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Abstract Previous studies of interference competition have
shown an asymmetric effect on intake rate of foragers on
clumped resources, with only subordinate individuals
suffering. However, the food distributions in these studies
were uniform or highly clumped, whereas in many field
situations, food aggregation is intermediate. Here we
investigated whether food distribution (i.e., uniform, slightly
clumped, and highly clumped) affects the behavioral
response of mallards foraging alone or competing with
another. Although the amount of food was the same in all
distributions, the mallards reached higher intake rates,
visited fewer patches, and showed longer average feeding
times in the highly clumped distribution. Competing
mallards had lower intake rates on the slightly clumped than
on the uniform or highly clumped food distributions.

Subordinates generally visited more patches and had shorter
feeding times per patch, but their intake rates were not
significantly lower than those of dominants. Therefore, we
propose that subordinates do not necessarily suffer from
interference competition in terms of intake rate, but do suffer
higher search costs. In addition, although dominants had
significantly higher average feeding times on the best quality
patches of the highly clumped food distribution, such an
effect was not found in the slightly clumped distribution.
These findings indicate that in environments where food is
aggregated to a lesser extent, monopolization is not the best
strategy for dominants. Our results suggest that interference
experiments should use food distributions that resemble the
natural situation animals are faced with in the field.
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Introduction

Animals have to continuously make decisions on what,
where, and how much to eat. Their optimal decision is likely
to be affected by the presence of other individuals with
similar preferences, leading to competition for limited food
resources. When a number of individuals utilize (and
deplete) common resources, exploitative competition occurs
(Krebs 2001). However, individuals might also hinder each
other's intake rate, regardless of the resource depletion,
through interference competition. This latter form of
competition was defined as the decline in intake rate due
to the mere presence of competitors (Goss-Custard 1980).

Interference competition can be active, arising from
overt aggression and displacement. Competitors may also
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avoid one another to reduce the number of aggressive
encounters (Cresswell 1997), and thus spend less time
foraging. Eventually, when interference becomes too
intense, some individuals may be forced into suboptimal
habitats (Goss-Custard 1980). Another form of active
interference competition is kleptoparasitism, where one
individual steals food or takes over good foraging spots
from another (e.g., Ens and Goss-Custard 1984; Monaghan
and Metcalfe 1985; Triplet et al. 1999). Interference
competition can also be passive, when foragers monitor
their competitors and consequently get distracted from food
searching or face a reduced foraging time (Ens and Goss-
Custard 1984; Goss-Custard et al. 1982; Stillman et al.
1997). An important aspect of interference competition is
that it is also “immediately reversible” (Goss-Custard
1980): when the density of competitors decreases, the
negative effects of interference will often immediately be
eliminated.

It has been a common practice to evaluate interference
competition by varying forager densities (e.g., Ruxton and
Moody 1997; Sutherland 1983; Vahl et al. 2005b; van Gils
and Piersma 2004). In addition, numerous authors have
shown that individuals differing in their dominance status
are differentially affected by interference competition
(Alonso et al. 1997; Hupp et al. 1996; Klaassen et al.
2006a; Lendvai et al. 2006; Rowcliffe et al. 2004; Stahl et
al. 2001; Stillman et al. 2002). In most studies, interference
competition had little, if any, effect on dominants, and
could even lead to increased intake rate. The observed
increased intake rates of dominants could be a result of the
higher detection rates in groups of foraging animals of the
most profitable patches compared to an individual forager
(Stahl et al. 2001). Subsequently, dominants can easily
monopolize these patches (Bautista et al. 1995; Monaghan
and Metcalfe 1985; Taillon and Cote 2007). In these cases,
subordinates are either displaced or simply avoid the
dominants. Therefore, they have to cope with longer
searching times (Alonso et al. 1997; Klaassen et al.
2006a; Rowcliffe et al. 2004; Stahl et al. 2001) and a
reduced intake rate due to foraging in lower quality patches
(Dolman 1995).

