genetic 
background ( 24 ), were maintained in an animal facility with free 
access to water and food. The diet (PicoLab® Rodent Diet 20, 
5053, LabDiet) contained soybean and fi shmeal and 4.5% crude 
fat by weight. Gas-liquid chromatography showed that fatty acid 
concentrations (as percent of total fatty acid) were: 20.0% satu-
rated, 22.2% monounsaturated, 47.8% linoleic, 5.1%  � -LNA  , 
0.13% AA, 1.00% eicosapentaenoic, and 0.87% DHA (1.3 ± 0.0 
 � mol/g diet). 

 Surgical procedures and tracer infusion 
 A mouse was anesthetized with 2–3% halothane in O 2 , and PE 

10 polyethylene catheters were inserted into the right femoral 
artery and vein. The wound site was closed with 454 Instant Adhe-
sive (Loctite Corp., Hartford, CT), and the animal was wrapped 
loosely with the upper body remaining free in a fast-setting plas-
ter cast taped to a wooden block and allowed to recover from 
anesthesia (3–4 h) in a warm environment. 
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in iPLA 2  �  +/+  mice injected with arecoline compared with 
saline. The arecoline-induced elevations appear reduced 
or absent in the iPLA 2  � -defi cient mice. 

 Baseline.   In a one-way ANOVA with Tukey’s post hoc 
test, we compared baseline values of k* for DHA among 
the three genotypes. Partial and total iPLA 2  �  deletion sig-
nifi cantly decreased baseline k* by 20–45% in 60 and 70 
of 81 brain regions, respectively, compared with baseline 
k* in iPLA 2  �  +/+  mice (data not shown). The baseline de-
creases were comparable in iPLA 2  �   � / �   and iPLA 2  �  +/ �   
mice. 

 Arecoline activation.   Mean DHA incorporation coeffi -
cients k* at baseline and following arecoline in each of 81 
brain regions were compared among experimental groups 
and conditions using a two-way ANOVA. Thirty-fi ve of the 
81 regions did not have a statistically signifi cant genotype 
× drug interaction, indicating that the iPLA 2  �  genotype 
(heterozygous or homozygous) did not alter the arecoline 
response (data not shown). These regions included the 
median eminence, white matter, lateral and anterior arcu-
ate nucleus, periventricular hypothalamus, mammillary 
nucleus, medial and lateral nuclei of the septum, nucleus 
accumbens, amygdala, CA1 to CA3 areas of the hippocam-
pus, prefrontal cortex layers I and IV, primary olfactory 
cortex, globus pallidus, habenular nuclei, medial genicu-
late nucleus, substantia nigra, ventroposterior medial, and 
paraventricular and parafascicular thalamic nuclei. In the 
35 regions, the main effect of arecoline was statistically 
signifi cant, which means that increments in k* following 
arecoline were equally robust in the three genotypes. In-
crements (compared with saline) ranged from 32% in the 
median eminence to 170% in prefrontal cortex layer IV 
(mean = 78 ± 34%). 

 Data for the 46 remaining regions that had statistically 
signifi cant genotype × drug interactions are summarized 
in   Table   1  . Arecoline compared with saline increased k* 
by 77% (auditory cortex layer IV) to 161% (olfactory tu-
bercle) (mean = 108 ± 20%) in the 46 regions in the 
iPLA 2  �  +/+  mice compared with 39% (somatosensory cor-
tex layer IV) to 123% (visual cortex layer VI) (mean = 63 ± 
18%) in the iPLA 2  �  +/ �   mice and 46% (inferior colliculus) 
to 161% (frontal cortex 10 layer I) (mean = 78 ± 22%) in 
the iPLA 2  �   � / �   mice. The mean of the arecoline-induced 
increments in k* was signifi cantly less ( P  < 0.001) in the 
iPLA 2  �  +/ �   and iPLA 2  �   � / �   mice compared with wild-type 
mice (63 ± 18% vs. 108 ± 20%, and 78 ± 22% vs. 108 ± 
20%). Furthermore, a Bonferroni’s test corrected for 
three comparisons ( �  = 0.05/3) for each of the 46 regions 
showed that arecoline compared with saline signifi cantly 
increased k* for DHA in each of the 46 regions in the 
iPLA 2  �  +/+  mice and in   28 regions of the iPLA 2  �  +/ �   mice 
and 36 regions of the iPLA 2  �   � / �   mice ( Table 1 ). 

