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SUMMARY

To estimate the multivariate regression model from multiple individual studies, it would be
challenging to obtain results if the input from individual studies only provide univariate or incomplete
multivariate regression information. Samsa et al. (J. Biomed. Biotechnol. 2005; 2:113-123) proposed
a simple method to combine coefficients from univariate linear regression models into a multivariate
linear regression model, a method known as synthesis analysis. However, the validity of this method
relies on the normality assumption of the data, and it does not provide variance estimates. In this
paper we propose a new synthesis method that improves on the existing synthesis method by
eliminating the normality assumption, reducing bias, and allowing for the variance estimation of the
estimated parameters.
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1. INTRODUCTION

Meta-analysis is a statistical technique for amalgamating, summarizing, and reviewing
previous quantitative research. A typical meta-analysis is to summarize all the research results
on one topic and to discuss reliability of this summary. It is based on the condition that each
individual study reports the same finding for the same research question. The potential
advantage of meta-analysis is the increase in the sample size and the validity of statistical
inference. It would be difficult to utilize meta-analysis methodologies if individual studies only
provide partial findings.

In a practical example, meta-analysis could be used to build a comprehensive and multivariate
prediction model for the risk of chronic diseases such as coronary heart disease (CHD). A wide
range of CHD risk factors have been reported in the literature, but a comprehensive multivariate
CHD prediction model has yet to be found. The Framingham CHD model is widely considered
the most comprehensive model, although many well-known CHD risk factors, such as body
mass index (BMI), family history of CHD, and c-reactive protein, are not included in the model
[1-3].
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We propose a new process to solve several of the problems presented above. This novel
multivariate meta-analysis modeling method is called synthesis analysis. Using multiple study
results reported in the scientific and medical literature, the objective of our synthesis analysis
is to estimate the multivariate relations between multiple predictors (Xs) and an outcome
variable (Y) from the univariate relation of each X with Y and the two-way correlations between
each pair of Xs. All the inputs may come from various studies in the literature, while a cross-
sectional population survey may provide correlations of all Xs. We reported the first method
of synthesis analysis (the Samsa-Hu-Root or SHR method) in which the partial regression
coefficients were calculated using the following matrix equation:

B=(R"\(Bu#S))/S

where B is the vector of partial (excluding the intercept, Bg) regression coefficients, Bu is the
vector of univariate regression coefficients, R is the vector of Pearson correlation coefficients
among all independent variables, S is the vector of standard deviations of the independent
variables, # stands for element-wise multiplication, and/stands for element-wise division. The
intercept, By, can be calculated using the resulting multivariate formula, the mean of the
predictors and outcome, and the newly calculated partial regression coefficient for each
predictor.

In the present study, we propose an improvement to the existing synthesis analysis. Compared
with the previous method, this method has at least two advantages: (1) it includes a method to
compute the variances for predicted outcomes and estimated regression coefficients and (2)
the estimates of predicted outcomes and regression coefficients can be more robust when the
independent variables are not normally distributed.

Our paper is organized as follows. In Section 2, we describe our new method. In Section 3, we
report a simulation study on finite-sample performance of the proposed method in comparison
with the existing synthesis method. In Section 4, we illustrate the use of the proposed method
in a real-life example from the 1999-2000 National Health and Nutritional Examination
Survey. Finally, in Section 5, we conclude our paper with a discussion on some extensions.

2. NEW METHOD FOR SYNTHESIS ANALYSIS

2.1. Estimation of synthesized parameters

Suppose that we know the individual relationships between an outcome Y and each of p risk
factors, X, X, ..., and X, which are given as follows:

E[YXi=vo+Y\ X (1)
wherei=1,2, ..., p. In addition, we assume that we know the mean relationships between any
two pairs among the p risk factors:

E[XjIX/]=a}/+a}X; @

wherei,j=1.2,...,pandi#]j.