When interference is due to active displacement from
high-quality feeding areas, food distribution can also have a
detrimental effect on the level of interference competition.
Vahl et al. (2005a) emphasized that the effects of interfer-
ence competition are largely determined by the spatial
distribution of prey. They highlighted that models of
interference competition commonly ignore that in most
natural systems food items occur in aggregations (Benhamou
1992; Fryxell et al. 2005; Kraan et al. 2009; Li and
Reynolds 1995; Sparrow 1999; Spencer et al. 1994;
Turchin and Kareiva 1989), and instead, models assume
simple homogenous food distributions. However, in terms

of food intake, there is little variation in interference
competition in environments where food is homogenously
distributed: one area is just as profitable as any other
(Theimer 1987; Vahl et al. 2005a).

In contrast, if food is clumped, interference competition
can strongly affect individual intake rate because dominant
individuals are likely to monopolize the food patch (e.g.,
Monaghan and Metcalfe 1985; Theimer 1987; Vahl et al.
2005a). Studies on the effect of spatial clumping on
interference competition have typically used clumped or
concentrated food distributions (basically a single clump
(Theimer 1987; Vahl et al. 2005a)). However, many naturally
occurring food items are neither completely spread nor fully
concentrated. Typically, their distribution takes an interme-
diate form, characterized by positive spatial autocorrelation:
high-density patches will tend to be next to other high-
density patches and low-density patches next to low-density
patches (Klaassen and Nolet 2008; Klaassen et al. 2006b;
Kolasa and Rollo 1991; Kotliar and Wiens 1990; Kraan et al.
2009; Li and Reynolds 1995; Nolet and Mooij 2002).

We aimed to experimentally compare the effects of
interference competition in a design with an intermediate
food aggregation (henceforth, “slightly clumped” (SC))
with designs where food is distributed homogeneously
(“uniform” (UN)) or concentrated (“highly clumped”
(HC)). We measured food intake, mean feeding time per
patch, and the number of visited patches of female mallards
(Anas platyrhynchos) in trials where they were foraging
alone or with a competitor of either a relatively lower or
higher dominance status.

We expected the effect of interference competition to
vary among the tested food distributions, from no effect in
the homogeneous distribution to the strongest effect in the
highly clumped food distribution, with the effect in the
slightly clumped distribution being somewhere intermediate.
In addition, we hypothesized that the dominant bird would
take control over the best quality patches (Bautista et al.
1995; Monaghan and Metcalfe 1985) and consequently
reach a higher intake rate than the subordinate (Dolman
1995). However, we expected that subordinates would
suffer to a lesser degree in the slightly clumped distribution,
because in that environment monopolization of the best
foraging spots by dominants would only result in a small
advantage.

Material and methods

The trials were carried out in the waterfowl experimental
facility of the NIOO-KNAW in Nieuwersluis. Sixteen trays
(measuring 30×30×30 cm), forming a continuous foraging
area of 1.44 m2, were placed at the bottom of a basin of 2×
2 m, with water depth set at 30 cm above the sediment.
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Wheat grains were used as food items, covered with a layer
of sand to avoid visual detection. By manipulating food
densities in the individual trays, three different food
distributions were created. All food distributions contained
the same total amount of seeds (1,200 seeds; 61.7±3.5 g).
For the uniform food distribution (Fig. 1), a homogeneous
environment was created by filling all 16 trays with an
intermediate amount of seeds (75 seeds per tray). The SC
food distribution (Fig. 1) consisted of five different food
densities ranging from 25 seeds per tray (n=2), through 50
(n=4), 75 (n=4) and 100 (n=4) seeds per tray to 125 seeds
per tray (n=2) with a positive spatial autocorrelation
between food densities. For the degree of clumping, the
spatial distribution of fennel pondweed (Potamogeton
pectinatus) tubers was used as a template (see Fig. 5b in
Klaassen and Nolet 2008). The highly clumped distribution
(Fig. 1) contained a clump of four trays with a very high
food density (225 seeds per tray) and 12 with a low food
density (25 seeds per tray). Special care was taken that
birds could not learn the position of the best patches in the
clumped distributions. For each trial in the SC distribution,
a different spatial configuration was taken from the field
measurements (Nolet et al. 2006). The position of the food
clump in the HC distribution was rotated daily in a random
order of 90°, 180°, or 270°.

