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The origin of Ewing’s sarcoma is a subject of much debate. Once thought to be derived from primitive neuroectodermal cells,
many now believe it to arise from a mesenchymal stem cell (MSC). Expression of the EWS-FLII fusion gene in MSCs changes cell
morphology to resemble Ewing’s sarcoma and induces expression of neuroectodermal markers. In murine cells, transformation
to sarcomas can occur. In knockdown experiments, Ewing’s sarcoma cells develop characteristics of MSCs and the ability to
differentiate into mesodermal lineages. However, it cannot be concluded that MSCs are the cell of origin. The concept of an MSC
still needs to be rigorously defined, and there may be different subpopulations of mesenchymal pluripotential cells. Furthermore,
EWS-FLII by itself does not transform human cells, and cooperating mutations appear to be necessary. Therefore, while it is
possible that Ewing’s sarcoma may originate from a primitive mesenchymal cell, the idea needs to be refined further.

1. Introduction

Ewing’s sarcoma is a rare malignancy primarily affecting
children and adolescents. It arises mainly in bone and less
commonly in soft tissues. The poorly differentiated tumors
are aggressive and metastasize early to lung, bone marrow,
and other tissues [1-4]. In all cases of the disease, there
is a characteristic reciprocal chromosomal translocation,
which leads to an in-frame fusion between the EWS gene
and one of the ETS family gene members [5, 6]. In
approximately 85% of cases, the EWS gene is combined with
the ETS gene FLII in a t(11;22) translocation. In about
10% of cases, EWS is fused to ERG, which has a high
degree of homology with FLII in the carboxyl terminus.
In very rare cases, EWS is fused to other ETS family
genes such as FEV and ETVI [1, 7]. The EWS-ETS fusion
gene appears to be critically important for maintaining
the tumor phenotype of the disease. Ewing’s sarcoma cells
with EWS-FLII knockdown by siRNA exhibit decreased
cell proliferation, and tumor xenografts regress in mice (8,
9].

2. Mechanism for EWS-FLI1 in Tumorigenesis

The mechanism by which EWS-FLI1 contributes to tumori-
genesis is complex since the gene affects the cell in many
different ways. The best known function of the EWS-FLI1
protein is that of an aberrant transcription factor [10]. Its
structure consists of an N-terminal EWS transcriptional acti-
vation domain and a C-terminal FLII DNA-binding domain.
Disruption of either domain impairs the transformation
activity of the protein [11, 12].

EWS-FLII possesses the winged helix-turn-helix motif of
the ETS family of transcription factors, and EWS-FLI1 rec-
ognizes the same consensus DNA binding sequence as FLII.
However, because of aberrant protein-protein interactions,
in large part due to the EWS portion of the molecule, EWS-
FLI1 has an altered profile of gene regulation. It is relevant to
note that FLII can act as an oncogene in its own right. Flil
(Friend leukemia virus integration) was originally identified
as the gene activated by insertion of the Friend murine
leukemia virus (MuLV) [13]. It has the capacity to transform
murine cells and is responsible for the development of
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erythroleukemias in mice [14]. It is presumably the fusion
of the N-terminal moiety of EWS that confers the ability to
induce Ewing’s sarcoma in human cells.

Acting as either a transcriptional activator or repressor,
EWS-FLII regulates a number of important target genes.
EWS-FLI1 has been found to upregulate genes that promote
cell survival and proliferation, including IGFI [15], Myc
(16], TOPK [17], NKX2.2 [18], ID2 [19], DAX1 [20], GLI1
[21], EZH2 [22], MK-STYX [23], and PLD2 [24]. EWS-FLI1
concomitantly represses genes that induce cell cycle arrest
and apoptosis, including TGFB2 [25], p21 [26], p57kip [27],
and IGFBP3 [28]. Interestingly, EWS-FLI1 also upregulates
genes that are involved in cell differentiation such as SOX2
[29] and EZH2 [22].

While progress has been made in characterizing the
downstream targets of EWS-FLII, the properties of EWS-
FLI1 may not be fully explained on the basis of its activity as a
transcription factor. There are other properties of EWS-FLI1
that have not been studied quite so extensively. These include
RNA binding, RNA splicing and protein-protein interactions
[30-37]. Furthermore, it has become increasingly clear
that the cellular context has a large bearing upon the
transformation process. Early experiments with EWS-FLI1 in
NIH3TS3 cells were somewhat artificial in the sense that these
cells were immortalized murine fibroblasts. Paradoxically, in
normal murine and human fibroblasts, EWS-FLI1 by itself
does not transform cells; instead, it results in cell cycle arrest
[38, 39]. These findings suggest the possibility that EWS-
FLI1 may have complex antagonistic effects on different types
of cells and underscore the importance of identifying the
correct cell of origin for the disease.