The goal of synthesis analysis is to determine the multivariate linear regression model between
Y and the p risk factors:
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p
E(Y|Xy,...,Xp)=Bot E BiXi
i=1 (3)

Note that the linear regression assumption (1) automatically holds under assumptions (2) and

@)
Taking the conditional expectation of the both sides of (3) given X;, we obtain the following
equation:

E(Y|Xi=x)=Lo+B1EX11Xi=x)+ - - - +Bi_1 EXi_11Xi=x)+fix+ - - - +BpE(Xp|Xi=x) (4)

fori=1, ..., p. Combining (1), (2), and (4), we obtain the following result:

o ) . . . | . . .
Yoty x=PotBral +- - il D+fiial Ve 4B+ (Brat+ - 4B VBB T+ - 4, )

for all x, where i = 1, ..., p. Therefore, we obtain the following two sets of equations:

1
Yo=Bo+(Brag+ - - - +Bpa )
; ; (-1 i(+1 i
Yi=Po+Brait+- -+l 4By V- +Bpalf) )

fori=2,...,p; and

2 1
Yi=Bi+Baa*+ - +Bpa P
i _ i1 i(i—1) i(i+1) i
TSR b Y L ©

fori=2,...,p.

Let M be a p x p matrix with diagonal elements 1, and element ailj when i #j; let g = (B, k

=1, ...,p), and ‘y1+(y’1(,k:1, ..., p). From (6), we obtain the following p equations for the p
unknown slope parameters, 1, ..., fp:

MB=y, )

Using Cramer’s rule, we can easily solve the above p simultaneous linear equations. Let us
define the following determinants:
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12 13 Ip
L a; a$ a*
ail 1 aﬁ af
D= ) . X
o a'p2 ozp3 1
1
2 12 13 lp
i o @ al
7 1 013 aqp
Di=| . . . . X and
y‘f af2 a/p3 o1
1 ai- al3 yi
21 13 2
a a
1 1 1
Dp=| . . . .
pl p2  _p3 p
a a @ 71

Cramer’s rule gives us the following unique solution to the system of equations (8):

Dy
P=7 ®)

wherek=1, ..., p.

After obtaining estimates of the vector of slope parameters, , we can derive an estimate for
the intercept parameter, Sy, using any one of the p equations given in (6). Hence, we have the
following p equations for the unknown intercept parameter Sg:

Bo+0+ap Bata B+ - - +a1(p_”ﬁp,1+aépﬁp:yé
2 2 2(p-1) 2 _ 2
Bo+ai Bi+0+aP B+ - - +ay P By 1+ Bp=v2

1 2 3 -1
Bo+al Bi+al Patad Pa+ - +a/g(p Bp-1+0=y5

Although there are p equations for the parameter g, we show that the solution of Sy is unique
in Appendix A. We give a detailed description of our solution for the two-covariate case in
Appendix B, and in Appendix C, we give an explicit formula for our synthesized parameters
in cases with three and four covariates.

2.2. Variance estimation

The variance can be estimated using the delta method by assuming that the univariate parameter
estimates 7g) and 7(li)(i=1, ..., p) from individual univariate linear regression models, given by

(1), are independent of each other [4]. Let a=(« ,i,j=1,...,p)and

K _(k
y:(yé),y(l ),kzl,...,p).

(NIN()]
0 Y

By the well-known result from simple linear regression, we know:

7@, )" - @0,70)" 14N, D)
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where ag and yg are the true expected values of a and y,

T3 ¢)

Here
> = i, j=0, 1k, 1K 1 =1,2 )
= 77,1, J=VY, 1,K, [, L =1,2,...,
@ (Yf](}J; i ] p
o G =0, 1k LE T =1,2,.. ., p) 'y
, ’ 2 = ’ 9fve s 2 = 2 90 - - k I
where ¥t ! is the covariance between o*” and @' ', and
O'y(ljy(l) 0 0
Z 0 Y 0
=
0 Ty

is the covariance matrix of the estimated parameters 7.

The synthesized parameter estimates S =(8g, A, .-, ﬁp)T are functions of a’s and y’s, which
can be expressed mathematically as:

B=g.y)

If the function g is differentiable, then the delta method gives the asymptotic variance of S as
follows:

>~vee@ ') Ve@y) )

where Vg(a, y) is the vector of derivatives of function g with respect to B=( fo, By, ---, Bp)- We
give an explicit formula for Vg(a, y) when p = 2 in Appendix B. Many programs, such as
Mathematica, can perform derivatives symbolically, thereby making the variance calculation
much easier, since the derivation of the exact form of the Vg is not required before the
calculation.

