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Periodicity and Evoked Responses in Motor Cortex
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Spiking in primary motor cortex (MI) exhibits a characteristic beta frequency periodicity, but the functional relevance of this rhythmic
firing is controversial. We simultaneously recorded multiple single units and local field potentials in MI in two monkeys (Macaca
mulatta) during continuous, self-paced movements to serially presented targets. We find that the appearance of each new target evokes
precisely timed spiking in MI at a characteristic latency but that the exact timing of this response varies depending on its relationship to
the phase of the ongoing beta range oscillation. As a result of this interaction between evoked spiking and endogenous beta periodicity,
we find that the amount of information about target location encoded in the spiking of MI neurons is not simply a function of elapsed time
but depends also on oscillatory phase. Our results suggest that periodicity may be an important feature of the early stages of sensorimotor

processing in the cortical motor system.

Introduction

In primary motor cortex (MI), oscillations in the beta (10—45
Hz) frequency range are commonly observed in local field poten-
tial (LFP) recordings (Murthy and Fetz, 1992; Sanes and Dono-
ghue, 1993). These oscillations reflect concurrent variations in
the polarization of large numbers of individual neurons (Fetz et
al., 2000), and as a result, the phase of the beta-LFP is often
correlated with the probability of single-unit spiking. Although
the existence of this phenomenon has been known for some time
(Murthy and Fetz, 1992, 1996; Donoghue et al., 1998), its func-
tional relevance has been the subject of debate. Beta range
rhythmicity in spiking has been proposed to play a role in
corticomuscular output (Baker et al., 1999; Schoffelen et al.,
2005), proprioceptive feedback (Riddle and Baker, 2005; Baker et
al., 2006; Baker, 2007), sensorimotor attention (Murthy and Fetz,
1992; Sanes and Donoghue, 1993), or no functional role at all
(Pfurtscheller, 1992).

The interaction between incoming sensory information and
endogenous rhythms has been extensively studied in the insect
olfactory system (Stopfer et al., 1997; MacLeod et al., 1998).
Fewer studies have examined the interaction between endoge-
nous periodicity and evoked spiking in mammalian cortex. In
primate visual cortex, Fries et al. (2001) found that the latency of
fast cortical responses to visual cues depended on the timing of
stimuli with respect to the phase of ongoing gamma oscillations.
Schroeder and colleagues (Lakatos et al., 2007) have found that
the phase of ongoing oscillations in primate auditory cortex are
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quickly reset by salient somatosensory stimuli and that, as a re-
sult, responses to simultaneously presented auditory cues are en-
hanced. Modulation of sensory responses by phase-locked
cortical oscillations may be a more general phenomenon in the
processing of early sensory information (Lakatos et al., 2008;
Schroeder and Lakatos, 2009).

We recorded multiple single units and local field potentials
from MI in monkeys while they generated continuous trajecto-
ries between serially presented random targets. We found that the
appearance of each new target quickly reset the phase of the on-
going beta oscillation in MI and, in a subset of MI neurons, pro-
duced a volley of precisely timed spikes after the phase-resetting
that were informative about the new target location. We found
that the exact timing of this precise spiking response depended on
the phase of the ongoing periodic activity in MI and that, by
accounting for slight target-to-target differences in the time
course of the phase-locked beta oscillation, the variability in
evoked spike times was reduced. As a consequence of this inter-
action with phase, we show that the information about target
direction encoded in MI single-unit spiking is not simply a func-
tion of elapsed time after a target event but also of the postevent
phase progression of the beta oscillation in MI. Our results indi-
cate that an area downstream from MI could potentially access
more information if its own oscillations were coherent with the
upstream oscillations and similarly reset by the target appear-
ance, and suggest that early sensorimotor processing may occur
periodically, rather than continuously, in primary motor cortex.

Materials and Methods

Behavioral task. Two monkeys (Macaca mulatta) were trained to perform
a visuomotor task using a two-link robotic exoskeleton (KINARM)
(Scott, 1999). During the task, the monkey’s arm rested in a manipulan-
dum below a horizontal screen that displayed a target (10 mm square)
and a cursor aligned to the position of the monkey’s hand (5 mm diam-
eter circle). The monkey was required to move the cursor (hand) to the
position of the target (see Fig. la). Each successful target acquisition
caused the current target to be extinguished and a new target to be im-
mediately presented at a random location within a limited workspace;
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thus, we call this task random target pursuit (RTP). The monkeys re-
ceived a juice reward after completing a successful trial of five to seven
consecutive targets (see Fig. 1b). In general, the animals generated con-
tinuous trajectories over many minutes, acquiring hundreds or thou-
sands of targets without pausing or removing their arm from the
KINARM. Over a typical hour-long recording session, each monkey ac-
quired several thousand targets.