3. Primitive Neuroectodermal Features of
Ewing’s Sarcoma

The origin of Ewing’s sarcoma is a controversial topic [7].
Histologically, Ewing’s sarcoma has a certain resemblance
to primitive neuroectodermal cells, and it was once widely
believed that the tumor arose from such cells [40, 41]. Early
neural markers, such as neuron-specific enolase (NSE) and
S-100, are present in some tumors [42, 43]. Ultrastructural
features, such as neurosecretory granules, can also be
observed with electron microscopy in some cases as well [41,
43]. Laboratory experiments have demonstrated that Ewing’s
sarcoma cells can be induced to differentiate towards the
neural lineage in vitro and acquire neuritic processes under
appropriate stimulation [44]. Conversely, introduction of
EWS-FLII into neuroblastoma cell lines has been shown to
make the cells less differentiated and acquire characteristics
of Ewing’s sarcoma [45].

In spite of considerable data pointing to a neuroecto-
dermal origin, some doubt has been cast upon this idea.
The neural markers seen in Ewing’s sarcoma are present
only in a minority of cases, and even in such tumors, they
occur sporadically in cells. More importantly, EWS-FLII has
been shown to induce neuroectodermal differentiation and
upregulate a number of genes associated with early neural
differentiation [46, 47]. The findings raise the possibility
that the neuroectodermal characteristics of Ewing’s sarcoma
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might be a direct result of EWS-FLII expression and not
necessarily the cell of origin.

4. Mesenchymal Stem Cells

An alternative hypothesis is that Ewing’s sarcoma derives
from a mesenchymal stem cell. This addresses one simple but
nagging question regarding the neuroectodermal theory of
histogenesis, namely, whether bone normally contains prim-
itive neuroectodermal cells. While cranial bones develop
from mesenchymal condensation of neuroectoderm [48],
the long bones of the limbs originate from mesoderm [49],
and there may not normally be primitive neuroectodermal
cells in bone. Since most cases of Ewing’s sarcoma arise in
bone, it seems plausible that the cell of origin ought to be
a normal resident of bone. It may be significant to note
that mesenchymal cells in bone marrow can exhibit some
characteristics of neuroectodermal cells [48, 50]. The cells
sometimes express neural markers spontaneously, including
S-100 and neurofilament M [50]. They can also be induced
in vitro to differentiate towards the neural lineage [51, 52].

A fundamental problem with the mesenchymal hypothe-
sis is that one must define what exactly constitutes a “mes-
enchymal stem cell.” The term is widely used in scientific
literature, and yet the existence of the cell has not been
rigorously proven or defined [53]. The term MSC usually
implies a bone marrow-derived cell that has the capacity to
differentiate towards various mesodermal lineages, such as
osteoblasts, chondrocytes, and adipocytes. In order to satisfy
the criteria for being a stem cell, it must be shown to be (1)
self-renewing and (2) able to generate different tissue types
in vivo from a single cell. This has proven to be a daunting
task, and perhaps as a result, the putative MSC has yet to
be defined in terms of a reliable set of cell surface markers
that would aid greatly in consistent extraction of the cells
[54]. Cells considered to be MSCs have been reported to be
positive for a number of markers, including Sca-1, Stro-1,
SH2, SH3, SH4, CD29, CD44, CD90, and CD105, but none
of these are entirely specific for MSCs [53-58].

Most preparations of MSCs are heterogeneous [59]. Bone
marrow extracts are typically plated on plastic dishes, and
the adherent cells are enriched for cells that have some
of the desired properties of MSCs. However, the cultures
contain a mixture of cells, including hematopoietic stem
cells, endothelial cells, osteoblasts, and other cells. The
cells can be stimulated to undergo differentiation towards
osteoblastic, chondroblastic, and adipocytic lineages in vitro
under appropriate culture conditions. One notes though that
unless cultures are derived from single cell colonies, it is
possible that different cell subpopulations differentiate into
the various lineages, and it is therefore not accurate to call
the cells MSCs. Furthermore, expression of in vitro markers
of differentiation does not equate to the capacity for in vivo
differentiation [53]. For these reasons, some authors prefer
to call these cell preparations by less presumptive terms, such
as “bone marrow stromal cells” as opposed to MSCs.

