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Summary
Life is a dynamic process driven by the complex interplay between physical constraints and selection
pressures, ranging from nutrient limitation to inhibitory substances to predators. These stressors are
not mutually exclusive; microbes have faced concurrent challenges for eons. Genome-enabled
systems biology approaches are adapting economic and ecological concepts like tradeoff curves and
strategic resource allocation theory to analyze metabolic adaptations to simultaneous stressors. These
methodologies can accurately describe and predict metabolic adaptations to concurrent stresses by
considering the tradeoff between investment of limiting resources into enzymatic machinery and the
resulting cellular function. The approaches represent promising links between computational biology
and well established economic and ecological methodologies for analyzing the interplay between
physical constraints and microbial fitness.

Mathematical modeling of microbial responses to environment
Microbes are complex systems; mathematical expressions have been used to predict and
interpret these dynamic systems for more than a century [e.g. 1,2,3]. Microbial growth
expressions were soon combined into systems of differential equations to consider a multitude
of stressors including combinations of limiting substrates, competitors, predators and the
presence of inhibitors [4,5]. Unfortunately, kinetic models are parameter heavy, both in terms
of number and sensitivity. Literature values for enzyme kinetic parameters often vary over
several orders of magnitude [6]. Full parameter evaluation for large, biologically relevant
networks is currently prohibitive and limits the ability of these modeling approaches to take
full advantage of the omics data revolution. However, kinetic models are still popular, and
progress continues in the development of innovative parameter approximations [7–11].

Alternative mathematical modeling methods circumvent the requirement for large condition-
sensitive parameter sets. One particularly successful technique is stoichiometric modeling,
which extracts systemic information from molecular-level network structure and conservation
relationships. Stoichiometry-based methods can utilize a variety of omics datasets and thus
occupy a practical position in modern biology. Stoichiometric modeling can be divided into
three major classifications: constraint based linear programming, often termed flux balance
analysis (FBA); metabolic flux analysis (MFA); and metabolic pathway analysis, frequently
called elementary flux mode analysis (EFMA). All three methods define a hyper-dimensional
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solution space containing every biologically meaningful steady-state metabolism for a defined
network model. The three methods differ in how they select particular metabolic flux
distributions from this space. Articles discussing the details of stoichiometric modeling
approaches can be found elsewhere [e.g. 12,13–15]. Stoichiometric models typically produce
steady-state approximations of intracellular fluxes, limiting dynamic analysis. However,
techniques for approximating dynamic responses by sequentially identifying flux distributions
as a function of changing environments have been developed and applied [16,17].

Stoichiometric analysis of single stress adaptations
The functional properties of metabolic systems are the product of evolutionary processes and
are competitive given the organism’s life history. Therefore, assumptions about competitive
cellular behavior are used to select solutions to stoichiometry-based models. A widely utilized
criterion presumes that microorganisms maximize biomass yield (microbe production from a
fixed quantity of substrate). This criterion is convenient, simple, and successfully describes
microbial behavior under certain conditions; one such circumstance is E. coli grown in glucose-
limited chemostats at modest dilution rates [18]. Biomass yield maximization sometimes (e.g.
batch growth [19]) produces inadequate descriptions, implying that alternative metabolic
strategies can be ecologically competitive. Game-theory-based interpretations are available for
a variety of such cases [20]. Numerous criteria used in stoichiometric models are compared to
experimental data in [19]; a summary of kinetic metabolic modeling criteria can be found in
[21].

Economic considerations and metabolic strategies
Resource availability limits growth in most environments and is an important component of
animal immune systems, commonly referred to as nutritional immunity [22,23]. This has driven
microbial evolution toward strategies that allocate limiting resources to different metabolic
isozymes and alternative pathways in a manner that favors fitness [24]. Standard economics
approaches such as resource allocation theory and tradeoff analysis can be used to
quantitatively compare the huge number of potential metabolic resource investment schemes
[25–29].

