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Abstract
We describe a computationally efficient and robust fully-automatic method for large-scale electron
microscopy image registration. The proposed method is able to construct large image mosaics
from thousands of smaller, overlapping tiles with unknown or uncertain positions, and to align
sections from a serial section capture into a common coordinate system. The method also accounts
for nonlinear deformations both in constructing sections and in aligning sections to each other.
The underlying algorithms are based on the Fourier shift property which allows for a
computationally efficient and robust method. We demonstrate results on two electron microscopy
datasets. We also quantify the accuracy of the algorithm through a simulated image capture
experiment. The publicly available software tools include the algorithms and a Graphical User
Interface for easy access to the algorithms.
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1. Introduction
Transmission electron microscopy (TEM) has been an important imaging modality for
studying three-dimensional ultrastructure in biology in general, and neuroscience in
particular. Electron tomography based on computational assembly of tilt-series images
(Hoppe, 1981; Sun et al., 2007) can provide high-resolution three-dimensional imagery but
is restricted to very small volumes. Similarly, manual tracing of serial section TEM (ssTEM)
imagery of synaptic relationships through small volumes has been a mainstay in network
reconstruction. In such work, it is critical to acquire imagery at a resolution sufficient to
unambiguously detect critical biological features, such as synapses and gap junctions. This
sets the resolution at approximately 2 nanometers (nm) or better. This constraint has
previously limited reconstruction volumes to sizes far smaller than the scale of canonical
repeat units in the nervous system (Anderson et al., 2009).

Neural network reconstruction or connectomics (Sporns et al., 2005; Briggman and Denk,
2006; Mishchenko, 2008; Anderson et al., 2009), is the complete mapping of all individual
neurons in a region, including their synaptic contacts, to create its canonical network map,
also known as a connectome. Such complete mappings are long-standing problems in
neuroscience. Progress has been hindered by impracticalities in acquisition, assembly and
analysis of large scale TEM imagery. Complete connectome datasets have previously been
attempted in very small invertebrate models, such as the roundworm C. elegans, which has
just over 300 neurons and 6000 synapses (White et al., 1986; Hall and Russell, 1991; Chen
et al., 2006). On the other hand, studying canonical samples of vertebrate neural systems
(samples large enough to contain a statistically robust instances of the rarest elements in the
network) require a new scale of imaging (Anderson et al., 2009).

Currently, there are several approaches to connectomics. Serial block-face scanning electron
microscopy (SBFSEM) (Denk and Horstmann, 2004) uses electron backscattering from
successively exposed block surfaces to capture a volume as a series of two-dimensional
images. SBFSEM can provide sections as thin as 20 nm, but is currently limited by electron
optics to 5–10 nm per pixel resolution in-section. An advantage of SBFSEM is the implicitly
aligned nature of the images produced, nominally negating the need for elaborate
registration schemes in software. Its disadvantages include sample destruction, limited in-
section resolution, slow acquisition speed, incompatibility with molecular tagging methods,
non-standard contrast generation, and the limited availability of SBFSEM platforms. While
SBFSEM images often provide good contrast for cell membranes, much intracellular
information is lost, rendering the efficient detection and classification of synapses from
these images difficult. A very similar method is ion beam milling (Knott et al., 2008), which
has the advantage of using a superior imaging platform (scanning TEM), though many of the
deficits of destructive sampling remain, slow speed and limited platform access remain. A
new, very exciting alternative is the Automatic Tape-collecting Lathe UltraMicrotome
(ATLUM) (Hayworth et al., 2006) which sections a block and automatically collects the
sections on a long Kapton® tape for imaging by scanning TEM.

We recently proposed ssTEM as a platform that provides the right combination of
resolution, spatial coverage and speed for connectomics (Anderson et al., 2009). TEM
microscopes and ultramicrotomes for serial sectioning are widely available. In TEM,
sections are cut from a specimen and suspended in the electron beam, creating a projection
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image which may be captured on electron-sensitive film (and digitized later) or captured
directly on electron-sensitive digital cameras. Slice thicknesses for ssTEM are typically in
the 40–100 nm range, while in-section resolution is limited only by the resolution of TEM
imaging (100–200 picometers). In practice, connectomics requires 2 nm resolution per pixel
to resolve gap junctions. As noted above, acquisition and analysis of ssTEM data has been
extremely time consuming, limiting neuronal mapping to projects involving small numbers
of neurons (Cohen and Sterling, 1992; Harris et al., 2003; Dacheux et al., 2003). The
complete C. elegans reconstruction (White et al., 1986; Hall and Russell, 1991; Chen et al.,
2006) is reported to have taken more than a decade (Briggman and Denk, 2006). A major
barrier in image acquisition has recently been overcome by implementing SerialEM
automated ssTEM acquisition software (Mastronarde, 2005). But large volumes can also be
acquired manually on film. Another major barrier has always been assembly of image
mosaics and volumes from hundreds of thousands of ssTEM images. That computational
barrier is the focus of this paper.

There are two image registration problems associated with assembling volumes from ssTEM
imagery. First, the TEM field of view is insufficient to capture an entire section as a single
image, and each section is imaged in overlapping tiles. For instance, a canonical area
(Anderson et al., 2009) in the retina yields over 1000 tiles per section, where each tile is a
4096 × 4096 pixel, 16 bit image. If film is used, the pixel densities can be even higher, but
positional metadata are lost requiring tile layout to be inferred as part of a software solution.
In either case, warps due to the TEM aberrations and other distortions have to be corrected
to generate seamless overlaps between tiles. We refer to the entire process of assembling a
single section from multiple TEM tiles as section mosaicking. The second registration
problem stems from the fact that each section is cut and imaged independently: mosaicked
sections thus have to be aligned to each other. The coordinate transformation between
sections includes unknown rotation and nonrigid deformations due to the section cutting and
imaging processes. Typically, deformations in this section-to-section registration are larger
than in the mosaicking stage. Once all sections are mosaicked and registered, a three-
dimensional volume can be assembled.