There are data to support the idea that there is more than
one type of pluripotential nonhematopoietic cell in bone
marrow. Colter et al. showed that within the population of
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plastic adherent cells, there are at least two distinct subgroups
which could be separated on the basis of size and cell surface
markers [60]. A small, round cell with rapid doubling time
seems to predominate at early passage whereas a larger
spindle cell tends to divide more rapidly at later times. The
latter cell type may be an osteoblast precursor and perhaps
less pluripotential since it spontaneously expresses alkaline
phosphatase, an osteoblast marker.

Jiang et al. showed that bone marrow contains a
small population of pluripotential cells, which they termed
“marrow-associated progenitor cells” (MAPCs) [61]. The
cells represent a subset of the bone marrow cells that
adhere to plastic. The cells were found to have clonogenic
self-renewal capabilities. Furthermore, when injected into
blastocysts, the cells developed into many different tissues,
including those derived from ectoderm, endoderm, and
mesoderm. These cells may be distinct from the majority of
cells typically termed MSCs since their cell surface markers
appear to be different from most of the plastic-adherent cells
extracted from bone marrow.

At the present time, it should be recognized that our
understanding of the “mesenchymal stem cell” is far from
complete. The exact nature and composition of the majority
of plastic-adherent bone marrow cells is still in question. The
very primitive stem cell described by Jiang et al. [61] may be
similar to the stem cells found in other tissues [62] and may
not represent the more prevalent bone marrow stromal cell.
Within the latter group of cells, there may be multiple sub-
populations of cell types with varying pluripotential capabil-
ities for in vivo differentiation, analogous to hematopoietic
cells [54].

5. MSC Characteristics of Ewing’s Sarcoma

There are several lines of evidence that support the notion
that Ewing’s sarcoma is derived from an MSC-like cell
(accepting for the moment the concept of the MSC).
Using Ewing’s sarcoma cell lines, researchers have knocked
down the expression of EWS-FLII and shown that the
cells have some capacity for in vitro differentiation towards
chondroblastic, osteoblastic, and adipocytic lineages [63].
Several groups have demonstrated that expression of EWS-
FLII in murine MSCs resulted in transformation of the cells,
and when these cells were implanted into mice, sarcomas
formed [64, 65]. The tumors shared some characteristics
with Ewing’s sarcoma, including cell surface markers and cell
morphology. In a related set of experiments, expression of
EWS-FLII in the pluripotential murine cell line C3H10T1/2
inhibited the cells ability to differentiate into osteoblasts
and adipocytes while upregulating neural genes [66]. When
injected into mice, these cells formed metastatic sarcomas.
In contrast to the mouse studies, human MSCs that were
infected with a retrovirus containing EWS-FLII failed to
form tumors when injected into immunodeficient mice [67].
Although somewhat disappointing, the results are not at all
surprising since it has been reported that transformation
of normal human mesenchymal cells requires multiple
mutations [68]. Murine mesenchymal cells are more apt to
transform spontaneously in culture and form sarcomas [69].

It is worthwhile to note that human cells expressing EWS-
FLII take on a rounded morphology and express some of the
neuroectodermal markers seen in Ewing’s sarcoma [67, 70].
Furthermore, the expression of CD99, a relatively specific
marker for Ewing’s sarcoma, was found to be present at a
low level in MSCs and upregulated by EWS-FLI1 [67]. This
addressed a previously raised concern against the theory of
an MSC origin of Ewing’s sarcoma regarding expression of
CD99 in MSCs [71].

The relationship between Ewing’s sarcoma and human
mesodermal cells has been strengthened further in other
experiments. Ewing’s sarcoma cell lines with knockdown
of EWS-FLII have a transcription profile similar to that of
the human fetal fibroblast cell line IMR-90 [75]. Similarly,
Tirode et al. showed that in an EWS-FLII knock-down
experiment, the gene expression profile of the cells began
to converge upon that of mesenchymal stem cells [63]. This
was statistically significant for the subset of genes that were
upregulated or downregulated by EWS-FLI1, but it is note-
worthy that the overall pattern of gene expression appeared
to have distinct differences between MSCs and Ewing’s
sarcoma cells with EWS-FLI1 knockdown. Comparison of
cell surface markers has also shown some similarities and
differences between MSCs and Ewing’s sarcoma (Table 1).
A complementary set of observations was made by Burns
et al., who reported that late passage human mesenchymal
cells that spontaneously transformed after introduction of
telomerase (hMSC-TERT20) took on an immunohistochem-
ical profile that was reminiscent of Ewing’s sarcoma, namely,
CD99+, vimentin+, CD45—, cytokeratin—, and desmin—
[72]. Finally, in a meta-analysis of studies on genes affected
by EWS-FLII, a “core EWS-FLII transcriptional signature”
was identified which shared similarities with published
mesenchymal stem cell data [76]. While these collective data
are supportive of a mesenchymal origin of Ewing’s sarcoma,
it is clear that simple knock-down of EWS-FLII in tumor
cells does not cause them to revert to a normal mesenchymal
cell. Other changes have accumulated in the cells that make
them distinctly different from recognizable normal cells.