 Regional DHA incorporation rates 
 Because the mean total (labeled and unlabeled) unest-

erifi ed plasma DHA concentration did not differ signifi cantly 
among genotypes (see above), the statistical signifi cance 

 Regional incorporation rates of unesterifi ed unlabeled DHA 
from plasma into brain,  J in   (nmol/s/g), were calculated as: 

  *
plasmain CJ k  ( Eq. 2 ) 

 where  C plasma   equals unesterifi ed unlabeled plasma DHA. 

 Statistical analyses 
 A one-way ANOVA with Tukey’s post hoc test was used to com-

pare mean body weights, plasma unesterifi ed DHA concentra-
tions, and baseline k* for DHA among the three genotypes by 
using GraphPad Prism (GraphPad Software, San Diego, CA). A 
two-way ANOVA ( �  = 0.01) was employed to examine effects of 
genotype (iPLA 2  �   � / �   or iPLA 2  �  +/ �   vs. iPLA 2  �  +/+ ) and drug (are-
coline vs. saline) on the arterial input function and on k* by us-
ing SPSS 16.0 (SPSS Inc., Chicago, IL). In the absence of a 
signifi cant interaction, for genotype main effects, Tukey’s post 
hoc tests were performed to test differences in k* between the 
three genotype groups collapsed across drug. When an interac-
tion was statistically signifi cant, we performed Bonferroni’s post 
hoc tests with correction for three comparisons (iPLA 2  �  +/+  plus 
arecoline vs. iPLA 2  �  +/+  saline, iPLA 2  �  +/ �   plus arecoline vs. 
iPLA 2  �  +/ �   saline, and iPLA 2  �   � / �   plus arecoline vs. iPLA 2  �   � / �   
saline). 

 RESULTS 

 Body weight and plasma arterial input function 
 Mean body weight did not differ signifi cantly among 

iPLA 2  �  +/+  (25.6 ± 1.5 g; n = 13), iPLA 2  �  +/ �   (27.2 ± 2.4 g; 
n = 13), and iPLA 2  �   � / �   (26.8 ± 1.8 g; n = 14) mice, as re-
ported ( 39 ). 

 A two-way ANOVA did not reveal a signifi cant main 
effect of arecoline ( P  = 0.07) or genotype ( P  = 0.21) or a 
signifi cant genotype vs. arecoline interaction ( P  = 0.26) on 
integrated plasma arterial radioactivity (plasma input 
function in denominator of Eq. 1), thus on the DHA 
plasma half-life   ( 40 ). Integrated plasma radioactivity 
[(nCi·s/ml) ± SD, n = 6–8] equaled: iPLA 2  �  +/+  plus saline, 
133,780 ± 88,104; iPLA 2  �  +/+  plus arecoline, 88,369 ± 17,062; 
iPLA 2  �  +/ �   plus saline, 95,936 ± 29,409; iPLA 2  �  +/ �   plus are-
coline, 68,053 ± 11,058; iPLA 2  �   � / �   plus saline, 102,899 ± 
19,548; and iPLA 2  �   � / �   plus arecoline, 106,609 ± 28,012. 

 Plasma concentrations of unlabeled unesterifi ed DHA 
 The mean unesterifi ed DHA plasma concentration did 

not differ signifi cantly ( P  > 0.05) among iPLA 2  �  +/+  (20.85 ± 
8.66 nmol/ml), iPLA 2  �  +/ �   (23.92 ± 9.93 nmol/ml), and 
iPLA 2  �   � / �   (18.75 ± 12.34 nmol/ml) mice at baseline (in 
response to saline). An arecoline effect on plasma DHA 
was not determined, because the effect was statistically in-
signifi cant in a comparable prior study ( 34 ). 