We used mallards (>1-year old) for the experiment.
Because the focus was on the effects of interference
competition and dominance on foraging decisions, we used
only females to eliminate potential mate competition. Nine
birds were purchased from a breeder (Kooij and Sons
Waterfowl Breeding Farm, 't Zand, The Netherlands), but
they were all kept at our waterfowl facility for at least a
year prior to the experiment. The animals were housed in an
aviary measuring 10×6 m with access to a large pond and
were only moved to the experimental room immediately
prior to the trials.

In order to familiarize birds with the experimental
facilities and procedure, they were trained for 4 weeks
prior to the experiment and for 1 week during the
experiment before switching to a new food distribution
(see below). Three of the birds regularly displayed

stereotype behavior of stress during the training trials (i.e.,
continuously swimming back and forth along the edge of
the basin), and hence were not included in the experiment.
The six remaining birds were fitted with different color leg
bands to allow individual recognition. During the training
and the experiment, the birds had access to food only
during the trials in the morning hours and for 1 h in the
afternoon in the aviary.

Prior to the experiment, dominance relations were
determined while observing priority of access to the feeding
tray after at least 8 h of starvation (cf. Syme 1974; Wagner
and Gauthreaux 1990), verifying a linear dominance
hierarchy in mallards (Poisbleau et al. 2006). The scoring
of dominance was repeated four times throughout the
experimental period, confirming that the rank order of the
birds remained stable during the experiment.

Experimental trials were carried out in February and
March 2006. Trials were done in one-bird designs (single)
with each mallard being used once and in two-bird designs
(pair), where each combination of individuals was tested.
In order to minimize potential effects of food depletion,
the foraging trials lasted only 120 s from when (one of) the
mallard(s) started foraging. All the trials took place in the
morning, between 0800 and 1300 hours. The trial sequence
and the selection of individual ducks for the trials were
randomized, with the restriction that individuals were used
in only one trial per day. The experiment consisted of 21
trials (i.e., six single trials and 15 combinations of pairs) for
each food distribution (i.e., 63 trials in total). However,
mallards in two single trials and in five-paired trials did not
eat, reducing the sample size to 56.

Mallards are highly capable of learning the food
distribution they are foraging in (Klaassen et al. 2007). As
we aimed to study the effects of interference competition
while foraging in a certain food distribution and not whilst
learning a food distribution, we applied the three distribu-
tions sequentially, and not randomly. First the UN, then the
HC, and finally the SC distribution was tested, with 1 week
of training trials in between to allow for the learning of new
food distributions. The trials were filmed with a video
camera (Panasonic NV-GS15) positioned above the basin.

Fig. 1 The uniform (left 75
seeds per tray) food distribution
and configurations for the
slightly clumped (middle 25, 50,
75, 100, and 125 seeds per tray)
and highly clumped (right 25 or
225 seeds per tray) food
distributions. Color shades
represent different food densities
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Videos were analyzed usingObserver 5.0 (Noldus Information
Technology bv.).

After a trial, all trays were removed from the basin and
the sediment was sieved to collect the remaining wheat
grains. Wheat grains were counted, and the number of
seeds consumed per patch (per individual) was divided by
120 s to calculate intake rates per second over the whole
trial. Functional responses measured in individual training
trials on the slightly clumped distribution revealed that the
instantaneous intake rates (i.e., amount of food eaten in a
certain foraging time) per food density did not significantly
differ among individuals (F17,18=0.59, p=0.86; Table 1).
Therefore, when both individuals ate from the same tray
(29% of the cases), the total number of seeds eaten from a
tray was divided in proportion to the feeding time of each
individual on that tray. The final intake rate (seeds s−1) was
subjected to a square root transformation to obtain
normality. The number of patches visited and the mean
feeding time (i.e., time with head under water; s) per patch
were analyzed from the videos. These results were
subjected to ln-transformations to reach normality.

Two full-factorial Generalized Linear Models (GLM)
were used to test the effect of the interaction of food
distribution (i.e., UN, SC, and HC) with number of foragers
(i.e., single or pair trials; GLM1) and with dominance status
(i.e., single, subordinate, dominant; GLM2) on intake rate,
mean feeding time per patch and number of visited patches.
Type III sums of squares of the software Statistica 8.0
(Statsoft, Inc. 1984–2008) were applied, which compares
least square means, correcting for unequal sample sizes.
Post hoc tests were conducted using HSD for unequal
sample sizes.