Stoichiometric modeling criteria which account for resource investment have identified
metabolic flux distributions which accurately describe microbial behaviors not covered by a
maximum biomass yield strategy. For instance, criteria involving the minimization of total
cellular metabolic fluxes are proxies for minimizing resource investment into enzymes [19,
30]. This consideration is also implied by the criterion of maximizing growth while
constraining enzyme-occupied volume [31]. These two criteria are mathematically related, and
it has been reported that both identify the same flux distribution [32]. Explicit consideration
of resource investment into metabolic strategies has been performed using elementary flux
mode analysis (EFMA) [25,33]. Resource requirements for enzymes were compiled from
subunit compositions, protein sequences, and amino acid elemental formulae. The study
enumerated resource allocations for every biologically feasible pathway through a metabolic
network. These investment requirements were then concatenated with biomass yields, a metric
for metabolic efficiency. This approach identified cost-benefit tradeoff curves representing
metabolic flux distributions optimal for any combination of two environmental stresses. The
tradeoff curves highlight a central tenet of economics: resource value changes as a function of
abundance. The tradeoff curve slope represents the exchange ratio between two resources. At
either extreme, optimal use of the scarce resource becomes significantly more expensive in
terms of the second resource (Fig. 1). A discussion of possible relationships between relative
enzyme abundance and metabolite flux can be found in [25,33].
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A number of recent studies corroborate the concept of strategic resource investment into
enzymes. An E. coli metabolomics study reported that the majority of measured metabolite
concentrations exceeded half-saturation constants (Km) for the appropriate substrate-enzyme
pairs [34]. Operating enzymes near vmax maximizes flux per unit of invested resource.
Substrate-enzyme pairs not falling into this category were proposed to be important for
controlling flux directionality and magnitude. This control could be modulated by altering
cellular investment into specific metabolite pools. Metabolites are a resource investment,
although they represent only a small fraction of the total cellular contents: 5% of typical E.
coli on a dry mass basis while protein represents 50–70% [35]. Results from kinetic simulations
suggest network topology and kinetic parameters are sufficient to maintain cellular goals when
enzyme concentrations are randomly perturbed [30], indicating that changes in metabolite
pools can buffer proteomic disturbances. In addition, a recent experimental study demonstrated
that changes in metabolite pools can support functional homeostasis when enzyme levels were
experimentally altered in yeast central carbon metabolism [36]. Maintaining competitive flux
distributions through changes in metabolite concentrations requires little or no active alteration
of enzyme levels, resulting in significant resource investment savings.

Resource allocations and simultaneous stresses
Life is inherently competitive and stressors are not mutually exclusive. Microbes cope
simultaneously with an assortment of constraints [37]. Economic and ecological theory
provides a framework for predicting and interpreting microbial adaptations to multiple stresses
[28,38,39]. When subjected to multiple pressures, cells must allocate finite resources to
different subsystems in a proportion that improves fitness; the systems biology challenge is to
determine how these allocations respond to different demands. While dynamic modeling
methods have considered simultaneous pressures for decades [4,26], such considerations are
just beginning to be addressed via genome-enabled molecular-level modeling approaches.

A stoichiometric modeling study considered metabolic adaptation to multiple stresses [33].
The study identified an ecologically relevant set of metabolic pathways that optimize tradeoffs
between resource investment and functional benefit. Non-negative least squares regression
assembled these pathways to describe metabolic fluxes measured under different growth
conditions [from 19]. The aggregate stress response, comprised of linear combinations of 3–4
distinct pathways, represents a competitive allocation of resources, with the relative weight for
each pathway theoretically proportional to the degree of corresponding stress. The approach
described the fluxomic data more accurately than any reported single metabolic optimization
criterion (typically based on a single stress) [19,33].

The study supported the observations that not all carbon-limited chemostat growth is equal and
that carbon-limited chemostat growth does not necessarily equate to a single culturing stress.
At high growth rates, oxygen transfer is known to constrain metabolic function [18], but at low
growth rates there are additional slow-growth-associated stresses. For instance, it is
metabolically more expensive to synthesize biomass at low growth rates because of increased
cellular protein fraction and the relative increase in maintenance processes (e.g.
macromolecular turnover) [40]. At slow growth rates, intracellular fluxes are best described
by a combination of stress responses that reduce infrastructure investment, not by maximal
biomass yield [33]. Tradeoff curves suggest that resource exchange ratios at low nutrient
availability encourage microbial metabolisms to adopt cheaper-to-build but less efficient
pathways. This is supported by experimental data. For instance, E. coli expresses the Entner-
Doudoroff (ED) pathway under carbon and phosphorus starvation [41]. The ED pathway
requires fewer resources to synthesize than the Embden-Meyerhof-Parnas (EMP) glycolysis
pathway, although it produces less ATP per glucose (Fig.2). These shifts toward simpler, less
resource intensive, enzymatic infrastructure can result in an overflow metabolism where
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partially oxidized metabolites like acetate are secreted. This partial oxidation represents a
competitive strategy under nutrient scarcity, because it obviates synthesis of resource intensive
citric acid cycle enzymes like α-ketoglutarate dehydrogenase.

Stress adaptations and opportunity costs
Microbial responses to a variety of stressors can be quantified using the economic concept of
opportunity costs. As an example of opportunity costs, E. coli shifts from the
phosphotransferase system (Km ~5 um) to a higher affinity ABC transporter (Km <1 um)
coupled with glucose kinase under glucose-scarce conditions [42]. The high affinity system
requires more resources to assemble and operate (Fig. 3), however these costs are offset by
improved glucose uptake at low external concentrations. The opportunity cost associated with
this benefit can be quantified from tradeoff curves [25]. This framework for understanding
adaptation to multiple limiting resources easily accommodates other simultaneous stresses (e.g.
osmotic, oxidative, or toxic). Investment of resources towards fitness-enhancing functions,
including the production of compatible solutes, synthesis and operation of efflux pumps, or
the reduction of reactive oxygen species and toxic metals, can be expressed as a loss in the
production of other cellular products like biomass or ATP. The magnitude of the opportunity
cost depends on the degree of stress and the current metabolic response to nutrient conditions.