Data collection. Neural data were collected using 100-electrode “Utah”
microelectrode arrays (Blackrock Microsystems; 1 mm length, 400 wm
interelectrode spacing) implanted in primary motor cortex in two mon-
keys contralateral to the relevant arm. Signals from up to 96 electrodes
from each array were amplified (gain of 5000) and bandpass filtered
between 0.3 Hz and 7.5 kHz. Neural spikes identified by threshold cross-
ings were recorded as 1.6 ms segments sampled at 30 kHz per channel and
stored digitally (14 bit) using a Cerebus acquisition system (Blackrock
Microsystems). Spike waveforms were sorted off-line using a semiauto-
mated method developed in our lab incorporating some elements of a
previously published algorithm (Vargas-Irwin and Donoghue, 2007).
Signal-to-noise (SNR) ratios for each unit were defined as the difference
in mean peak-to-trough voltage divided by twice the mean SD over all
spikes at each of the 48 sample time points of the waveform. We dis-
carded units with <100 spikes over the entire recording session or SNR
<3. A total of nine data sets (five data sets for animal Mk, and four data
sets for animal Rs) were analyzed. Two of the four Rs data sets included
anumber of conditions in which a viscous load was applied to the arm
during execution of the task. In every other respect, the task was the
same, and we treated these data sets the same as the others. Although
we analyzed 839 neuronal spike trains, this number may be an over-
estimate of the actual number of distinct neurons if any of the same
neurons were recorded on different days from the same electrodes on
each array. Our own analysis suggests that over a 2 week period, a little
more than one-quarter of neurons can be reliably identified as the
same cells (Dickey et al., 2009). The length of time between recordings
for monkey Rs ranged from 1 to 5 months, and for monkey MKk, from
4 d to 3 months.

LFP signals on each channel were recorded continuously at 1 kHz,
amplified using a gain of 5000, and bandpass filtered from 0.30 to 250
Hz or 0.30 to 500 Hz. The SD of the LFP signal on each channel was
calculated over the entire recording session, to identify outlier chan-
nels containing significant noise. These channels were excluded from
the phase-locking analysis described below. LFPs were bandpass fil-
tered (bidirectionally to avoid phase distortion) in the beta frequency
range between 10 and 45 Hz using an eighth-order Butterworth filter.

Spectra, spectrograms, and phase locking. Preevent and postevent 1-55
Hz spectra were computed over the 400 ms periods before and after the
target appearance (Hamming window) and averaged over all targets.
Perievent 1-55 Hz spectrograms were computed over a 128 ms Ham-
ming window stepped by 10 ms over the —500 to 500 ms perievent period
and then averaged across all targets. The instantaneous phase of the
beta-LFP was calculated using the discrete Hilbert transform (MATLAB
Signal Processing Toolbox), and segments of the resulting phase series
were aligned on target appearances. The result was a series of phase
distributions collected across targets at each millisecond from 200 ms
before to 500 ms after the target event. We calculated the percentage phase
locking (PPL), which we define as follows: [1 — (H(6,)/H,,,,)]1¥100, where
H(0,) is the entropy [—3,p(x)log( p(x))] of the binned phase distribu-
tion at peritarget time ¢ (10 phase bins, millisecond resolution), and
H, ... is the maximum possible entropy (representing a uniform dis-
tribution across all phase bins) (Rubino et al., 2006). The PPL was
then averaged over channels and data sets for each monkey. The
relatively larger offset evident in the monkey Mk traces (see Fig. 2h)
reflects the smaller number of channels/trials contributing to this average
compared with monkey Rs.

Precise spiking. Perievent histograms were constructed by binning
spikes in 1 ms bins from 0 to 300 ms after each target event, and averaging
over all events. Perievent histograms in Figure 3a were normalized by the
peak rate observed in the 0-300 ms period and smoothed with a =4 ms
boxcar filter (running mean). Example peristimulus time histograms
(PSTHs) were smoothed with *1 ms boxcar filter.
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To determine the precision of neural spiking with respect to target
events, we used a spike-resampling (“jitter”) method (Hatsopoulos et al.,
2003; Harrison and Geman, 2009). This method provides a nonparamet-
ric test of the likelihood of observing spikes within a small window
around a particular postevent latency, given the spiking within a larger
surrounding window. In principle, the null distribution for this test
could be constructed for each unit and latency by repeatedly jittering
spike times within a larger jitter window (thus preserving the overall
spike count) and assessing the number of resulting precise spikes (spikes
occurring within a smaller “synchrony” window). However, we were
grateful to be able to use a fast algorithm (and associated code) courtesy
of Matthew Harrison (Pittsburgh, PA) (Hatsopoulos et al., 2003; Harri-
son and Geman, 2009) that analytically computes the expected distribu-
tion of precise spike counts after an infinite number of repetitions of the
above jittering procedure. Our choice of parameters (in this case, 5 ms
precision window, 25 ms jitter window) defines a priori what we mean by
a “precise” timescale. As a result, we were not strictly interested in hy-
pothesis testing per se, but rather in the relative degree of precise firing
reflected in variations in the p value of the test. Mean log( p) values in
Figure 3f were smoothed with a =1 ms boxcar filter.