1.1. Related Work
Image registration is a very active research topic in clinical imaging applications such as
magnetic resonance imaging and computed tomography (Toga, 1999; Maintz and Viergever,
1999). In general, image registration methods can be classified according to a few criteria:
types of features used for matching, coordinate transformation classes and targeted data
modalities. Intensity-based methods compute transformations using image intensity
information (Bajcsy and Kovacic, 1989; Toga, 1999). Landmark-based methods match a set
of fiducial points between images (Evans et al., 1988; Thirion, 1994, 1996; Bookstein, 1997;
Rohr et al., 1999, 2003). Fiducial points can be anatomical or geometrical in nature and are
either automatically detected or input manually by a user. The range of allowed
transformations include rigid, affine, polynomial, thin-plate splines or large deformations
(Bookstein, 1989; Toga, 1999; Christensen et al., 1996; Davis et al., 1997; Rohr et al.,
1999). A common theme among most clinical image registration methods is a variational
formulation of the problem which can then be solved using the iterative optimization
techniques such as gradient descent. Unfortunately, such optimization techniques are too
slow and are too initialization dependent to be of practical use for large-scale ssTEM image
registration. Solutions to ssTEM image registration problems must take into account the
scale of the data. For instance, a ssTEM data set with sufficient resolution and size to
reconstruct the connectivities of all ganglion cell types in retina is approximately 16
terabytes (Anderson et al., 2009).
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Image mosaicking has been studied in many application areas. Irani et al. propose a method
to compute direct mapping from video frames to a mosaic representation for mosaic based
representation of video sequences (Irani et al., 1995). Panaromic image generation and
virtual reality (Kanade et al., 1997; Davis, 1998; Peleg et al., 2000; Shum and Szeliski,
2002; Levin et al., 2004) other prominent applications areas for mosaicking. Vercauteren et
al. propose a Lie group approach to finding globally consistent alignments for in vivo
fibered microscopy (Vercauteren et al., 2006). Early work for ssTEM registration in the
literature has been manual or semi-automatic (Carlbom et al., 1994; Fiala and Harris, 2001).
For instance, Fiala and Harris proposed a method which estimates a polynomial
transformation from fiducial points entered by a user (Fiala and Harris, 2001). Randall et al.
propose an automatic method for registering electron microscopy images limited to rigid
transformations (Randall et al., 1998). These and other earlier studies targeted TEM datasets
three orders of magnitude smaller than those proposed in this paper: i.e. roughly 100 images
instead of 100,000. We recently proposed a fast method for registering tiles within a section
(mosaicking) which relies on the Fourier shift property (Tasdizen et al., 2006). In the same
work a landmark based approach was used to register the adjacent sections to each other.
Ultimately, we formulated the section-to-section registration in the Fourier shift framework
as well (Koshevoy et al., 2007). A closely related study describes an automatic method for
large-scale EM registration based on block matching using the normalized cross-correlation
metric and the iterative closest point algorithm (Akselrod-Ballin et al., 2009). However, only
rigid transformations are considered. Another related work uses phase correlation for EM
image stitching (Preibisch et al., 2009). In (Anderson et al., 2009) we described a workflow
for automatic, fast and robust solution to the mosaicking and section-to-section registration
problems in ssTEM. That paper focussed on the acquisition technology, including methods
for embedding molecular tags in the volume. In this paper, we discuss the technical details
of the underlying algorithms and introduce a new, user-friendly graphical user interface
(GUI) solution to allow laboratories without expertise in computer science to readily
implement them. We also report the results of a quantitative experiment to assess the
accuracy and reliability of the proposed approach. With the availability of these tools, the
next hurdle in connectomics will be automation of image analysis, allowing reconstructions
of very large numbers of neuronal connections and statistical analyses of network maps.
Furthermore, the software tools described in this paper can be applied to data sets from other
microscopy platforms for connectomics such as ATLUM (Hayworth et al., 2006) or even to
other imaging modalities such as confocal microscopy. The software tools described in this
paper are publicly available2.

2. Materials and Methods
2.1. Section mosaicking

Let  and Wi : ℝ2 → ℝ2 denote the set of N two-dimensional image tiles constituting a
mosaic image and the corresponding coordinate transformations mapping the image tiles
into a common mosaic coordinate space. Also let Ωi,j denote the region in the mosaic space
that is the overlap of image tiles gi and gj under their corresponding coordinate transforms.
An energy function measuring the image intensity mismatch in overlap regions, given a set
of coordinate transforms W1 … WN, can be computed as

(1)

2The Neural Circuit Reconstruction (NCR) Toolset can be downloaded from http://www.sci.utah.edu/software.html
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where  is the inverse transform from the mosaic space into the coordinate space of the i
′th image tile and x denotes positions in the mosaic space. Figure 1 illustrates the
relationship of the tiles with respect to each other and the mosaic space. The scalar function
J is measures the smoothness of a given transformation and is known as a regularization
function. We can then choose the transforms W1(x) … WN(x) that minimize this energy
function. The parameter α in (1) controls the relative importance of the regularizer and
therefore, the smoothness of the solution. Note that the coordinate transformations encode
not only the positions of the tiles in the mosaic, but also the nonrigid warps that are needed
to compensate for the deformation introduced in image acquisition. Also note that for pairs
of nonadjacent images Ωi,j will be the empty set.

A trivial minimizer for the first term in (1) that incurs no penalty is a set of translations that
map the image tiles to entirely disjoint areas of the mosaic space with no overlap regions. In
pairwise image registration applications, this problem can be circumvented in several ways.
One possibility is to fix one image, defining a coordinate transform only for the moving
image and to choose J to penalize the deviation of the moving image’s transform from the
unity map (elastic deformation penalty). This solution is not applicable to our problem since
all images need to be mapped into a common mosaic space which requires transformations
with large translational components. Therefore, translational components of the
transformations can not be penalized in J for our application. However, in the absence of
such a penalty in J, the trivial solution mentioned above is not avoided. Another possibility
for registering image pairs is to use the prior knowledge that the pair completely overlaps to
define the integral in (1) over the entire domain of the fixed image rather than the overlap
area. This solution is also not practical for our problem because pairs of tiles overlap only
partially or not at all. A possible solution for the mosaicking problem when the average
overlap area between adjacent tiles is known, is to minimize (1) under the additional
constraint which prescribes the total area of the overlapping regions. Even then, a
fundamental problem is the difficulty of finding the globally optimal solution for (1). Our
approach is inspired by the variational formulation in (1), but it focuses on a fast, practical
solution rather than formally finding an optimal solution to (1).