Results

Intake rate

The effect of the number of foragers on intake rate varied
with food distribution (GLM1 interaction term: F2,96=8.4,
p=0.0004). The post hoc test revealed that this was
primarily because birds in single-trials feeding in the highly
clumped distribution reached higher intake rates than in any

other trial types (all p=0.001; Fig. 2). In addition, pairs in
the slightly clumped distribution reached lower intake rates
than in the other two distributions (both p<0.05; Fig. 2).

Dominance differences between the paired birds did not
affect food intake in any of the distributions, but single
birds in the highly clumped food distribution reached

25 50 75 100 125

BM 0.00 0.39 (0.18) 0.83 (0.15) 1.62 (0.45) 2.03 (0.71)

LG 0.00 0.76 (0.05) 1.40 (0.48) 2.02 (1.93) 2.99 (0.81)

LR 0.00 0.32 (0.03) 0.41 (0.13) 1.24 (0.38) 1.70 (0.34)

RB 0.00 0.61 (0.01) 1.14 (0.39) 1.25 (0.31) 1.29 (0.49)

RM 0.20 (0.04) 0.57 (0.33) 1.43 (0.43) 1.03 (0.47) 1.06 (0.93)

RR 0.00 0.60 (0.12) 1.10 (0.52) 1.12 (0.03) 1.44 (0.51)

Table 1 Mean (SD)
instantaneous intake rate of the
six individuals (rows indicated
by the codes of the individuals)
at different food densities
(columns)
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Fig. 2 Intake rate (seeds s−1) for all food distributions (uniform (UN),
slightly clumped (SC), and highly clumped (HC)). Mallards were
foraging alone ((S) single trials) or together with a competitor ((P)
paired trials). These latter results are also subdivided into dominants
(Dom) and subordinates (Sub). Box plot shows median (line in box),
interquartile range (box), 10th and 90th percentile (bars) and outliers
(dots; data points outside the 10th and 90th percentiles)
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higher intake rates than in any other case (GLM2: F4, 93=4.9,
p=0.001; post hoc test: all p<0.05; Fig. 2).

Number of visited patches

Although the number of foragers did not affect the number
of visited patches differently in the three food distributions
(GLM1 interaction term: F2,96=1.97, p=0.1; Fig. 3), there
was a main difference between the food distributions
(GLM1: F2,96=3.33, p=0.04): birds in the highly clumped
distribution visited significantly fewer patches than birds in
the other food distributions (post hoc test: both p<0.05;
Fig. 3).

Similarly, the interaction of food distribution with
dominance was not significant (GLM2: F4,93=1.14, p=0.3;
Fig. 3). However, the main effect of dominance was

significant (GLM2: F2,93=5.95, p=0.004): subordinates
generally visited more patches than dominants (post hoc
test: p=0.003; Fig. 3).

Feeding time

The number of competitors did not affect the average
feeding time per patch differently in the three food
distributions (GLM1 interaction term: F2,96=1.15, p=0.3),
but there was a main difference between the food
distributions (GLM1: F2,96=6.04, p=0.003): mallards
showed longer average feeding times per patch in the
highly clumped distribution (Fig. 4).

The interaction of food distribution with dominance
level was not significant (GLM2: F4,93=0.64, p=0.6;
Fig. 4). However, there was a main effect of dominance
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Fig. 3 Number of visited patches for all food distributions (uniform
(UN), slightly clumped (SC) and highly clumped (HC)). Mallards
were foraging alone ((S) single trials) or together with a competitor
((P) paired trials). These latter results are also subdivided into
dominants (Dom) and subordinates (Sub). Box plot shows median
(line in box), interquartile range (box), 10th and 90th percentile (bars)
and outliers (dots; data points outside the 10th and 90th percentiles)
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Fig. 4 Average feeding times (s) per patch for all food distributions
(uniform (UN), slightly clumped (SC) and highly clumped (HC)).
Mallards were foraging alone ((S) single trials) or together with a
competitor ((P) paired trials). These latter results are also subdivided
into dominants (Dom) and subordinates (Sub). Box plot shows median
(line in box), interquartile range (box), 10th and 90th percentile (bars)
and outliers (dots; data points outside the 10th and 90th percentiles)

Behav Ecol Sociobiol (2010) 64:1897–1904 1901



(GLM2: F2,93=6.09, p=0.003; Fig. 4), which was due to
subordinates showing generally shorter average feeding
times per patch compared to dominants (post hoc tests, both
p<0.01; Fig. 4).