Mutual information. The mutual information between two variables
represents the reduction in uncertainty in one variable, given knowledge
of the other. More formally, mutual information between a neural signal
Sand akinematic signal K is defined as follows: I(S;K) = H(K) — H(K]|S),
where H(X) is the entropy [—2 p(x)log( p(x))] (Paninski et al., 2004;
Cover et al., 2006). We calculated the mutual information between the
distribution of binned spike counts and the direction of the vector be-
tween the acquired target and the simultaneously appearing new target (5
ms time bin stepped at 1 ms resolution over perievent latencies from
—200 to 300 ms, 16 equally spaced direction bins). The empirical (i.e.,
unfitted) joint distribution of binned spike counts and direction counts
was used in the calculation of conditional entropy H(K]|S). All informa-
tion traces were smoothed with a =2 ms boxcar filter. We compensated
for potential biases in information values caused by binning or sampling
errors by subtracting the mean information calculated with respect to
shuffled kinematic data (Treves and Panzeri, 1995; Paninski et al., 2004).
We used the mean value calculated over 10 shuffles of the data, which we
found was sufficient since the variance between shuffles was typically
small compared with the mean (bias) of the result. Furthermore, in all
the analyses described here, we estimated the bias separately at each
time point (—200 to +300 ms), and so any errors in our estimate were
independent from point to point (and from unit to unit). The extent
of residual bias not eliminated by this shuffling procedure is likely
attributable to sampling errors for cells with very few spikes and is
visible as the small, constant elevation above zero in the preevent
period in Figure 5.

Oscillation and spiking latency. The latency of the phase-locked oscil-
lation after each target appearance on a single channel was defined by first
locating the peak in the mean beta evoked potential closest to 100 ms
after the event. The location of this peak defined a reference, and the
latency of the beta-LFP after each target appearance was defined as the
difference in the timing of the closest peak to this reference. For example,
if the reference peak for a particular channel was located at 120 ms and
the closest peak in the beta-LFP after a particular target occurred at 108
ms, the latency for that target would be —12 ms.

In the example in Figure 6d, the “early” and “late” perievent histo-
grams are smoothed with a =3 ms boxcar filter.

In the regression between spike and oscillation latencies (see Fig. 6¢),
we considered spikes between 100 and 150 ms after the target event that
also fell within periods of significantly precise spiking ( p < 0.05) defined
by the jitter method; the median latency of these spikes defined the la-
tency of precise spiking for each target appearance. For each unit, we then
regressed these spike latencies against the latencies of the phase-locked
oscillation recorded on the same electrode. We used a less stringent cri-
teria for precise spiking (*10 ms synchrony window and a 50 ms jitter
window) in this analysis. This larger window allowed more variability in
spike times within still significantly precise periods. Without this in-
creased variability, a regression analysis would have been impossible,
since median precise spikes would have all been constrained within an
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extremely narrow temporal window (compare the brevity of periods of
precise spiking identified using the 5 ms/25 ms criteria in supplemental
Fig. 2, available at www.jneurosci.org as supplemental material).

For each unit, we adjusted the timing of postevent spikes by subtract-
ing the latency of the phase-locked oscillation recorded on the same
electrode from the spike latencies after each target event. We then reran
the above precision analysis on the adjusted spike times.

Phase-binned spikes. In a typical peristimulus time histogram, spikes
are binned in fixed time bins at various latencies with respect to a refer-
ence event. We performed a similar procedure, but instead of aligning the
histogram on the target appearance, we aligned the histograms on a
characteristic peak in the phase-locked beta oscillation, and instead of
binning spikes in fixed time bins, we binned spikes in phase bins defined
by the phase progression of the beta-LFP (supplemental Fig. 3, available
at www.jneurosci.org as supplemental material).

For each target, the location of the central “zero” bin was defined by
the postevent peak located closest to the reference peak in the mean near
100 ms (the same landmark used in the calculation of oscillation latencies
described above). Moving forwards along the unwrapped Hilbert phase
series from this point, we binned all spikes that occurred within a /8
radian phase advance in bin 1, all spikes between a 7/8 to 7/4 radian
phase advance in bin 2, and so on—and the same in the reverse direction.

We calculated the mutual information between phase-binned spikes
and target direction as with the information PSTH above. As a control,
we also binned spikes after each target using the postevent phase series
from a different, randomly chosen target appearance (10 shuffles). In
Figure 7, a, b, e, and f, the unshuffled traces were smoothed with a =1 bin
boxcar filter.

Classifying cells by waveform shape and interspike interval. We defined
spike waveform width as the time between the peak and trough of the
mean spike waveform for each unit. Based on the observed distribution
of spike widths, we classified waveforms as “narrow” if they were =<0.35
ms wide and “wide” otherwise. A small number of cells with waveforms
<0.13 ms or >0.6 ms were discarded. We also classified cells based on
their interspike interval (ISI) distribution. A cell was defined as having a
bursting component based on the ratio of ISIs <9 ms to ISIs between 10
and 200 ms. If this ratio fell in the top quartile of the distribution of all
units for each monkey (=0.0897), the unit was classified as having a
“bursting” component. If this ratio was in the bottom quartile
(=0.0309), a unit was classified as “nonbursting.” The remaining cells in
the interquartile range were classified as “other.”

Results

The two monkeys in this study performed a random pursuit
tracking task, generating continuous arm movements to acquire
thousands of serially presented random targets in each recording
session (Fig. 1) (see Materials and Methods). The acquisition of
one target immediately triggered the presentation of the next
target. There was no imposed “set” or “hold” period, and the
monkeys typically initiated their reach to the new target within
250-300 ms (supplemental Fig. 4, available at www.jneurosci.org
as supplemental material).