There are two alternative scenarios with differing workflows. In the first scenario, we
assume no prior knowledge about the approximate locations of the tiles in the mosaic space,
as in manual film acquisition. Our mosaicking workflow in this case is composed of several
stages.

1. Find pairs of overlapping tiles and compute their pairwise displacement (Section
2.1.1).

2. Infer a layout of the mosaic using only the displacements found in first stage
(Section 2.1.2).

3. Refine the mosaic using displacements (Section 2.1.3)

4. Refine the mosaic using nonrigid transformations (Section 2.1.4).

The first stage in the solution, finding overlapping pairs and computing their displacement,
is a N2) operation where N is the number of tiles in the mosaic. In the second and simpler
scenario (digital capture), an approximate displacement is known from positional metadata.
This also implies that we know which pairs of tiles overlap; therefore, the first two stages of
the above workflow are not necessary in this case. The refinement of the mosaic using rigid
displacements (stage 3) is still necessary before nonrigid refinement (stage 4) because the
positional metadata reported by the microscope has very low accuracy.
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2.1.1. Closed-form estimate of pairwise tile displacement and overlapping tile
pair detection—The first problem is to find pairs of overlapping tiles and their relative
displacement. The main constraint at this stage of the algorithm is computational complexity
because this procedure will applied to approximately N2 pairs where N is the total number of
tiles in a section. If we restrict the class of allowed coordinate transformations between pairs
of tiles to only translation, i.e. displacement, a fast closed-form solution based on phase
correlation exists (Kuglin and Hines, 1975; Castro and Morandi, 1987; Girod and Kuo,
1989). While directly evaluating the cross correlation of two images via two-dimensional
convolution and finding the displacement that produces the largest correlation is the most
straightforward method for finding the unknown translation, this is computationally very
expensive. The Fourier shift property and phase correlation present a much faster
alternative. Let ℱ[g](u, υ) denote the two-dimensional Fourier transform of image g(x, y)
where u and υ denote the variables in the frequency domain. For notational simplicity we
will drop the frequency variables and use ℱ[g] to mean ℱ[g](u, υ). Given an image g of size
Q × R, a (xo, yo) pixel circular shift of g is defined as

(2)

Then, the well known Fourier transform shift property (G. and Woods, 1992) provides a
simple rule relating the Fourier transforms the image and its circularly shifted version

(3)

In other words, circularly shifting the image in the spatial domain corresponds to a
multiplication with a complex exponential in the frequency domain. The complex
exponential can be be isolated by computing the cross power spectrum. In general, the cross
power spectrum of two images g and h is defined as

(4)

where ℱ* denotes the complex conjugate of the Fourier transform. For image g and its
circularly shifted version gcirc(xo,yo) simplifies to

(5)

Since, in this case, the cross power spectrum isolates the complex exponential due to the
circular shift, the displacement vector (xo, yo) can be recovered simply by taking the inverse
Fourier transform of the cross power spectrum

(6)

where ℱ−1[·] is the inverse Fourier transform and δ(x−xo; y−yo) is the Dirac delta function
located at (xo, yo). In other words, the inverse Fourier transform of S(g, gcirc(xo,yo) is an
image which has a single non-zero entry at pixel location (xo, yo).

In practice, we have a linear shift rather than a circular shift. The method described in
(Girod and Kuo, 1989) is for tracking an object over a flat background in a video sequence.
In that case, the above derivation for circular shifts still holds for linear shifts. However, the
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phase correlation of overlapping but distinct EM images presents a more complex scenario.
In this case, we can not expect to recover a single Dirac delta function at the correct shift
location. Instead, we treat the inverse Fourier transform of the cross power spectrum
between two EM tiles gi and gj as a displacement probability image

(7)

where for simplicity we use ℱi to denote ℱ[gi] and Real{·} is the real part of its complex
argument. The addition of a small positive constant ε to the denominator avoids the problem
of division by 0. Taking the real part of the inverse Fourier transform discards any
imaginary component due to numerical accuracy limitations. Note that (7) also assumes that
EM image tiles gi and gj are of the same size. If this is not the case, the EM image tiles
should be padded to the size of the largest tile. While (7) does not strictly define an image of
probabilities, it can be interpreted as such because larger values of Pi,j(x, y) correspond to
displacements that are more probable. As discussed above, for partially overlapping images,
the exact relationship Pi,j(x, y) = δ(x−xo, y−yo) does not hold. However, if the amount of
overlap is sufficient, the maximum of Pi,j(x, y) should correspond to the true displacement
between images gi and gj. In practice, finding this maximum is non-trivial because for most
electron microscopy images the Pi,j(x, y) contains many spurious weak local maxima. This
can be seen in Figure 2 (left) which shows Pi,j(x, y) computed for two tiles with
approximately 10% overlap. Also, Pi,j for two non-overlapping images may contain several
weak maxima, complicating the decision whether two image tiles overlap or not. These
problems are not addressed in (Girod and Kuo, 1989) since the target application in that
paper is object tracking from video. Our solution which addresses these practical difficulties
is discussed next.

We have found that five steps are necessary in practice to identify the location of the correct
maxima in Pi,j. These steps are performed by the executable ir-fft. The first step is to pre-
smooth all image tiles gi to reduce the amount of noise and to smooth Pi,j(x, y) to reduce the
number of spurious local maxima. The second step is to select and apply a threshold to
Pi,j(x, y) to isolate the strongest peaks. We choose the threshold at the 99th quantile of the
histogram of Pi,j(x, y). In other words, 1% of the total pixels in P are considered as possible
displacement locations. Notice that if the image gi and gj do not overlap, some pixels in
Pi,j(x, y) will still pass the threshold. In other words, at this stage the strongest peaks are
identified only in a relative sense. In the third step, we look for a cluster of at least five 8-
connected pixels that indicate a strong maximum. If the maxima pixels are scattered across
Pi,j(x, y), it is likely there is no strong maximum. The coordinates of the maxima are
calculated as the centers of mass of the corresponding clusters. Due to the periodicity of the
Fourier transform, clusters that are broken across the image boundary are merged together.
Notice that at this stage it is possible to have more than one displacement vector candidate
per tile pair.