An additional analysis revealed that in the highly clumped
distribution, dominant individuals spent more time on the
high-quality patches than subordinates (one-way ANOVA:
F2,31=3.53, post hoc test: p=0.04; Fig. 5). However, the
same effect was not found in the slightly clumped food
distribution (one-way ANOVA: F2,23=2.4, p=0.1; Fig. 5).

Discussion

Although total food resources were the same in all three tested
food distributions, mallards reached higher intake rates,
visited fewer patches, and showed longer average feeding
times in the highly clumped distribution than in the other two
distributions. Pairs of birds had lower intake rates in the
slightly clumped distribution than in the other two distribu-
tions. Although we did not observe the expected higher intake
rates for dominants compared with subordinates, subordinates
did visit more patches and had shorter feeding times.
Therefore, the disadvantage for subordinates of foraging with
dominants may not necessarily be evident in intake rates, but
they may suffer higher costs. In addition, dominants had
significantly higher average feeding times on the best quality
patches of the highly clumped food distribution, which was
not evident in the slightly clumped distribution. This indicates
that subordinates are more easily excluded from better
foraging circumstances when food aggregation is higher.

Our results for the uniform food distribution, where all
patches were equal in quality, match the finding from previous
studies (Theimer 1987). In this distribution, no effect of
interference competition was detected. In such environments,
spending time competing with other individuals for food

patches incurs only costs, since the achievable intake rates
are the same throughout the environment. Therefore,
dominants cannot profit from their higher status in the
hierarchy through kleptoparasitism of patches (Theimer
1987; Vahl et al. 2005a).

The similar individual intake rates measured in single
and paired trials on homogeneously distributed food
provide support for the absence of a food depletion effect
in our 2-min long trials. Otherwise, if food exploitation
through exploitative competition would have played a role,
the longer cumulative foraging time in the paired trials (i.e.,
240 s due to two birds foraging) would have led to lower
individual intake rates compared to the 120 s in the single
trials, even in the absence of interference competition.

The foraging scale (i.e., the scale above which foragers
respond to spatial heterogeneity, also called “grain”) was
defined for mallards as 2×2 cm (Klaassen et al. 2006c).
Therefore, we are confident that the mallards could
distinguish between the three food distributions in our
experiment. Consequently, we expected dominant birds to
dominate the higher quality patches in the two clumped
food distributions, and therefore spend relatively more time
in these patches than subordinate foragers (e.g., Hupp et al.
1996; Klaassen et al. 2006a; Lendvai et al. 2006). However,
dominant individuals did not have higher intake rates than
subordinates in either of the clumped distributions (Fig. 2).
This might simply be a consequence of the limited number
of animals competing with each other. Alternatively, this
effect may be because subordinates generally visited more
patches (Fig. 3) and had shorter feeding times (Fig. 4) than
dominants. This might have been the result of subordinates
either passively avoiding dominants or being actively
displaced (Smith et al. 2001; Stahl et al. 2001). Subse-
quently, this may result in longer searching times for a
suitable patch, leaving less time for feeding (Belanger and
Bedard 1992; Klaassen et al. 2006a; Vahl et al. 2005b). In
this experiment, we focused on the effects of interference
competition; therefore, we used very short trials to avoid
food depletion. Using longer trials and assuming that
individuals were foraging at their maximum instantaneous
intake rate after food deprivation, the constantly shorter
feeding times of subordinates would likely restrict them to
reach comparable long-term intake rates to dominants.