6. Knock-in and Transgenic Mouse Models

The importance of cellular context has been highlighted
in recent mouse models. Several knock-in and transgenic
mice expressing EWS-FLI1 have now been created. In all of
these models, a strategy of conditional expression has been
employed to avoid lethal effects of EWS-FLI1. Constitutive
expression of EWS-FLI1 protein in embryonic stem cells
causes cell death [77], and mice with expression of EWS-
FLI1 in the whole body have an embryonic lethal phenotype
[78, 79]. To circumvent this problem, investigators have used
cre-loxP recombination to achieve conditional expression of
the protein in vivo. Tissue-specific cre transgenic mice are
crossed to the EWS-FLII mice to restrict expression of the
protein to certain tissues or cells.

Torchia et al. developed a knock-in EWS-FLII mouse
at the Rosa26 locus [78]. When EWS-FLII was expressed
by use of the MxI-cre mouse, myeloid/erythroid leukemias
developed. These malignancies were similar to but distinct
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TaBLE 1: Cell surface marker analysis of mesenchymal cells and Ewing’s sarcoma.
Marker Mes. Cells Mes. Cells + EWS-FLI1 ESFT ESFkl;l :)—CEZ\(/;;ELH Refs.
CDI10 + - - [70]
CD13 + - - [70]
CD29 + - + [63]
CD44 + + - + (57, 63, 70]
cco?rilrsrlgrell;l;(iicggg) - - [57,72]
CD54 F + ¥ + [63,70]
CD59 + + [63]
CD73 + - + [63]
CD99 (MIC2) ¥ + ++ + [67,70,71, 73]
CD105 + + = + [57, 63, 70]
CD 117 (c-kit) - + + [70]
CD166 + + + + [63,70]
CD271 - + + [70]
Vimentin + + (72]
Caveolin-1 + + [73, 74]
Desmin - - [72]
Cytokeratin — — [72]

Mes. cells: human bone marrow-derived mesenchymal cells.
ESFT: Ewing’s sarcoma family of tumors.
F indicates weak or variable staining.

from the erythroleukemias induced by F-MuLV. The MxI-
cre mouse expresses cre recombinase in the liver, spleen,
bone marrow, and lymphoid tissues after induction with
alpha/beta interferon or polyinosinic*poly(C) (pIpC) [80].
While the original strategy was to target expression to
bone marrow progenitor cells, it is likely that the gene was
preferentially expressed in hematopoietic precursors, thereby
producing leukemias.

Codrington et al. developed an interesting Ews-ERG
mouse, which possesses an inverted ERG cassette flanked by
loxP sites in intron 8 of the Ews gene, to simulate the t(21;22)
translocation that produces the EWS-ERG fusion [81]. They
obtained T cell lymphomas in all mice but this may have been
due to their choice of the Ragl-cre mouse, which expresses cre
recombinase in lymphocytes only [82].

Although it may be somewhat surprising that leukemias
and lymphomas were found in the previous two mouse
models, there is reason to believe that this has clinical
relevance to human disease. While it was once believed
that EWS-FLII was specific to Ewing’s sarcoma, it is now
known that EWS-FLII and related EWS-ETS fusions occur
sporadically in other malignancies, including leukemias [83—
87] and biphenotypic tumors, which have features of both
myogenic and neuroectodermal differentiation [88]. These
cases indicate that EWS-FLII can potentially contribute to
neoplastic growth outside of the typical cellular context in
which Ewing’s sarcoma arises. Quite interestingly, the CD99
marker, which is commonly used for immunohistochemical
testing for Ewing’s sarcoma, is actually considered a normal

leukocyte marker and is uniformly expressed on thymocytes
[89].