Biodiversity, network robustness, and the Darwinian demon
All life faces physical, physiological, energetic, and temporal constraints. Resources allocated
to one capacity cannot be allocated elsewhere. The resulting tradeoffs have been used to explain
biodiversity on both an evolutionary and a dynamic basis [43,44]. Ecologists often invoke a
thought experiment to test the null hypothesis of free specialization. The exercise proposes the
existence of a ‘superspecies’, termed a Darwinian demon, unconstrained by tradeoffs: living
long, reproducing quickly and copiously, and maximizing all aspects of fitness simultaneously
[45]. An animalcule possessing such superior properties would obviously outcompete other
microbes, leading to monoculture. Given extant biodiversity, physical constraints must be
associated with tradeoffs between fitness strategies and ecological functions; differences in
community composition across habitats further support this idea.

The Darwinian demon offers an interesting perspective on a common biochemical network
property, metabolic robustness. A popular definition of metabolic robustness is phenotypic
buffering against genetic mutations or environmental perturbations [46]. Two sources of
robustness are gene duplication and pathway redundancy [47]. The relative importance of these
two mechanisms appears to vary by species; gene duplication is less important in microbes
having greater metabolic versatility [48,49]. Pathway redundancies can be systematically
explored through synthetic genetic interactions, both in silico [49–52] and in vitro [e.g. 53,
54]. It has been observed that metabolic robustness facilitates evolutionary innovation,
allowing mutations to accumulate without immediate consequences [55], but the strong
conservation of metabolic alternatives requires further explanation. In ecology, tradeoffs are
credited with ‘taming’ the Darwinian demon, permitting the coexistence of multiple species;
it is proposed here that tradeoffs at a cellular scale are a guiding principle to the chromosomal
coexistence of isozymes and alternative pathways.

Conclusions
Decades of economic and ecological studies have highlighted the importance of strategic
resource allocation and the associated constraints on competitive functionality. These concepts
are relevant at all biological scales, from individual microbes to ecosystems, and appear to play
key roles in the composition, organization, and functioning of molecular-level metabolic
systems. The large body of theoretical and applied work in these fields provides a firm
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foundation for systems approaches to understand microbial adaptations to simultaneous
stressors, as well as strong hope for the development of dynamic, molecular-level predictive
tools.
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Figure 1. Illustration of a metabolic tradeoff curve
Each circle represents a genetically independent and biologically meaningful steady-state
growth metabolism (elementary flux mode) for E. coli. The position of each circle represents
the metabolism’s resource investment (iron per elementary mode, y-axis) and operational
efficiency (Cmoles glucose consumed per Cmole biomass produced, x-axis). The tradeoff
curve, highlighted in red, represents the optimal relationship between enzymatic iron
investment and the biomass production efficiency from glucose. From left to right, the slope
of the tradeoff curve decreases, indicating a more severe penalty to operation costs (Cmole
glucose per Cmole biomass) as limitations on iron investment increase. The large plot scale
permits approximately 10.3 million of the 10.7 million possible biomass-producing pathways
to be shown; the insert shows approximately 1 million pathways. Simulation data included
maintenance energy requirements for a 60 minute doubling time.
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Figure 2. Comparison of resource investment requirements and metabolic efficiency of two
glycolysis pathways
(a) Schematic diagram of biochemical pathways converting glucose-6-P to 2 pyruvate
molecules. Nodes represent metabolites, dashed lines represent enzymes associated with
Embden-Meyerhof-Parnas (EMP) pathway, and solid lines represent enzymes associated with
Entner-Doudoroff (ED) pathway. Numbers refer to enzymes listed at right. (b) Enzyme
identifier and resource investment requirements for E. coli K12. Protein column lists the
subunits composing each functional enzyme. Carbon and A. acids columns list the total number
of carbon atoms and amino acids required for a complete subunit set. (c) Pathway tradeoff
quantification based on ATP production and resource investment. Glc/ATP is the moles of
glucose required to produce a mole of ATP during the conversion of glucose to 2 pyruvate.
Carbon and A. acids columns list the summed pathway resource investments in terms of carbon
atoms and amino acids respectively.
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Figure 3. Opportunity costs associated with three separate E. coli glucose transport and
phosphorylation systems
(a) Carbon and amino acid investment requirements and operating costs for transport and
phosphorylation of glucose. The glucose affinity is reflected in the Michaelis-Menten constant
(Km); lower values correspond to higher affinities. Circled ‘P’ represents a high-energy
phosphate bond, and PMF indicates proton motive force (1 H+ = ~0.3 ATP). (b) Tradeoff curves
for growth utilizing each glucose transport system. The curves, derived from elementary flux
mode analysis, account for carbon investment in central metabolism enzymes (Carbon per
pathway, y-axis) and the corresponding biomass production efficiency (Cmoles of glucose
consumed per Cmole biomass produced). The points on each curve are color-coded to
correspond with the transport systems from (a). The opportunity costs to produce and operate
higher affinity systems are shown by the vertical and horizontal distances, respectively,
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between the tradeoff curves. Note that opportunity costs increase with more severe investment
limitation. This is a result of increased glucose intake to accommodate less efficient (but
cheaper) enzymatic machinery. Diagram adapted from [25]. Data did not include maintenance
energy expenditures.
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