Event-locked beta oscillation

Primary motor cortex local field potentials contained a charac-
teristic oscillatory mode within the 10—45 Hz beta range; these
oscillations varied in magnitude around target events but re-
mained prominent throughout the perievent period (Fig. 2a,b).
We have shown previously that beta oscillations are phase-locked
to the appearance of instructive visual targets during a stationary
set period in a “center-out” task (O’Leary and Hatsopoulos, 2006;
Rubino et al., 2006), and target-triggered averages revealed that
MI beta oscillations were also locked to target events during the
self-paced, continuous movements generated in the RTP task
(mean beta-filtered LFP for a representative channel averaged
across targets) (Fig. 2¢).
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Figure 1. Behavioral task. a, The monkey's arm rests in a two-link robotic manipulandum

below a horizontal screen. The task involves moving a cursor (filled circle) aligned to the position
of his hand to the target (squares). Acquisition of each target results in the immediate appear-
ance of a new target at a random location in the workspace (the previous target location and
movement trajectory are shown with dotted lines in the figure but are not visible in the task).
Arm movements are constrained in two dimensions by the manipulandum, and the position of
the monkey's hand is sampled at 500 Hz. b, The monkey generates a continuous trajectory
through sequential targets, receiving a juice reward every five to seven targets, and hitting
several thousand targets in a typical recording session. [This figure was adapted from the study
by Tkach et al. (2007).]

To quantify the timing and extent of phase locking, we examined
the distribution of beta-LFP phases across targets at perievent times
from 200 ms before the target appearance to 500 ms after the event
(phase distributions across all targets at three perievent times for the
same channel in Fig. 2¢,d). Within the 300 ms period after the ap-
pearance of the target, the entropy of the phase distribution was
substantially reduced, indicating that the beta-LFP was more highly
stereotyped across targets (Fig. 2e) [the reduction in entropy is ex-
pressed as “percentage phase-locking,” the percentage decrease from
amaximally entropic uniform distribution (Tass et al., 1998; Rubino
et al., 2006)] (see Materials and Methods).

The temporal profile of this effect was stereotyped across
channels and occurred rapidly after the appearance of the target.
With respect to the 200 ms preevent period, PPL values were
significantly elevated (two-tailed £ test, p < 0.001) within tens of
milliseconds of the target appearance (22.1 = 1.1 ms; mean = SE
across channels) and reached a maximum at a latency of 125.3 =
1.8 ms (Fig. 2f,9).

We found that power in the beta band tended to increase
transiently after the appearance of the target (1.2 = 0.05% for
monkey Mk and 3.9 * 0.09% for monkey Rs; mean *+ SE) (Fig.
2b), and we examined whether the reduction in phase entropy we
observed was secondary to this increase in oscillatory power (per-
haps reflecting the addition of a periodic driving input to MI)
(Makeig et al., 2002). However, when we recalculated PPL values
over a subset of targets that lacked an event-related increase in the
amplitude of the oscillation, we found that, although the absolute
magnitude of phase-locking was reduced, the phenomenon itself
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of units displayed an abrupt and dramatic
3 increase in firing around ~100 ms (Fig.
3b), and we were interested in examining
these precise responses in more detail. To
avoid the semantic uncertainty associated
with the term “precision,” we operation-
alized precise spiking in terms of the null
hypothesis that, given a particular unit
and a particular postevent latency, the
number of spikes occurring near that la-
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tency (5 ms) was not statistically differ-
ent from what would be predicted by the
firing of the cell over the surrounding (25
ms) period. We used a spike-resampling
method to systematically test this hypoth-
esis for all units and latencies (Hatsopou-
los et al., 2003; Harrison and Geman,
2009). In this approach, at each postevent
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latency t, the exact timing of spikes within
a surrounding 25 ms window is randomly
varied, while the total number of spikes in
the window (i.e., the average firing rate of
the cell over the 25 ms same period) is held
constant. Repeating this procedure a large
number of times, and each time counting
the number of precise spikes (spikes that
occur within 5 ms of t), generates the dis-
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was not eliminated (Fig. 2h). This result suggests that the phase of
the ongoing beta oscillation may be reset independent of any
concomitant increase in power.

Event-related spiking

PSTHs aligned on target events revealed heterogeneous patterns
of activity, as well as a more widespread change in firing
at a latency around 100 ms [normalized PSTHs viewed “from
above” for all units (Fig. 3a); PSTHs for several representative
units depicting a wide range of responses (Fig. 3b—e)]. A number

Phase-locking of beta-LFP to target appearance. a, Mean spectrum over all channels for monkey Rs. The solid line is
spectrum for 400 ms preevent period, and the dotted line is the spectrum for the 400 ms postevent period. A 10 — 45 Hz window is
indicated with vertical dotted lines. A “beta bump” in the spectrum is visible around 20 Hz. b, Perievent spectrogram for a single
beta-LFP channel computed using a 128 ms Hamming window at 10 ms steps. Robust beta activity is visible throughout the
perievent period. ¢, Mean peritarget beta-LFP for the channel in b. d, Phase distributions over all targets for the same channelin ¢
at three perievent latencies. e, Mean PPL averaged over all channels and sessions for each monkey (blue trace and left y-axis,
monkey Mk; orange trace and right y-axis, monkey Rs). The higher values indicate that the phase distribution across targets is less
uniform. f, Histogram of onset latencies of phase locking (significant elevation of PPL above pretarget baseline, p < 0.001) for all
channels for both monkeys. g, Histogram of PPL peak latencies for all channels for both monkeys. h, Mean PPL values over a subset
of targets where the mean oscillatory amplitude stayed the same or decreased after the target appearance. The axes are the same

300 500 less likely excess of precise spikes at a par-
ticular latency). With this metric, we
found we were more reliably able to iden-
tify transient periods of precise spiking
than by using features of the PSTH of each
unit, the shape of which varied widely
from neuron to neuron. (Supplemental
Figures 1 and 2, available at www.
jneurosci.org as supplemental material, il-
lustrate the ability of the method to
identify moments of precise spiking for
units with a variety of PSTH shapes.)
Consistent with our initial inspection of
peristimulus histograms (Fig. 3a), we ob-
served a dramatic increase in the precision of neural spiking at laten-
cies near ~100 ms after the target appearance (Fig. 3f,g f, black
arrowhead), as well as an earlier increase in precision around ~15
ms (Fig. 3f, gray arrowhead) (mean =+ SE is plotted in both panels).