 Regional DHA incorporation coeffi cients k* 
   Figure 1   presents color-coded coronal autoradiographs 

representing k* for DHA from brains of iPLA 2  � -defi cient 
and wild-type mice injected with saline or arecoline. 
iPLA 2  �  +/ �   and iPLA 2  �   � / �   mice apparently had lower base-
line (following saline) values of k* (Eq. 1) than did 
iPLA 2  �  +/+  controls. Regional values of k* appear elevated 
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overlap with sites having high densities of postsynaptic 
M 1,3,5  receptors ( 41, 42 ). These regions include neocorti-
cal projection regions, parts of the hippocampus, and 
the caudate-putamen. Low M 1,3,5  receptor densities are re-
ported in the thalamus, brainstem, and hypothalamus, 
where genotype × drug interactions often were statistically 
insignifi cant. The arecoline-induced increments in DHA 
incorporation in these latter regions may have represented 
downstream effects of direct activation elsewhere ( 43 ). 

 Because DHA cannot be synthesized de novo in verte-
brates ( 30 ) and only a negligible amount (<0.1%) is elon-
gated in brain from precursor  � -LNA ( 8, 28, 31, 32 ), the 
lower values of k* and  J in   at baseline and following areco-
line in the iPLA 2  �   � / �   and iPLA 2  �  +/ �   compared with 
iPLA 2  �  +/+  mice represent reduced brain DHA consump-
tion under resting (steady-state) and agonist stimulation 
conditions, respectively. In iPLA 2  �   � / �   mice, these reduc-
tions are associated with a reduced DHA concentration in 
brain ethanolamine glycerophospholipid (Y. Cheon, A. 
Taha, H. Y. Kim, and S. I. Rapoport, unpublished observa-
tions). A role for iPLA 2  �  in regulating brain DHA metabo-
lism is consistent with evidence that brain DHA turnover is 
reduced, as are the brain DHA concentration and iPLA 2  �  
mRNA, protein, and activity levels, in rats fed a low n-3 
PUFA diet lacking DHA ( 31, 44 ). 

 Increased incorporation of labeled unesterifi ed DHA 
from plasma into the  sn -2 position of synaptic membrane 
phospholipids of brain has been demonstrated directly by 
chemical analysis in unanesthetized rats given arecoline 
( 7, 10 ). Our new data suggest that a congenital absence of 

of group differences in incorporation rates  J in   corre-
sponded generally to the differences in regional values of 
k*, because  J in   is the product of k* and the unesterifi ed 
unlabeled plasma DHA concentration (Eq. 2). In iPLA 2  �  +/+  
mice, baseline  J in   ranged from 311 ± 49 × 10  � 4  nmol/s/g in 
the piriform cortex to 898 ± 196 × 10  � 4  nmol/s/g in the 
inferior colliculus. In iPLA 2  �   � / �   mice, the range was 267 ± 
38 × 10  � 4  nmol/s/g in the internal capsule to 581 ± 55 × 
10  � 4  nmol /s/g in the inferior colliculus. In iPLA 2  �  +/ �   mice, 
baseline  J in   ranged from 166 ± 28 × 10  � 4  nmol/s/g in the 
periventricular of the hypothalamus to 487 ± 128 × 10  � 4  
nmol/s/g in the inferior colliculus. Similarly, in response to 
arecoline, means for  J in   decreased signifi cantly in iPLA 2  �   � / �   
and iPLA 2  �  +/ �   compared with iPLA 2  �  +/+  mice. 

 DISCUSSION 

 Regional brain incorporation coeffi cients k* and rates 
 J in   for DHA at baseline (following saline) were reduced sig-
nifi cantly in 4-month-old, unanesthetized, male iPLA 2  �   � / �   
and iPLA 2  �  +/ �   mice compared with iPLA 2  �  +/+  mice. Mus-
carinic M 1.3,5  receptor activation by arecoline signifi cantly 
increased k* and  J in   for DHA in multiple brain regions in 
the wild-type mice, as previously reported in rodents ( 7, 
10, 34 ), but the increments were signifi cantly less on aver-
age or statistically insignifi cant in many brain regions with 
a signifi cant genotype × drug interaction (e.g.,  Table 1 ) of 
the iPLA 2  �   � / �   and iPLA 2  �  +/ �   mice. 