The fourth step is to verify which, if any, of the maxima found in the previous step is the
true displacement between the image pair. Non-overlapping image pairs typically produce a
Pi,j(x, y) with several maxima points at roughly the same value, while the Pi,j of two
matching tiles produces one maximum significantly higher than the rest. If the strongest
maxima is at least twice as large as the rest, it is marked as a good match; otherwise, we
determine that the tiles do not overlap. We have found the proposed method works best for
pairs of tiles that overlap at least 10% in area. In our application, adjacent image tiles have
around 10 – 15% overlap. Therefore, displacement vectors resulting in less than 5% of
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overlap or greater than 30% overlap are discarded. Minimum and maximum allowable
overlap percentages can be specified using the -ol flag in ir-fft.

Results of our image matching on two tiles with approximately 10% overlap is demonstrated
in Figure 2. Notice that while Pi,j(x, y) has its global maximum at approximately at the
correct displacement vector, there are many local maxima with strengths that are comparable
to the global maxima. The ratio of the global maximum to the local maxima depends on the
overlap area between the two tiles. For this reason, displacement vectors for tiles with very
small overlaps can not be computed reliably.

Finally, due to the image periodicity assumption of the Fourier transform a global peak at
(xo, yo) can correspond to any one of four possible displacement vectors (xo, yo), (I − xo, yo),
(xo,R − yo) and (Q − xo,R − yo) where (Q,R) is the size of the image tiles. Therefore, once a
valid global peak is identified at pixel location (xo, yo) in the fourth step, we have to
generate all four possible displacements between the pair of images, compute the cross
correlation of each and choose the displacement vector that results in the best match as the
fifth step.

2.1.2. Mosaic layout—In Section 2.1.1 we described a method to compute the
displacement vectors Ti,j between any overlapping image tile pair gi and gj. However, what
is needed is a mapping Wi from each tile to a common mosaic space as described in (1) and
illustrated in Figure 1. We will refer to the process of converting pairwise displacements Ti,j
to displacement vectors Ui from gi to the mosaic space as the mosaic layout process.
Vercauteren et al. provide a mathematically rigorous treatment of this problem using Lie
groups (Vercauteren et al., 2006). In this paper, our focus is on the scalability of the solution
to mosaics containing thousands of EM tiles as required in connectomics. The executable ir-
fft implements the mosaic layout algorithm as well as the computation of the pairwise
displacements described in Section 2.1.1.

Given a displacement vector Ti,j between any overlapping image tile pair gi and gj, the
correlation coefficient between the tiles in the overlap area Ωi,j is defined as

(8)

where x denotes the (x, y) position of a pixel, and μi and μj are the average intensity of
images gi and gj in the overlap region, respectively. Then, we define a cost function between
gi and gj as the negative of the correlation coefficient: Ci,j = −ρi,j. Notice that Ci,j are fixed
once the pairwise displacements Ti,j have been computed in Section 2.1.1. The mosaic
layout process starts by placing an arbitrary tile as an anchor image in the mosaic space.
Without loss of generality, let f0 be the anchor tile. Then, the tile with the lowest cost
mapping to the anchor image is laid down into the mosaic. However, for a given pair of
tiles, there can be two kinds of mappings. A direct mapping exists if the pair was determined
to overlap in Section 2.1.1. We also consider indirect cascaded mappings via intermediate
tiles. For example, there may exist a direct mapping f0 : f1 between tiles f0 and f1, and
another mapping f1 : f4 between tiles f1 and f4. Then an indirect mapping f0 : f1 : f4 between
tiles f0 and f4 can be created via the intermediate tile f1 by summing the displacement
vectors for the mappings f0 to f1 and f1 to f4. This new cascaded displacement vector forms
an alternative to the direct mapping f0 : f4. In fact, if f0 and f4 do not overlap, then the only
possible mappings between those tiles will be indirect cascaded displacement vectors. For a
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mosaic with N tiles, we consider direct mappings and indirect mappings with 1 : N − 2
intermediate tiles.

We define the cost of a cascaded mapping to be the maximum of the pairwise costs Ci,j
along the cascade. For instance, the cost of the cascaded mapping f0 : f1 : f4 is
max(C0,1,C1,4). The mapping with the smallest cost is preferred even when it has greater
cascade length. Typically, there are many redundant mappings between the anchor tile and
any other tile in the mosaic. Using these redundant mappings between presents an
opportunity to select the best mapping possible. This is important because we expect that a
certain portion of the pairwise displacements found in Section 2.1.1 will be erroneous. Tiles
are successively laid down in the same manner always choosing the best possible mapping
to tiles already in the mosaic.

2.1.3. Displacement refinement—In the scenario where stage position information is
available the pairwise tile displacement computations and the mosaic layout process
becomes unnecessary. This reduces the overall computational cost from N2) to N).
However, we have found that stage position information can be inaccurate, and attempting
to perform nonrigid refinement starting from tile positions initialized directly from stage
positions is prone to finding suboptimal solutions. Furthermore, for very large mosaics
assembled without stage position information, the mosaic layout generated by the algorithms
described in Sections 2.1.1 and 2.1.2 can also result in suboptimal solutions if directly
followed by nonrigid refinement. Therefore, we first refine the displacement vectors in an
iterative fashion before nonrigid refinement. Let i denote the set of tiles that overlap tile i.
We define the energy

(9)

where the weighting  is the square of the correlation coefficient defined in (8). Notice that
Ui − Uj denotes the preferred relative position of a pit of tiles where the tile-to-mosaic
displacements. If microscope metadata provides approximate positions for each tile, we use
this information only to determine adjacency relationships and compute Ui − Uj directly
with the procedure described in Section 2.1.1 for adjacent tile pairs i, j. If no metadata is
available, Ui are found with the procedures described in Sections 2.1.1 and 2.1.2 and Ui − Uj
are then computed for adjacent tile pairs i, j. In equation (9), the tension vector (U′i −U′j)−
(Ui −Uj) between gi and a neighboring tile gj which overlaps with it is defined to have a zero

energy in the preferred relative position Ui − Uj. The weighting  places more weight on
pairs that have stronger correlation at their preferred displacement which makes the solution
more robust. We minimize the energy defined in equation (9) with respect to the new
displacement vectors U′i. For uniqueness of the solution, the first tile can be used as an
anchor and U′1 treated as a constant vector equal to U1 rather than a free variable in the
optimization. While equation (9) could be minimized in least squares form, we choose an
iterative minimization strategy to impose an additional constraint on how far a tile is
allowed to move away from its preferred position. We have found that 5–10 iterations are
sufficient to find a good solution. Finally, since the transformations at this stage are one
displacement vector per tile, scaling and rotation of tiles is not possible. These nonrigid
transformations are addressed in the next section.