Functionally defined cell classes

Interestingly, we found that this precise spiking was a feature of
certain classes of functionally defined cortical neurons (Chen and
Fetz, 2005; Mitchell et al., 2007). Following Chen et al. (2005), we
sorted units into three classes: wide waveforms units (n = 300),
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units with narrow waveforms and aburst- g
ing component (n = 188), and units with
narrow waveforms that lacked a bursting
component (n = 104). In vivo intracellu-
lar recordings in motor cortex suggest that
this classification scheme may capture in-
trinsic differences in neuronal membrane
properties between different cell types
(Chen and Fetz, 2005). In monkey Rs, the
distribution of observed spike widths was
clearly bimodal, with both narrow (Fig.
4a) and wide (Fig. 4b) waveforms,
whereas in monkey Mk, the distribution
was skewed toward narrow waveform
units (Fig. 4¢). Consistent with previous
observations (Chen and Fetz, 2005),
narrow-waveform cells tended to have a
peakin their ISI distributions around 40 —50
ms and occasionally contained a prominent
bursting component (Fig. 4d) (note loga-
rithmic scale), whereas wide waveform
units displayed a more uniform distribution
of ISIs (Fig. 4e).

This feature-based classification scheme
captured functional differences in the tem-
poral precision of event-related spiking (Fig. -
4f). Narrow-waveform units tended to fire
more precisely than wide-waveform units
(p <1077, Wilcoxon’s rank sum test), and
bursting narrow cells tended to be more N
precise than nonbursting narrow cells ( p <
0.005, Wilcoxon’s rank sum test). Units
with highly precise (log( p) = —10) firing
were almost entirely narrow-waveform
bursting cells (Fig. 4f, histogram). The
mean fano factor also varied by cell class
(variance divided by mean of binned spike
counts across trials, calculated indepen-
dently for different target directions).
Units with wide waveforms had a mean fano
factor of 1.00 = 0.004 (mean * SE), reflec-
tive of nearly Poisson spiking. Among
narrow-waveform units, units without a
bursting component were more regularly
spiking, with a mean value of 0.92 = 0.01.
Narrow bursting units were more irregu-
larly spiking overall (1.09 = 0.01) and were
unique among the three classes in displaying
a reduction in mean fano factor between
100 and 200 ms latency (Fig. 49).

unit number

Figure3.

Information in neural spiking

We hypothesized that the widespread modulation in activity around
~100 ms might reflect the initial arrival of information about the
location of the new target in MI. To examine the time course of
informative postevent spiking, we calculated the mutual informa-
tion between target location and binned spike counts (5 ms sliding
window stepped at 1 ms resolution) (see Materials and Methods).
This analysis revealed a sharp demarcation between uninformative
and informative spiking around ~100 ms (Fig. 5), presumably re-
flecting the first arrival of target-related information in MI. Note that
the lack of information during the immediate postevent period was
not attributable to an absence of spiking activity in general; many
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Event-related spiking. @, Mean PSTHs for all units from 0 to 300 ms after target appearance. The lighter colors indicate
more activity, and the darker colors represent less firing; all PSTHs are normalized by the peak value for each unit. Units are ordered
by the latency of their minimum perievent firing rate for visualization purposes. Many units display an abrupt modulation in firing
at ~100 ms after the event. b— e, Example PSTHs for four units showing the diversity of responses. The position of each unitin a
is indicated by an arrow. f, Spiking precision transiently increases at characteristic latencies. Lower log( p) values at a particular
latency indicate that there are more precisely timed spikes than would be expected given the background firing rate for a unit
(monkey Rs; mean == SE overall units). Two transient periods of precise spiking are visible at latencies near 15 ms (gray arrowhead)
and 120 ms (black arrowhead) after the target event. g, Same result as in f for monkey Mk.

cells were active throughout the perievent period (Fig. 3a), but the
activity during that period contains no information about the direc-
tion of the new target.

When units were ranked by maximum spiking precision (mini-
mum p value), we found that the most precise 10% of units displayed
the most dramatic increase in information values (Fig. 5, solid line),
suggesting that these precisely firing cells contain a substantial por-
tion of the initial information about the new target location in MI.