2.3. Variance of predicted value

Once the estimates of parameters and their variances have been derived, we can calculate the
covariance matrix of predicted values as follows:

Cov(Y|X)=Cov(XTﬂ|X)=XTZﬁX
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where XT is the transpose of the X matrix, and Xz is the covariance matrix of 4, given by (9).

2.4. Mean-squared error of the predicted value and correlation between predicted and
observed values

The mean-squared error (MSE) of the predicted value is given by

> (Y- Y

MSE_=
Y n

where Y; and Y; are the predicted and observed value of subject i, respectively. The correlation
coefficient between Y; and Y;, p, can be calculated by

Cov(Y;,Y;)

\/ Var(Y;)Var(Y;)

where Cov(Y; ;) is the covariance between predicted and observed values.

3. SIMULATION STUDY

We conducted a simulation study to assess the performance of the proposed method in
comparison with our previous method [5], denoted by SHR. We simulated data with two, three,
and four predictor variables. For simplicity of presentation, we only reported the results for the
two-predictors here, because the results for three-predictor and four-predictor cases are similar
to those in the two-predictor case.

In each of these cases, we simulated independent variables from (1) a multivariate normal
distribution, (2) a multivariate log-normal distribution, (3) a multivariate exponential
distribution, and (4) a multivariate gamma distribution. We chose the variances of all the
independent variables to be 1 and correlations for pairs of the independent variables to be 0.5.
After simulating the independent variables X, we generated the dependent variable Y by adding
random normal errors to the mean model:

p
Y=Bo+ E BiXi+e (p=2,3,4)
i=1 (10)

where ¢ is a random error following the standard normal distribution.

We set the true regression parameters as follows: (8o, A1, f2) = (=5, 5, 3) for the two-variable
setting, (o, A1, B2, f3) = (=5, 1, 3, 5) for the three-variable setting, and (8o, 81 f2, B3 fa) = (-5,

5, 4, 3, 1) for the four-variable setting. We divided each data set into Cf” (p = 2,3,4) subsets

with equal sample sizes. Here, Cé’“ denoted the total number of combinations of choosing 2
items from (p + 1) items. In simulated data, each subset contained only one pair of variables
chosenfromY, Xy, ..., Xp. The sample size (the total number of observations) used in simulation
was 300 and 3000 (with equal size for each subset). For each of the above settings, we simulated
a total number of 1000 data sets. As the results for the data from the skewed log-normal
distribution were similar to those from the other skewed distributions, we only reported the
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results for the normal and log-normal distributions. We reported the mean bias and MSE for
estimated parameters in Tables I and II.

In order to evaluate the accuracy of predicted values using the new model, we simulated two
data sets with equal sample sizes. One was used as the training set for model derivation, while
the other was used as the validation data set. To evaluate prediction performance, we reported
mean bias, MSE, and the mean of standard error estimates (SEES) for predicted values in Tables
Il and 1V. The SEEs were derived using the method developed in Sections 2.2 and 2.3. The

correlations between predicted and observed values were also reported in the two tables.

Simulation results for the regression parameters showed that the mean bias and MSE of the
estimated regression parameters using our new method were, in general, better than those using
the SHR method, across all of the distributions and sample sizes considered here. The results
also indicated that when the distributions of independent variables X were heavily skewed (log-
normal distribution), the bias and MSE of the estimated regression parameters using both
methods were large, especially when sample sizes were small. Nonetheless, the results from
our new method were much better than those from the SHR method under this situation.

The results for predicted values indicated that both the new method and the SHR method had
similar correlations between observed and predicted values across all sample sizes and
distributions. However, mean bias and MSE for predicted values derived from our new method
were much smaller than those from the SHR method.

4. EXAMPLE

In this section, we analyzed a real-world example and compared the results using our new
synthesis method and the SHR method. The data came from the 1999-2000 National Health
and Nutritional Examination Survey [6]. There were five variables in this data set, including
one outcome Y, systolic blood pressure, and four predictors, X1, Xp, X3, and X4, which
represented age, body mass index (BMI), serum total cholesterol level, and the natural log of
serum triglycerides, respectively. First, we fitted a multivariate regression model to this data
set, which would serve as the gold standard for this analysis. Next, we randomly divided the
data set into the five mutually exclusive subsets with approximately equal sample sizes. The
first four subsets included the outcome Y and each of the four covariates, X1, X», X3, and Xg,
respectively. The last subset contained all four covariates, which was used to derive pairwise
correlations among the covariates. We applied the two synthesis methods to these five subsets
to obtain estimated parameters in the multivariate regression model and reported the results in
Table V. For comparison purposes, we also included the estimated parameters in the
multivariate regression models obtained by the gold standard model in Table V.