2.1.4. Nonrigid refinement—Each image tile undergoes an unknown warp due to
electron optical aberrations and distortions induced by both the section process and intense
electron beam exposure. Therefore, it is important to use a flexible, nonrigid transformation
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in image registration to generate seamless overlaps between tiles. The nonrigid image
registration algorithm has two essential components: 1) a class of coordinate
transformations, and 2) a method for finding the ”best” transform Wi for each image, from
the class of transforms being considered. During the earlier stages of algorithm
development, several continuous polynomial transforms were explored, in particular
bivariate cubic Radial Distortion and Legendre polynomial transforms. These transforms
suffer from a trade-off where the stability of the transform is related inversely to the degree
of the polynomial. Our final approach uses a locally defined transform and is implemented
by the executable program ir-refine-grid. A coarse rectilinear grid of control points are
placed on to each tile. The number of control points (vertices) in the grid are defined by the -
mesh flag of ir-refine-grid. Each vertex in this grid stores two sets of coordinates – the
local tile coordinates and the mosaic space coordinates. The tile coordinates are fixed and
the image is warped by changing the mosaic space coordinates directly. The mapping Wi(x)
from any point x in the tile space into mosaic space is trivial due to the uniform structure of
grid of control points. One has to find the mesh quad (solid rectangle in Figure 3) containing
the tile space point and perform a bilinear interpolation between the mosaic space
coordinates of the quad vertices.

For the class of transform described above, finding the ”best” transforms Wi is equivalent to
finding the ”best” mosaic coordinates for the vertices in the grid. At each vertex, a small
image neighborhood of the tile is sampled in the mosaic space (shown as dashed rectangle in
Figure 3). A corresponding neighborhood is sampled also from all of the neighboring tiles in
the mosaic. For sampling these neighborhoods in mosaic space, we need to be able to map
any mosaic coordinate x′ back to tile coordinates  as shown in Figure 3. For this
purpose, the grid of control points is treated as a triangle mesh by breaking each
quadrilateral element of the grid of control points into two triangles. To map a coordinate
from the mosaic space into the tile space, the mesh is searched for the triangle containing the
given mosaic space point (shown as triangle in Figure 3)). Then, the barycentric coordinates
of the point are used to calculate the corresponding tile space point by interpolating the tile
space vertex coordinates of the triangle. We use a triangle mesh due to ease and efficiency
of implementation using OpenGL: The tile space coordinates correspond to the OpenGL
texture coordinates, and the mosaic space coordinates correspond to the OpenGL triangle
vertex coordinates.

Any two neighborhoods sampled as described above can be matched using the same Fourier
shift method described in Section 2.1.1. When a tile overlaps with more than one
neighboring tile, the resulting displacement vectors are averaged. The neighborhood has to
be only as large as necessary to capture a meaningful amount of image texture for phase
correlation to work. The size of the neighborhoods is chosen such that the control points are
spaced at approximately 1/3 of the neighborhood size which creates overlapping
neighborhoods for adjacent control points. For the retinal connectome volume (Anderson et
al., 2009), we downscale tile images by a factor of 8 and use a 8 × 8 grid of control points.
This translates into 96 × 96 pixel neighborhoods. Therefore, in this case, instead of pairs of
tiles, we find the displacement between pairs of 96 × 96 pixel neighborhoods using the same
method as in Section 2.1.1. The displacement vectors produced by this matching are used to
correct the mosaic space coordinates of the vertex. Also, note that the -cell flag of ir-refine-
grid can be used instead of the -mesh flag to specify the size of the neighborhoods to be
used in matching rather than the number of control points in the grid. In this case the number
of control points are again spaced at 1/3 the neighborhood size. The -mesh and -cell
arguments of ir-refine-grid should not be used simultaneously.

The procedure described above can be used to compute mosaic positions of grid control
points at the edges of the tiles that overlap with neighboring tiles. We still need to propagate
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this position information to the control points in the interior portions of the grid that do not
overlap neighboring tiles. Furthermore, there can be errors in the mosaic position
computation. To address these problems we take the following approach. The displacement
vectors calculated at each vertex are median filtered to remove the outliers. The
displacement vectors are then blurred with a Gaussian smoothing filter which propagates the
information to interior control points.

This algorithm requires several passes to ensure convergence. After each pass new
neighborhoods are sampled using the newly updated mosaic coordinates of the control
points and the position computation procedure is repeated. The number of passes can be set
using the -it flag of ir-refine-grid. For the retinal connectome data we’ve found four passes
to be sufficient. Figure 4 illustrates three different areas of the mosaic before and after the
nonrigid refinement. Intensities in overlapping areas are averaged. Before nonrigid
refinement this results in blurry images in overlapping areas due to the non-precise nature of
the alignment (Figure 4 left). After nonrigid refinement averaging results in crisp images
(Figure 4 right). Another way to visually assess the quality of the alignment is by assigning
each pixel in the mosaic the intensity from the tile that it is closest to (Figure 5). Notice that
tile boundaries are clearly visible if only the stage positions from the metadata are used
(Figure 5 top). whereas tile boundaries are hard to detect with the eye after refinement
(Figure 5 bottom).

2.2. Section-to-section registration
Section-to-section registration is very similar to the distortion correction described above.
As the orientation of the sections is arbitrary, however, we cannot use image correlation to
directly estimate the section to section translation parameters. Thus we first perform a brute-
force search for tile translation/rotation parameters on downscaled 128 × 128 pixel
thumbnails of the mosaics. As downscaling eradicates nearly all image texture, the mosaics
are pre-processed to enhance large blob-like features, e.g. cell bodies. The enhancement
algorithm is implemented by the ir-blob executable and is defined as follows:

1. The image is partitioned into a regular square grid of roughly 17 × 17 pixels per
square. The size of the squares can be controlled using the -r flag in ir-blob.