 Brain regions in which genotype × drug interactions 
were statistically signifi cant, shown in  Table 1 , roughly 

  Fig.   1.  Autoradiographs of coronal brain sections showing effects of arecoline and iPLA 2  �  genotype on 
regional DHA incorporation coeffi cients k* in mice. Values of k* [(ml/s/g wet weight brain) × 10  � 4 ] are 
given on a color scale. Abbreviations: CPu, caudate-putamen; Hb, habenular nuclei; Hipp, hippocampus; 
Mot, motor cortex; SN, substantia nigra; Vis, visual cortex.   
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 TABLE 1. DHA incorporation coeffi cients k* in iPLA 2  �  +/+ , iPLA 2  �  +/ �  , and iPLA 2  �   � / �   mice in response to arecoline 
in regions with statistically signifi cant genotype × drug interactions 

Brain Region

iPLA 2  �  +/+ iPLA 2  � iPLA 2  �  -1 

Saline 
(n = 7)

Arecoline 
(n = 6)

Saline 
(n = 7)

Arecoline 
(n = 6)

Saline 
(n = 8)

Arecoline 
(n = 6)

Frontal cortex ( 10 )
 Layer I 17.26 ± 2.43 43.59 ± 4.67*** 13.89 ± 2.10 26.92 ± 7.05*** 13.62 ± 2.77 35.49 ± 8.23***
 Layer IV 23.11 ± 2.15 56.32 ± 10.80*** 16.59 ± 3.05 26.02 ± 8.51* 15.50 ± 4.49 30.47 ± 7.53***
Frontal cortex ( 8 )
 Layer I 20.24 ± 5.02 49.42 ± 10.44*** 16.68 ± 3.44 26.47 ± 7.99* 14.85 ± 4.03 26.37 ± 3.94**
 Layer IV 25.38 ± 4.42 56.43 ± 14.09*** 19.52 ± 5.08 31.01 ± 7.47* 16.18 ± 5.52 33.25 ± 6.98**
Pyriform cortex 13.32 ± 2.87 29.88 ± 6.53*** 14.83 ± 3.59 16.40 ± 2.63 11.22 ± 1.85 19.48 ± 4.48**
Anterior cingulate cortex 24.53 ± 5.83 53.01 ± 7.23*** 17.52 ± 3.42 25.33 ± 5.65* 16.18 ± 2.59 27.50 ± 6.13**
Motor cortex
 Layer I 17.10 ± 3.87 38.85 ± 7.91*** 13.85 ± 2.86 21.21 ± 5.13* 12.19 ± 2.50 21.68 ± 2.33**
 Layer II-III 18.79 ± 3.66 40.45 ± 8.95*** 15.38 ± 2.27 20.63 ± 3.58 12.35 ± 1.68 25.73 ± 4.12***
 Layer IV 23.87 ± 4.46 48.30 ± 6.71*** 17.38 ± 3.80 26.14 ± 7.79 15.15 ± 1.82 28.89 ± 5.91*
 Layer V 19.98 ± 3.76 41.87 ± 5.88*** 13.64 ± 2.41 19.28 ± 4.11* 12.40 ± 1.24 22.18 ± 4.26***
 Layer VI 18.48 ± 4.08 38.19 ± 6.83*** 13.77 ± 2.17 19.75 ± 4.73* 11.29 ± 1.32 22.70 ± 4.04***
Somatosensory cortex
 Layer I 20.69 ± 6.07 42.60 ± 4.62*** 13.95 ± 2.80 22.09 ± 3.47* 12.47 ± 1.69 24.15 ± 3.74***
 Layer II-III 21.28 ± 5.16 45.63 ± 5.77*** 16.33 ± 2.36 23.54 ± 4.83* 15.55 ± 2.86 27.34 ± 3.41***
 Layer IV 27.81 ± 5.45 56.28 ± 8.22*** 19.63 ± 3.83 27.27 ± 6.29* 18.66 ± 4.13 28.44 ± 3.95**
 Layer V 25.58 ± 4.51 51.77 ± 5.19*** 17.76 ± 2.84 24.84 ± 6.01* 16.84 ± 2.16 23.29 ± 4.47
 Layer VI 23.20 ± 2.97 47.85 ± 6.62*** 16.57 ± 2.47 24.21 ± 5.44* 14.26 ± 2.10 25.23 ± 6.72**
Auditory cortex
 Layer I 21.55 ± 3.99 41.05 ± 6.87*** 14.26 ± 4.04 22.85 ± 5.16** 14.32 ± 2.41 20.06 ± 4.79
 Layer IV 25.83 ± 4.16 45.68 ± 7.94*** 14.29 ± 3.47 23.23 ± 4.72** 16.79 ± 2.48 21.50 ± 4.22