Phase-locking and spike timing
We next examined the interaction between precise target-evoked
responses and the intrinsic periodicity in spiking reflected in the
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Figure4.  Functional cell classes. a, b, Examples of units with narrow and wide mean spike
waveforms (see Materials and Methods). ¢, Superimposed (unstacked) histograms of spike
waveform widths for each monkey. d, Mean normalized ISI distributions for two subsets of units
with narrow spike waveforms that were bursting or nonbursting based on their ISl distribution
(see Materials and Methods). e, Mean normalized ISI distributions for units with wide spike
waveforms. Note logarithmic scale in d and e. f, Spike width (x-axis) versus spiking precision
[minimum log( p) value] for all units. Narrow units are more precise than wide units, and
bursting units tend to be more precise than nonbursting units. Values of log( p) less than —25
are plotted at —25 for visualization purposes. The right-side histogram shows the frequency of
log( p) = —10foreach class of units (note that bars are stacked— only a single wide waveform unit
falls under this criteria). g, Mean = SE fano factor computed in sliding 25 ms bins for each cell class,
computed independently for each of 10 different target directions and then averaged.

beta-LFP (Fries, 2005; Schaefer et al., 2006). We hypothesized that
some of the observed target-to-target variability in the timing of
event-related spikes might be attributable to the superposition of this
beta rhythmicity on the time course of evoked responses.

Note that, despite the reduction in target-to-target variability
in phase during the posttarget period, the absolute PPL values we
observed were still small, indicating that there is still substantial
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Figure 5. Information content of perievent spiking. Mutual information between 5-ms-
binned spike counts and target direction (the Cartesian direction from the location of the pre-
vious target to the location of the new target) (see Materials and Methods). The solid line is the
mean information obtained from the spiking of the 10% of units that were most the precisely
firing. The dashed line is mean over the 25% of units that were most precise. The gray line is
mean over all units.

variation in phase across target events (Fig. 2e). To characterize
this variability, we defined the “latency” of each postevent oscil-
lation using the beta-LFP peak nearest to a reference peak in the
mean evoked potential as a landmark (Fig. 6a,b) (see Materials
and Methods). By definition, averaging over the upper and lower
quartiles of the resulting distribution of latencies produced early
and late event-locked beta oscillations (Fig. 6¢).

As we hypothesized, the timing of evoked spiking of units
recorded on the same electrode also varied with the latency of the
phase-locked beta oscillation (Fig. 6d; horizontal bars indicate
periods of precise spiking, p < 5 X 10*). Note that the early and
late periods of precise spiking are both aligned with the down-
ward deflection of the corresponding evoked potential (Fig. 6¢).
Regressing median precise-spike latencies against the latencies of
the beta oscillation recorded on the same electrode yielded mostly
positive or nonsignificant correlations (Fig. 6e) (see Materials
and Methods). For each target hit, we subtracted the relative
latency of the beta oscillation from the spike times recorded on
the same electrode, thus removing the variability in timing attrib-
utable to the periodic, phase-locked component. By adjusting
postevent spike times by the latency of the oscillation in this way,
we increased the apparent precision of event-related spiking
nearly threefold (Fig. 6f) (compare with Fig. 3f,¢). This effect was
widespread (compare Fig. 6¢ before adjusting spike times with
Fig. 6h after adjusting spike times; precision metric for all units
sorted from most to least precise and viewed from above as in Fig.
3a; blue lines indicate epochs where p < 0.01).

Phase-binned information

We reasoned that as a result of the interaction with endogenous
beta periodicity, the information available in evoked spiking
might vary, not just with elapsed time from the target appearance
(as in Fig. 5), but also with the phase of the phase-locked beta-
LFP (which itself varied slightly from target to target).

To test this hypothesis, we calculated the information avail-
able in the spiking of each unit using the phase of the local beta
oscillation after each event as a metric of postevent time. Rather
than binning spikes in time bins (i.e., a 5 ms bin) with respect to
the target appearance (Fig. 3a—e), we binned spikes in phase bins
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(7/8 radians per bin) with respect to a
characteristic peak in the mean beta-LFP
near 100 ms (Fig. 7a, dark blue line; b,
orange line) (see also supplemental Fig. 3,
available at www.jneurosci.org as supple-
mental material) (see Materials and
Methods). By treating beta phase as a con-
sistent frame of reference across target
events, we shifted and warped spike times
as the target-to-target variations in the la-
tency and frequency of the oscillation dic-
tated, gathering spikes from different
latencies into the same bin of a canonical
postevent phase progression. The warp-
ing effects of this procedure can be seen
in Figure 7, a and b, where the green
histogram depicts the distribution of
target events across a range of phase
bins. The spread in the distribution re-
flects the variable number of cycles tra-
versed by the LFP between the time a
target appeared and the “characteristic
peak” near 100 ms latency that we used
to define the location of the zero bin
after each target.

As a control, we repeated this same
binning procedure after shuffling target
events, so that spikes were binned by the
phase of the beta-LFP oscillation that oc-
curred after a different target appearance
(Fig. 7a,b, light blue lines) (supplemental
Fig. 3, available at www.jneurosci.org as
supplemental material) (see Materials and
Methods). This shuffling procedure elim-
inated the relationship between firing
probability and oscillatory phase, while
maintaining the overall shape of the
(phase-binned) PSTH. As expected, sub-
tracting the shuffled values from the ac-
tual phase-binned spike counts revealed
an underlying periodicity in MI spiking.
Residual spikes tended to be concentrated
near the downward, preferred phases of
the oscillation (Fig. 7¢,d). The mean vari-
ation in spike rate with respect to the shuf-
fled control was relatively constant over
the entire range of perievent phases.