2. The intensity variance is calculated within each square.

3. The intensity variances for the squares computed in the previous step are sorted and
the median variance (σmedian) is selected.

4. The algorithm iterates through all image pixels, and for each pixel calculates mean
pixel variance within the local 17×17 pixel neighborhood centered at that pixel. Let
σ(x, y) denote the variance computed in this manner at pixel location (x, y). Then,

the output pixel value is proportional to .

As a result, areas with large variance are assigned low values while areas with small
variance such as the interior of large blobs are assigned large values. The moving section is
rotated in increments on 1 degree and matched against the fixed section by computing a
translation between the fixed section and the rotated moving section. For each orientation,
the translation is computed closed-form using phase correlation as described in Section
2.1.1. Then we choose the rotation angle which results in the largest correlation coefficient
as defined by equation (8) for the displacement found by the phase correlation method for
that rotation. This brute force matching algorithm is implemented by the ir-stos-brute
executable. We have found that when preprocessed by ir-blob to enhance large blobby
structures such as cell bodies, accurate rotation and displacement between image pairs at
coarse resolution can be found reliably. Finally, the rotation and translation parameters
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corresponding to the best brute force match metric at coarse resolution are used to initialize
the grid of control points for the non-rigid transform of the moving slice at a fine resolution.
The transform is then computed as explained in Section 2.1.4, except the displacement
vectors are applied to the moving slice only. The non-rigid transform refinement for section-
to-section alignment is implemented by ir-stos-grid. Similar to ir-refine-grid, the user
needs to specify the number of control points in the transform grid. This can be directly
accomplished using the -grid flag in ir-stos-grid. Alternatively, the space in pixels between
control points on the grid can be specified using the -grid_spacing flag. The size of the
neighborhood associated with each control point can be specified using the -neighborhood
flag. Finally, a volume can be built using the computed transformations using the ir-stom
program.

2.3. Command line tools
In this section, we describe the command line tools which implement the algorithms
discussed in Sections 2.1 and 2.2. All command line tools were implemented using the
Insight Segmentation and Registration Toolkit (ITK) software framework (Ibanez et al.,
2003). We also discuss the parameters used by the tools and the settings used in our
workflow for building the retinal connectome (Anderson et al., 2009). These parameters can
be customized by other users as needed for their applications.

2.3.1. ir-fft—The ir-fft program implements the pairwise tile displacement computation
(Section 2.1.1) and mosaic layout (Section 2.1.2). The input to ir-fft is two or more image
tiles. The input images are specified with the -data argument when running ir-fft from the
command line. The input images do not have to be in any particular order since no prior
adjacency information is assumed. The output of ir-fft is a text file with .mosaic extension
containing the full tile transformation information Ui for the mosaic generated. We will refer
to this file as the mosaic file in the rest of this paper. The name of the output mosaic file is
specified with the -save argument. An actual output mosaic image is not created by ir-fft.
There are two motivations for this choice. First, the transformations generated by ir-fft are
rigid tile displacements only and typically computation of nonrigid transforms is also
necessary before a final output is created. Second, as most TEM mosaics are very large, our
Viking viewer3 interactively loads only those image tiles appearing on the screen and
applies the transformations at run-time. For users wanting to create a single, fixed-resolution
output image, we have also implemented a command line tool ir-assemble (discussed
below) which reads in the input image tiles and the transforms computed either by ir-fft or
by the nonrigid refinement tools and generates an actual image.

The following arguments are also supported by ir-fft :

• -ol overlap_min overlap_max: Specify the minimum and maximum allowed
overlap ratio (0: no overlap, 1: full overlap) between adjacent tiles. These
arguments are useful for constraining the range of allowable displacement vectors
if such prior knowledge from the image acquisition phase exists as described in
Section 2.1.1. Default values are 0.05 and 1, respectively. For the retinal
connectome we have used 0.05 and 0.3, respectively. This choice correspond to a
minimum 5% allowed overlap between adjacent tiles.

• -clahe slope: Specifies the contrast slope limit (greater than or equal to 1) for
CLAHE (Zuiderveld, 1994) histogram equalization. The default is 1 which means
no histogram equalization. Values larger than 1 results in the CLAHE algorithm

3The Viking viewer is not discussed in this paper; however, a separate manuscript describing Viking is under preparation. Viking will
be made publicly available
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being applied to 256 × 256 windows as a preprocessing step. This is useful for
computing pairwise displacement vectors in image sets with poor contrast. For the
retinal connectome we use a slope value of 6.

• -sh downsample_factor: Downsample the image tiles by a specified factor for
purposes of speeding up the transform computations. The default value is 1 (no
downsampling). Note, images at full resolution can still be assembled later if a
value greater than 1 is used; however, accuracy of the transformations may be
reduced. In practice, we use a downsampling factor of 8 without noticing adverse
effects.

Other arguments are supported which can be used to further customize the operation of ir-
fft ; however, they are not listed here as their use are not necessary in a typical workflow. A
list of available arguments can be obtained by executing any command line tool without any
arguments.

2.3.2. ir-refine-translate—The command line tool ir-refine-translate implements the
iterative displacement refinement discussed in Section 2.1.3. The input and output mosaic
files are specified with the -load and -save arguments, respectively. The downscaling factor
specified with -sh also applies to ir-refine-translate as described for ir-fft. A contrast
enhancement may be specified using the -clahe argument as for ir-fft. Additionally, the
following arguments are also supported:

• -it iterations: Number of refinement iterations.

• -max_offset dmax: Tiles are allowed to move a maximum distance dmax from their
preferred positions.

• -threads number_of_threads: The number of threads to be used can be set with the
-threads argument. Default value is the number of hardware cores.