Visual cortex
 Layer I 21.52 ± 2.44 42.42 ± 7.26*** 13.69 ± 4.21 24.62 ± 4.97*** 14.21 ± 2.48 21.55 ± 3.83*
 Layer IV 21.52 ± 2.70 49.95 ± 7.92*** 15.58 ± 5.00 29.33 ± 3.56*** 15.13 ± 3.15 23.94 ± 4.19
 Layer VI 23.25 ± 2.11 42.19 ± 5.80*** 12.36 ± 2.60 27.56 ± 3.62*** 13.58 ± 2.62 21.37 ± 3.48***
 Preoptic area (LPO/MPO) 16.01 ± 4.19 29.25 ± 3.46*** 13.36 ± 2.59 15.58 ± 2.32 12.32 ± 3.90 16.93 ± 3.50
 Olfactory tubercle 17.35 ± 2.68 45.28 ± 8.80*** 15.70 ± 2.79 21.55 ± 5.96 15.37 ± 5.04 25.84 ± 6.64**
 Diagonal band ventral 22.42 ± 2.66 45.49 ± 9.71*** 15.49 ± 5.01 23.52 ± 8.01 15.23 ± 3.38 18.99 ± 7.65
 Hippocampus
  Dentate gyrus 21.94 ± 2.09 39.16 ± 5.61*** 16.01 ± 5.91 20.62 ± 4.15 12.65 ± 2.21 21.55 ± 3.46**
SLM 28.44 ± 2.14 55.89 ± 10.30*** 17.13 ± 4.29 29.18 ± 5.07** 16.11 ± 2.39 28.24 ± 1.87**
 Caudate putamen
  Ventral 19.88 ± 3.80 41.69 ± 7.92*** 13.59 ± 1.54 23.51 ± 7.00** 13.40 ± 2.33 23.65 ± 5.18***
Lateral 19.45 ± 3.57 43.43 ± 8.07*** 13.94 ± 2.24 23.92 ± 6.57** 13.96 ± 2.59 22.35 ± 4.05**
Medial 18.90 ± 3.90 40.91 ± 9.06*** 14.49 ± 2.16 22.96 ± 7.14* 15.46 ± 2.46 24.04 ± 5.38*
Lateral geniculate nu 32.73 ± 3.36 62.51 ± 10.24*** 21.58 ± 4.13 37.16 ± 7.37** 19.52 ± 3.51 35.21 ± 9.86**
Thalamus
Ventroposterior lateral nu 28.88 ± 4.15 57.47 ± 9.48*** 23.45 ± 5.28 29.75 ± 6.26 17.64 ± 4.40 32.36 ± 8.89***
Paratenial nu 22.68 ± 5.37 42.71 ± 7.63*** 19.26 ± 2.55 24.25 ± 9.00 15.68 ± 3.29 27.59 ± 4.61**
Anteroventral nu 38.27 ± 9.31 74.67 ± 11.29*** 26.24 ± 5.36 36.71 ± 10.30 24.70 ± 3.76 37.03 ± 7.08*
Anteromedial nu 25.86 ± 5.52 51.43 ± 8.39*** 20.49 ± 3.97 26.37 ± 7.68 17.43 ± 3.46 35.35 ± 8.16***
Reticular   nu 28.78 ± 5.54 53.21 ± 8.81*** 19.68 ± 2.61 28.50 ± 6.11 17.56 ± 2.85 33.54 ± 8.17***
Subthalamic nu 30.42 ± 3.72 70.68 ± 11.19*** 22.24 ± 3.45 28.39 ± 8.70 21.99 ± 5.11 26.72 ± 8.93
Hypothalamus
Supraoptic nu 16.65 ± 3.05 34.50 ± 4.42*** 13.26 ± 1.38 17.27 ± 4.17 13.52 ± 4.62 17.82 ± 1.91
Posterior 25.27 ± 4.77 46.65 ± 8.50*** 15.76 ± 4.08 22.96 ± 5.91 15.25 ± 3.47 24.84 ± 3.57**
Interpeduncular nu 39.44 ± 5.13 77.35 ± 9.91*** 27.20 ± 6.92 36.91 ± 8.63 25.77 ± 3.54 37.41 ± 10.28
Pretectal area 27.51 ± 4.22 59.79 ± 6.65*** 16.05 ± 3.86 26.97 ± 5.79** 16.30 ± 3.35 30.45 ± 4.30 # **
Gray layer sup colliculus 24.72 ± 3.33 49.41 ± 6.45*** 15.68 ± 2.87 26.67 ± 7.10** 15.90 ± 2.04 26.81 ± 3.23***
Superior colliculus 24.80 ± 2.47 51.92 ± 11.22*** 21.09 ± 6.30 28.69 ± 6.71 15.82 ± 2.80 30.00 ± 5.34***
Inferior colliculus 43.06 ± 9.39 82.49 ± 13.77*** 26.60 ± 4.82 44.20 ± 8.36** 26.15 ± 6.91 38.30 ± 5.82**
Flocculus 30.51 ± 5.40 57.19 ± 7.23*** 20.05 ± 4.49 33.69 ± 4.76** 19.33 ± 4.60 29.28 ± 9.72*
Molecular layer cerebellar gray 