This is especially likely for the highly clumped food
distribution, where even in our short trials, dominants spent
more feeding time on the high-quality patches than
subordinates (Fig. 5). Animals can learn the distribution
of the patches that they are foraging on (Benhamou 1992;
Kotliar and Wiens 1990), including mallards (Klaassen et
al. 2006c). Hence, in a highly clumped food distribution,
individuals are expected to rapidly and accurately assess the
quality of the patches: a good one and a bad one.
Subsequently, in highly clumped distributions, once a high-
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Fig. 5 Average feeding times (s) on the best quality patches for the
highly clumped (HC) and slightly clumped (SC) food distributions.
Mallards were foraging alone (S) or in pairs, subdivided into
dominants (Dom) and subordinates (Sub). Box plot shows median
(line in box), interquartile range (box), 10th and 90th percentile (bars)
and outliers (dots; data points outside the 10th and 90th percentiles)
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quality patch is located, individuals do not need to continue
searching or to fight for the other patches, as they are
logically of lower quality (Vahl et al. 2005a). This results in
animals showing a nearly omniscient behavior with shorter
search times (i.e., lower number of visited patches, Fig. 3),
longer average feeding times (Fig. 4) and highly increased
intake rates (Fig. 2) compared to other food distributions.

In contrast, in food distributions where food items are
less aggregated, dominants do not occupy the best quality
patches longer than subordinates (Fig. 5). In such a
situation, quality differences between patches are less
pronounced (Li and Reynolds 1995; Nachman 2006; Nolet
et al. 2006). Hence, even if subordinates are displaced from
the best quality patches, they are not excluded from food
altogether, which could be the case in a highly clumped
food distribution. If a dominant is confident that it is
occupying the best patch in the environment, it should not
leave until it has depleted it to its final quitting intake rate
(Charnov 1976; Nolet et al. 2006). However, in a slightly
clumped food distribution, it becomes more difficult for
individuals to instantaneously assess relative patch quality.
This can have a large impact on the decision of dominants
about whether to stay and monopolize the current patch, or
to continue searching or to steal a patch from a subordinate.
This uncertainty could result in lower intake rates in a
slightly clumped food distribution compared to highly
clumped or homogeneous food distributions for both the
subordinate and dominant individuals (Fig. 2).

In experimental designs, the complexity of natural
environments cannot always be fully incorporated. However,
although our non-significant results have to be handled with
caution, owing to the limited sample size, the three food
distributions used in the experiment provide a good
representation of the food aggregations possibly encountered
by animals in the wild. Testing interference competition in a
slightly clumped food distribution by using two animals is
obviously a first step, and future research should aim to test
these findings with a larger group.

The necessity of studying interference competition in
different food distributions has been highlighted in previous
studies (e.g., Monaghan and Metcalfe 1985; Theimer 1987;
Vahl et al. 2007), but most studies commonly used uniform
(homogeneous) and/or highly clumped food distributions (for
review, see Vahl et al. 2005a). Many natural environments,
however, contain intermediate distributions (Benhamou
1992; Gross et al. 1995; Kraan et al. 2009; Li and Reynolds
1995; Sparrow 1999). The strength of our experiment is that
we also use a clumped distribution with a lower degree of
food aggregation, based on the belowground distribution of
fennel pondweed tubers (Nolet et al. 2006). This is a
common food source of many herbivorous waterfowl
species, not just in mallards (Anderson and Low 1976),
but, for example, also in Bewick's swans (Cygnus bewickii)

(Nolet and Drent 1998), whistling swans (Cygnus colum-
bianus) and canvasbacks (Aythya valisineria) (Anderson and
Low 1976). Occassionally, coots (Fulica atra), tufted ducks
(Aythya fuligula), pochards (Aythya ferina) and goldeneyes
(Bucephala clangula) may also rely on pondweed tubers
(Hilt 2006). All these species are gregarious, at least partly
during the year, and hence interference competition for food
most likely takes place. In addition, similar slightly clumped
spatial distribution has been observed in other belowground
macrophytes, such as Vallisneria winter buds (Lovvorn and
Gillingham 1996), in macrobenthic invertebrates (Kraan et
al. 2009), the food source of numerous shorebird and crab
species, and in aphids, the food source of several beetle
species (Turchin and Kareiva 1989).

Our results show that the food distribution used in
interference experiments is important. In less aggregated
environments, uncertainty about the location of the best
patches may restrict the dominant's monopolization of the
food, and the intake of both dominants and subordinates.
Therefore, together with findings from other interference
studies, our results highlight the importance of using food
distributions that mimic the natural situation that animals are
faced with in the field, and not a hypothetical distribution
that is easy to create and analyze in an experiment.
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