2.3.3. ir-refine-grid—The ir-refine-grid program implements the nonrigid warp
computation discussed in Section 2.1.4. The input and output mosaic files are specified with
the -load and -save arguments, respectively. The downscaling factor specified with -sh also
applies to ir-refine-grid as described for ir-fft. A contrast enhancement may be specified
using the -clahe argument as for ir-fft. The number of threads to be used can be set with the
-threads argument. The following arguments are also supported:

• -it iterations: Specifies the number of iterations described in Section 2.1.4. The
default value is 10, in practice good results can be achieved with fewer iterations.
Four iterations were used in building the retinal connectome.

• -cell size: Specifies the neighborhood size associated with each control point in the
grid transformation. When -cell is specified and -mesh is omitted, the number of
control points is calculated automatically to produce a predetermined percentage of
overlap between adjacent neighborhoods.

• -mesh rows cols: Specifies the number of control points in the grid transformation.
When -mesh is specified and -cell is omitted, the neighborhood size is calculated
automatically to produce a predetermined percentage of overlap between adjacent
neighborhoods. A 8 × 8 mesh was used for building the retinal connectome.

• -displacement_threshold offset_in_pixels: The average displacement change
threshold at which the tool should stop iterating. Defined in pixels. Default value is
1.
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2.3.4. ir-assemble—Output images can be assembled from a mosaic file using ir-
assemble. The input mosaic and output image files are specified with the -load and -save
arguments, respectively. The down-scaling factor specified with -sh also applies to ir-
assemble as described for ir-fft. The number of threads to be used can be set with the -
threads argument. The following argument is also supported:

• -feathering [none|blend|binary]: Selects the feathering mode used in the portions
of the mosaic where multiple tiles overlap. The none mode simply averages pixels.
The blend mode uses a weighted averaging where the weight of a tile’s contribution
to a given mosaic pixels is inversely proportional to proximity. The binary mode
uses the only the intensity value from the tile closest to the pixel of interest. This
mode is especially useful for evaluating the quality of the image registration.

2.3.5. ir-blob—The ir-blob program implements the blob-like feature enhancement
algorithm described in Section 2.2 which is used as a preprocessing step before the
determination of unknown rotation and translation between a pair of sections. The input and
output image files are specified with the -load and -save arguments, respectively. The
downscaling factor specified with -sh also applies to ir-blob as described for ir-fft. The
following argument is also supported:

• -r radius: Variances are computed for (2 × r + 1) × (2 × r + 1) squares. The default
values is 2. A value of r = 8 was used in building the retinal connectome.

2.3.6. ir-stos-brute—The ir-stos-brute program implements the brute force search for the
unknown rotation and translation between a pair of sections. A mosaic file is specified using
the -load argument. An output section-to-section transform file (.stos extension) name is
specified using the -save argument. The downscaling factor specified with -sh also applies
to ir-stos-brute as described for ir-fft. The following argument is also supported:

• -refine: Specifies that the brute force registration results are refined in a multi-
resolution fashion. Default value is not refine.

2.3.7. ir-stos-grid—The ir-stos-grid program refines a section-to-section registration
initialized by ir-stos-brute by resampling the initial transform on to a mesh and using local
neighborhood matching at the mesh vertices similar to ir-refine-grid. The input and
output .stos files are specified with the -load and -save arguments, respectively. The
downscaling factor specified with -sh also applies to ir-stos-grid as described for ir-fft. A
contrast enhancement may be specified using the -clahe argument as for ir-fft. The
following arguments are also supported:

• -fft median_radius minimum_mask_overlap: The median radius specifies the radius
of the median filter used to denoise the displacement vector image. The minimum
mask overlap specifies the minimum area overlap ratio between neighbors. Default
values are 1 and 0.5, respectively. For building the retinal connectome values of 2
and 0.25 were used.

• -grid rows cols: Specifies the number of control points in the grid transformation.

• -grid_spacing number_of_pixels: Specifies the grid spacing in pixels. A value of
192 was used for building the retinal connectome. Either -grid or grid_spacing
should be used, but not both.

• -neighborhood size: Specifies the size of the neighborhoods used for matching at
each mesh vertex. A value of 128 was used in building the retinal connectome.
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• -it iterations: Specifies the number of iterations of mesh refinement. A value of 4
was used for building the retinal connectome.

• -displacement_threshold offset_in_pixels: The average displacement change
threshold at which the tool should stop iterating. Defined in pixels. Default value is
1.

2.3.8. ir-stom—The ir-stom program outputs a series of sections, specified by the -save
argument, all registered to the first section using a series of .stos files as input. The .stos files
specified with the -load argument are the section-to-section transforms between consecutive
sections in a stack of sections. The n’th section is generated by cascading the first n-1 .stos
files to get a transform mapping section n to the space of the first section.

2.4. Graphical user interface for mosaicking and section-to-section registration: Iris
We also developed a cross-platform graphical user interface called Iris that allows easy
access to the ir-tools used in mosaicking and section-to-section registration. Iris provides a
mosaic wizard and a volume wizard that automates these workflows with default parameters
as well as a volume builder that allows detailed access to all the command line tools and
associated parameters (Section 2.3) for advanced users. Iris also supports a batch mode, that
allows running any multiple of tools as well as any selected number of sections. Each tool
has a unique icon which is used to mark information about it. Figure 6 shows several
screenshots illustrating the different modes of operation.

The mosaic wizard facilitates building a mosaic from a user-specified directory of images. It
loads the images, runs the tools (ir-fft, ir-refine-translate, ir-refine-grid, ir-assemble)
with default parameters, and exports an assembled image. The volume wizard operates
similarly. It loads the mosaics, runs the tools (ir-stos-brute, ir-stos-grid, ir-stom) with
default parameters, and exports a stack of aligned images. A third wizard, the volume
builder, allows users to customize tool parameters, change the pipeline flow by skipping
tools or sections, reorganize sections, and finally export the data. This enables users to
optimize volume assembly.