The mutual information between phase-
binned spikes and target direction also
rose above the shuffled values at the de-
scending phase of the oscillation and
dipped below the shuffled information
during the opposite phase (one example
unit from each monkey) (Fig. 7d,e). How-
ever, the residual information obtained
after subtracting the shuffled values varied
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Figure 6.  Covariation of oscillation and spike latencies and spiking precision. a, Single-channel mean beta-LFP (right y-axis,

gray trace) and two examples from individual targets (left y-axis, colored traces). b, Distribution of characteristic oscillation peak
times over all targets for the channel in a. Characteristic peaks are identified by proximity to the reference peak in mean LFP near
100 ms (black arrowhead in a; colored arrows indicate peak locations for single-target example traces in a). The green and red bars
represent the lower and upper quartiles of the distribution. ¢, Averaging over the lower and upper quartiles produces an early and
late mean evoked potential. d, Mean postevent firing of a unit recorded on the same electrode as the oscillation in a— ¢. The green
and red traces are average spike rates for that unit over the lower and upper quartiles of oscillation latencies, respectively. Periods
of precise spiking (p << 5 X 10 ~*) are indicated by horizontal lines. The latency of precise spiking mirrors the latency of the
oscillation. e, Regression slopes between spike times and oscillation latencies (see Materials and Methods)— histogram of sig-
nificant regression coefficients ( p << 0.05).f, Subtracting LFP relative latencies from spike latencies on the same channel increases
the apparent precision of postevent spiking. Log p values for each monkey after adjusting spike times by the latency of the
phase-locked oscillation on the same electrode (compare with Fig. 3f,g, noting difference in scale). g, Incidence of precise spiking;
mean p values for all units, thresholded at p << 0.01 before adjusting spike times. h, Thresholded mean precision of spiking asin g,
after adjusting spike times asin f.

Discussion

significantly with phase only in the latter half of the phase series
(Fig. 7¢,h), reflecting the arrival of target-related information in
MI around 0 radians (remember that the zero bin in the phase
series is defined by the LFP near 100 ms) (Fig. 6). Thus, although
the information available in MI spiking varies on a coarse scale
with external time (Fig. 5), it also varies on a finer scale with the
fluctuating rhythm of endogenous cortical oscillations.

Although it may seem strange to focus on the timing of responses
to sensory cues in motor cortex (rather than relationship between
MI spiking and behavior), it is worth pointing out that the 19th
century designation of parts of frontal cortex as “motor” areas has
tended to obscure the fact that even primary motor cortex dis-
plays robust and complex responses to sensory stimuli (Lamarre
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Figure7.

shuffled control.

etal., 1983; Riehle et al., 1997; Tkach et al., 2007). Compared with
canonical sensory areas, the nature of early motor—cortical re-
sponses to sensory events has received less attention, and MI
beta activity in particular has typically been studied with re-
spect to features of movement. In one previous study examin-
ing the relationship between ongoing beta EEG activity and
evoked responses in motor cortex, the ongoing beta phase was
found to have no effect on the amplitude of responses to median
nerve stimulation (Lalo et al., 2007). Unfortunately, the authors
appear not to have examined the influence of phase on the latency
of responses, which our results [and previous work in other cor-
tical areas (Fries et al., 2001)] suggest may be the more salient
effect.

Spike timing

We chose a behavioral task that involved continuous move-
ments with very few constraints on the timing of the behavior.
Paired with the ability to observe the activity of hundreds of

Information in phase-binned spikes is augmented at particular phases of the oscillation. a, b, Mean (over all targets)
of phase-binned spike counts for one unit from monkey Mk (a, dark blue trace) and Rs (b, orange trace). Spike counts calculated
from shuffled controls are in light blue (see Materials and Methods) (supplemental Fig. 3, available at www.jneurosci.org as
supplemental material). Error bars are mean = 25D over 10 shuffles. The green histogram s distribution of target events. The light
gray sinusoidal curve is the cosine of the phase of the oscillation. ¢, d, Mean difference between shuffled and unshuffled spike
counts for each monkey (mean = 2SD). e, f, Same as @ and b, but y-axis is mutual information with respect to target direction (see
Materials and Methods). g, h, Same as ¢ and d, but y-axis is the difference in information between phase-binned spikes and

tions may serve to automatically align the
periodic variations in informative spiking
that we describe here (Fig. 7), with peri-
odic variations in the receptivity of down-
stream targets (Fries, 2005; Womelsdorf
et al., 2007). If the phase differences and
conduction times between the two areas
are relatively small, the arrival of informa-
tive spiking from MI would tend to occur
at the depolarized phase of the oscillation
in the downstream area, periodically enhancing information trans-
fer (Fig. 8b). Notably, beta oscillations have been shown to vary in
both strength and frequency with reach direction (O’Leary and
Hatsopoulos, 2006) and grasp type (Spinks et al., 2008). We spec-
ulate that these changes may reflect differences in the composi-
tion and extent of neural ensembles sharing in the temporal
structure provided by coherent oscillations.