matter
33.28 ± 9.21 75.97 ± 5.55*** 25.69 ± 2.86 38.64 ± 6.09** 24.31 ± 4.84 37.70 ± 8.05*

Non-blood-brain barrier regions
Subfornical organ 20.66 ± 5.47 51.42 ± 12.90*** 14.22 ± 2.92 21.35 ± 6.14 15.42 ± 3.12 23.18 ± 5.19

Data are mean ± SD. k* = (ml/s/g) × 10  � 4 . Mice were given methylatropine (4 mg/kg, subcutaneously) or saline 17 min before administration 
of saline or arecoline (30 mg/kg i.p.). [ 14 C]DHA infusion was started 3 min after arecoline administration. In cases of statistically signifi cant 
genotype × arecoline interactions, main effects are not reported, and Bonferroni’s post tests were performed. * P  < 0.05; ** P  < 0.01; *** P  < 0.001; 
iPLA 2  �  +/+  plus arecoline vs. iPLA 2  �  +/+  saline; iPLA 2  �  +/ �   plus arecoline vs. iPLA 2  �  +/ �   saline, iPLA 2  �   � / �   plus arecoline vs. iPLA 2  �   � / �   saline. nu, 
nucleus; SLM, stratum lacunosum-moleculae of hippocampus.
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( 18–22 ). This could be tested directly by quantitatively im-
aging regional brain DHA incorporation in these patients 
with positron emission tomography ( 67 ). 

 In summary, a congenital partial or complete absence 
of iPLA 2  �  in 4-month-old mice reduced brain DHA signal-
ing and metabolism at baseline and following M 1,3,5  recep-
tor activation. Studies in 13-month-old iPLA 2  � -defi cient 
mice with neurological and behavioral impairments that 
correlate with brain accumulation of ubiquitin-containing 
tubulovesicular membranes ( 35, 60 ) may identify addi-
tional brain lipid metabolic disturbances. A detailed analy-
sis of brain enzyme activity, lipid composition ( 68 ), and 
PUFA metabolism of mice at   both ages could be informa-
tive and clinically relevant.  

 The authors thank Dr. Eugene Streicher for proofreading the 
manuscript. 
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