In a different transgenic mouse model of EWS-FLII,
conditional expression of the fusion protein was achieved
in the mesoderm-derived tissues of the limbs by crossing
to the PrxI-cre mouse, which expresses cre in the primitive
mesenchyme of the early limb bud [79]. Part of the rationale
behind this cross was to spare the hematopoietic cells and
thereby increase the likelihood of inducing sarcomas. Limb
shortening, muscle atrophy, osseous dysplasia, and other
developmental abnormalities were observed, reinforcing
the idea that EWS-FLII impairs growth and differentia-
tion of cells. However, in this model, sarcomas did not
spontaneously form unless the p53 gene was simultane-
ously mutated [79]. In contrast to the more differentiated
osteosarcomas that formed without EWS-FLII in mice with
conditional mutation of p53 induced by PrxI-cre, the tumors
that arose with EWS-FLII were undifferentiated sarcomas,
similar to Ewing’s sarcoma.

Although concern has been raised regarding the validity
of mouse models for Ewing’s sarcoma [76], the transgenic
mouse model employing PrxI-cre does underscore one
important feature of Ewing’s sarcoma, namely, that EWS-
FLI1 alone does not appear to be sufficient to confer
sarcomatous change in an in vivo setting. Similar to the
results obtained with human MSCs expressing EWS-FLII,
additional cooperating mutations seem to be required for
transformation to occur. The nature and timing of these
mutations may be an interesting subject for future research
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FIGURE 1: Cooperative mutations in the development of Ewing’s
sarcoma. (a) A t(11;22) reciprocal translocation produces the
EWS-FLII gene, but this tends to cause growth arrest in normal
cells. (b) A mutation randomly occurring prior to the t(11;22)
translocation might cooperate with EWS-FLII to permit escape
from growth arrest (or even promote cell proliferation) and
subsequent transformation to Ewing’s sarcoma. (c) The cooperative
mutation may occur after the t(11;22) translocation; this would
necessarily imply a mechanism for continued cell growth after EWS-
FLII is expressed.

(Figure 1). The limb shortening of transgenic mice [79] and
experimental cell culture work of various groups [39, 50]
suggest that EWS-FLII impairs growth of normal cells, and
this may be problematic in envisioning a pathway for neo-
plastic transformation to occur. While many have postulated
that mutations occur after the t(11;22) translocation event, it
is also possible that EWS-FLII transforms a cell that carries a
silent but critical mutation in another gene.

The requirement for additional mutational events has
precedent in other mouse models. For example, in a knock-
in model of alveolar rhabdomyosarcoma, mutations in
Ink4A/Arf or Trp53 were needed for the Pax3;Fkhr fusion
to transform cells effectively [90]. Interestingly, conditional
expression in the correct cell of origin—postnatal differ-
entiating myofibers—was also found to be important for
rhabdomyosarcomas to develop in this particular model.
TRP53, however, is unlikely to be the critical cooperating
mutated gene in Ewing’s sarcoma since TRP53 mutations are
found only in about 10% of Ewing’s sarcoma cases [91].

7. Conclusions

Identification of the correct cell of origin is crucial to the
understanding of Ewing’s sarcoma. While there has been
steadily accumulating evidence that the cell of origin may be
a primitive pluripotential cell that resides in bone marrow,
one cannot state unequivocally that it is either a neuroec-
todermal cell or a “mesenchymal stem cell.” One important
simple reason for this is that the concept of the MSC has
yet to be rigorously defined, and the term is used somewhat
loosely in the scientific literature. MSCs, as they are typically

prepared, are composed of a mixture of different cells, and
some of these do exhibit neuroectodermal properties. It is
possible that a subpopulation of the pluripotential cells in
bone marrow is especially vulnerable to the transforming
effects of EWS-FLII.

Even if the correct cell of origin can be identified with
precision, much has yet to be learned. Expression of EWS-
FLI1 alone is not sufficient for transformation of normal
human cells. Instead, EWS-FLII tends to cause growth arrest.
In the early excitement over the discovery of EWS-FLII,
researchers focused largely upon downstream transcriptional
targets. Current research suggests that there may be critically
important cooperating mutations that work in concert with
EWS-FLII. The “cell of origin” concept may be a simplistic
one in that it might not be a normal cell from which Ewing’s
sarcoma arises. EWS-FLII may be fully transforming only in
a mutated cell that possesses additional genetic alterations.
The tumor that eventually arises, whether it is a conventional
Ewing’s sarcoma, an unusual variant, a biphenotypic tumor,
lymphoblastic leukemia, or some other disease, will probably
depend upon an interplay between the cellular background
in which it arises and the set of cooperating mutations that
occur.
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