It may be worth pointing out that, in contrast with previous
studies in other areas that have demonstrated “phase-of-spiking”
encoding [typically for oscillations <10 Hz (Huxter et al., 2003;
Montemurro et al., 2008)], these results do not support the view
that the beta-LFP phase at which a neuron spikes is informative.
On the contrary, we show that spike times and oscillatory
phase are not independent, and by binning spikes by phase
(Fig. 7) we remove any potential stimulus-related variability
between spiking and phase that might exist. Also, in our anal-
ysis, there is no fixed relationship between bits per second
(Fig. 5) and bits per radian (Fig. 7) because of the target-to-
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instead on the timing of informative Figure8. Summary of the effects of Ml beta oscillations on spike timing and information coding. a, The interaction between

event-related spiking (i.e., when it occurs,
rather than what it encodes).

event-related spiking probability (top panel) and the intrinsic periodicity in Ml spiking (middle panel) produces a quasi-periodic
temporal profile (bottom panel). When the target-to-target variability in the beta-LFP is accounted for, the precision of event-

related spiking is increased. b, The information available in spiking varies periodically with the oscillation (middle panel). As a

The origin and significance of
phase-locked oscillations

Recently, a two-stage mechanism has
been proposed for certain kinds of multi-
modal sensory processing. According to this proposal, salient
stimuli quickly reset the phase of ongoing oscillations in a cortical
area through fast nonspecific projections, so that when sensory
information arrives, it is processed in time to the beat of that
transiently event-locked oscillation (Lakatos et al., 2007, 2008;
Schroeder and Lakatos, 2009).

Our results appear to be at least consistent with this proposal.
We find that the onset of phase-locking occurs immediately after
the target appearance and reaches a peak around 100 ms (Fig.
2e—g). We believe that the early rise in PPL values that we observe
may reflect in part the monkey’s ability to anticipate the time of
the upcoming target appearance based on their impending acqui-
sition of the current target (supplemental Fig. 5, available at www.
jneurosci.org as supplemental material). Notably, in addition to
the precise spiking around 100 ms that we have focused on here
(Fig. 3f, black arrowhead), we also observe a more transient in-
crease in precision at extremely low latencies (~15 ms) (Fig. 3f,
gray arrowhead), which might be interpreted as the arrival of an
early phase-resetting “salience” signal in MI. Because it seems
highly unlikely that this extremely fast response is attributable to
visual stimulation—even through nonspecific thalamic affer-
ents—we speculate that it may be attributable to the accompany-
ing auditory cue that indicates to the monkey that a new target
has appeared. This interpretation is supported by our finding
that MI beta oscillations can be quickly reset by the auditory
cue alone (i.e., when the tone is presented without an accom-
panying visual target). This auditory phase-locking occurs ear-
lier than visual phase-locking when targets are presented without
the associated tone, and the timing is consistent with previous
reports of short-latency visual and auditory responses in MI (sup-
plemental Fig. 5, available at www.jneurosci.org as supplemental
material) (Lamarre et al., 1983; Ledberg et al., 2007).

Motivated by the large body of existing work on beta oscilla-
tions in motor cortex, we have limited the focus of this study to
the 10—45 Hz band. An obvious additional question concerns the
relationship between phase-locking in the beta frequency band,
and oscillations in other bands—particularly in the delta (1-4
Hz) and theta (4—10 Hz) ranges. Consistent with our previous
observations, we find that evoked responses are also present in

consequence, a downstream area (area A) oscillating coherently with the local oscillation would potentially be more receptive
(check marks) at the time of more informative spiking (arrows), whereas a population oscillating out of phase (area B) would be less
receptive (X" symbols) at the times at which informative spikes are concentrated. [This figure was adapted from the study by Fries (2005).]

the theta band after target appearances, and a number of studies
have shown that cross-frequency interactions (m:n phase cou-
pling, for example) are an important feature of cortical oscilla-
tions (Lakatos et al., 2008). We suspect there may be interesting
relationships between the event-related activity in lower frequen-
cies and the beta range phenomena we have described here.

Functionally defined cell classes

Narrow spike waveforms are typically associated with GABAergic
interneurons (Wilson et al., 1994; Mitchell et al., 2007), which
have been shown to play an important role in the generation of
oscillatory activity (Cobb et al., 1995; Fetz et al., 2000; Salinas and
Sejnowski, 2001; Cardin et al., 2009). Consistent with this view,
the nonbursting, narrow-waveform neurons that we describe are
similar to the type III inhibitory neurons described by Chen and
Fetz (2005), which contain an intrinsic beta period “rebound
afterhyperpolarization” that may have a role in the generation of
beta activity. The identity of the narrow-waveform bursting cells
that we observed is less clear. The highest information values and
most precise firing were observed in this class of cells (Figs. 4f, 5),
but we also found that the most precise units had low firing rates,
inconsistent with the standard description of fast-spiking inter-
neurons like parvalbumin-positive basket cells (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material).
This sparse, irregular spiking is characteristic of the “type II”
neurons described by Chen and Fetz (2005), but to our knowl-
edge these features have not been previously linked to event-
related precision, or to the first arrival of information in MI about
a behavioral cue. Interestingly, in addition to contributing to the
initial peak in target-related information, we found that these
units displayed an immediately subsequent characteristic reduc-
tion in spiking variance (fano factor) (Fig. 4¢), a signature of the
onset of stimulus processing in a wide range of cortical areas
(Churchland et al., 2010). We speculate that this class of cells may
play a role in the initial stages of sensorimotor processing in MI,
perhaps in the selection of the networks of neurons that are sub-
sequently active in generating the target-directed movement.
More research is clearly needed to help disambiguate the func-
tional roles of these cell classes, and in particular to determine
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whether these different classes of MI cells may encode behavior-
ally relevant information at different timescales.
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