3. Results
3.1. Retinal connectome

The ir-tools described in this paper were used to build the first large-scale retinal
connectome. The retinal connectome RC1 consists of 341 serial sections (nominally 70 nm
thick), each captured and assembled as a mosaic of approximately 1000 tiles. Each tile is a
4096 × 4096 pixel imaged at 2.18 nm per pixel. This amounts to approximately 32
Gigabytes per section and 16 Terabytes (after processing) for the entire volume. The original
image capture time for the volume was five months. Enhancements in the capture process
now allow capture in 3 months (a rate of about 5000 images daily). The image assembly was
performed on a single eight-core 3 Ghz computer. Mosaicking times for a single 1000 tile
section was approximately 16 minutes for ir-refine-translate, 64 minutes for ir-refine-grid
and 12 minutes for ir-assemble. Together with conversion from the MRC to TIF format
approximately 8 sections can be mosaicked each day. The computational complexity of ir-
refine-translate is NM logM) where N is the number of tiles in the section and M is the
number of pixels per tile. The computational complexity of ir-refine-grid is PQlogQ)
where P is the number of control points used and Q is the size of the neighborhood
associated with each control point. Since approximate positions were known from metadata
we did not need to use ir-fft in our workflow which has computational complexity N2M
logM). Section-to-section alignment was less than one minute per pair for ir-stos-brute and
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approximately eight minutes per pair for ir-stos-grid. The computational complexity of ir-
stos-grid is also PQlogQ). The total volume assembly time was three weeks.

Other datasets are also readily assembled. Figure 8 is an image of retina from rabbit
expressing the rhodopsin P347L transgene. The image contains over 2200 TEM tiles
captured and mosaicked in a completely automated fashion.

3.2. Quantitative validation of accuracy
We also performed two experiments to quantify the accuracy of our image registration
methods. First a simulation experiment was performed to assess the accuracy of ir-fft for
various amounts of overlap between tiles. A single section from the RC1 dataset (see Figure
7) was chosen. We performed a simulated capture of a portion of this section by extracting
42 image tiles with 15% overlap, each 5000 × 5000 pixels. We then ran ir-fft with the
default options to generate a new mosaic. When the positions of the tiles in the resulting
mosaic were compared to ground truth, the maximum error in displacement was found to be
0.05 pixels, with a mean error of 0.01 pixels. This corresponds to a mean error of 0.1 nm in
real image space. We performed the same experiment for several amounts of % overlap
between tiles. The average errors in displacement are reported in Table 1.

For the second quantitative experiment, a mosaic consisting of 25 tiles (5 × 5 tile layout and
each tile is 512×512 pixels) was manually and automatically registered using both rigid
transforms only and non-rigid transforms. The mosaic is shown in Figure 9. Table 2 shows
the root mean square difference in pixels between the control points in both cases. Notice
that the manual and automatic registration are essentially identical for rigid transforms and
are very close for the nonrigid case.

It is not possible to directly quantify the accuracy of section-to-section alignment because
there is no ground truth for the warping due to the section cutting, i.e. it is not known what
changes are due to the cutting process and what changes are due to the neurons changing
shape and position. Furthermore, an experiment performing alignment after a simulated
warp would essentially be equivalent to the mosaicking experiment outlined above due to
the similarity of the algorithms. However, we were able to track thousands of neurons across
the volume which required correlating close to 200,000 profiles from one section to the next
which would not be possible if the section-to-section alignment was low quality.

4. Discussion
We have developed a computationally efficient and robust fully-automatic method for large-
scale image registration. The performance of the method was successful in both generating
>10 terabyte-scale image volumes and extremely large single slices composed of over 2000
individual images. We have validated quantitative accuracy of the method for mosaicking
these types of images using a simulated experiment. Though we envisioned the main
application of our publicly available software tools would be biological neural network
analyses, such as connectomics, the tools can easily be applied to other large image datasets
and are not limited to studies of the nervous system. Thus large-scale volumetric
ultrastructural analyses of other complex heterocellular tissues (histomics) are also feasible.
Nor are these approaches limited to electron microscopy per se. Preliminary results indicate
that the algorithms successfully mosaic and serial section data generation by high-resolution
optical platforms. Future work will explore automated large-scale image volume
construction in other imaging modalities such as confocal optical microscopy.

Research Highlights
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• A computationally efficient and robust, automatic solution for the registration of
very large electron microscopy mosaics from thousands of image tiles.

• A computationally efficient and robust, automatic solution for the section-to-
section registration of a stack of electron microscopy image mosaics.

• A user friendly graphical interface to the mosaicking and section-to-section
registration algorithms.
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Figure 1.
Relationship of image tiles and the mosaic space.
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Figure 2.
Left: Pij(x, y) for two image tiles with approximately 10% overlap. The location of the
global maximum can be seen around the top left corner. Right: The two tiles shown in cyan
and red displaced with the computed vector.
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Figure 3.
Tile-to-mosaic and mosaic-to-tile transformations.
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Figure 4.
Several areas of the mosaic where multiple image tiles overlap before and after nonrigid
refinement. Intensities are averaged from multiple overlapping tiles.
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Figure 5.
An area where several tiles overlap aligned using stage positions from metadata only (top)
and our mosaicking algorithms (bottom). Each pixel in the mosaic is assigned the intensity
from the tile it is closest to. Note the clearly visible tile boundaries when only stage
positions are used.
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Figure 6.
Screenshots of Iris in action: (a) Mosaic wizard view, (b) Volume wizard view, (c) Volume
builder access to ir-tools for advanced users, and (d) Customization of ir-tools parameters
for advanced users.
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Figure 7.
Four sections from the rabbit retinal connectome which comprises 341 sections. The
sections shown are at approximately equal intervals in the volume progressing clockwise
from top left. Each section is approximately 32 GB and comprises 1000 tiles.

Tasdizen et al. Page 26

J Neurosci Methods. Author manuscript; available in PMC 2011 October 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
[Color] A vertical section from a transgenic rabbit retina comprising over 2200 separate
TEM tiles assembled in a completely automated fashion. Each tile is a 4096 × 4096 pixel
image. Insets show several areas at varying levels of zoom to demonstrate the amount of
information available in the mosaic.
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Figure 9.
5 × 5 tile mosaic used for comparison of manual vs. automatic registration.
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Table 1

Quantitative assessment of accuracy using a simulated image capture for various overlap amounts.

Overlap (in % of tile size) Average displacement (in pixels)

15% 0.013

10% 0.028

8% 0.066
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Table 2

Quantitative assessment of accuracy by comparison to manual registration.

Average displacement (in pixels)

Manual vs. automatic rigid transform % 2.55 × 10−10

Manual vs. automatic non-rigid transform 1.45
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