The estimated parameters and their standard errors (SEs) from the gold standard and from both
our new method and SHR method were listed in Table V (SE was not available by the SHR
method). From these results, we observed that the new method produced the coefficient
estimates that were comparable to those derived using the gold standard. However, the
estimates for Intercept and LOGTRIG from the SHR method were varied somewhat from those
derived using the gold standard method. As an illustration, the predicted value for a 65-year-
old subject with the BMI of 19, the serum total cholesterol level of 190, and the serum
triglycerides of 160 would be 134, 135, and 136, using the gold standard method, the new
method, and the SHR method, respectively.

5. DISCUSSION

In this paper, we provided several enhancements to the existing SHR synthesis analysis
methodology. These improvements allow for more robust estimates of the regression
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parameters and predicted values when covariates are not normally distributed. Additionally,
the new method allows for estimation of the variance of the resulting parameters and predicted
outcomes.

Both the previously reported SHR method and our improved method allow for the building of
multivariate regression models using univariate regression coefficients and two-way
correlation coefficient data that are derived from different data sources. The underlying
assumption is that each individual study is representative of the target population. However,
the validity of the previously reported SHR synthesis analysis methodology relies on the
normality assumption of the data. Although synthesis analysis is related to both meta-analysis
and analysis of missing data, it is also different from these two traditional analyses in two
important ways. First, while the goal of traditional meta-analysis is to combine the multivariate
regression models with the same covariates from different studies, the goal of synthesis analysis
is to create a multivariate linear regression model from univariate linear regression models on
different covariates. Although the statistical problem that synthesis analysis address may be
considered as one particular type of missing-data problem, unlike a traditional analysis,
synthesis analysis does not require individual level data; rather, synthesis analysis only requires
coefficient estimates of univariate linear regression models between the outcome and a
covariate and between any two covariates.

Although the proposed method was developed to synthesize different univariate linear
regression models with different covariates into multivariate linear regression models, it can
be easily extended to the setting in which several studies are available for some (or all) of the
univariate regression models. In this case, there would be variation among the parameter
estimates. For example, if there are five studies available for the linear model, E(Y | X1), and
six studies for the linear model, E(X; | X;), then we would have the five sets of estimates for

the intercept and slope of the linear model of Y on X, denoted by 7{;1 and 7{1, forj=1,...,5,
and the six sets of estimates for the intercept and slope of the linear model of X4 on X5, denoted

by o' and @**, fork =1, ..., 6.

In this case, we propose to first combine the results on the same univariate regression model
from different studies into the one univariate regression model using the weighted mean of

a{k and y{ with the weight being the inverse sample size; that is,

5
where Nj is the sample size for the jth univariate model between Y and X, and N:ZHNJ
Then, we apply the proposed synthesis method in Section 2 to obtain the multivariate regression
model.

We performed a simulation study to assess the performance of the modified method in the two
independent variables case, with one independent variables following a normal distribution
and another following a log-normal distribution. We also compared this modified method with
other combining methods, including mean, median, minimum, and maximum of multiple
estimates for a same regression parameter. From these simulation results, we concluded that
parameter estimates using the weighted mean had the smallest bias and MSE, and were very
close to the bias and MSE using the gold standard. In addition, the predicted value using the
weighted mean had the smallest bias, MSE, and SEE. We give a detailed description on our
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simulation study and results in Appendix D. The computer software for implementing the
proposed method is available at http://faculty.washington.edu/azhou.
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APPENDIX A: SKETCH PROOF FOR UNIQUENESS OF INTERCEPT
COEFFICIENT

Here we show that there is a unique solution for the intercept term Sq with the p equations (5),
meaning that we need to show that the following p solutions are equivalent:

1 1,p-1 1
By =7y — (@ Batag Byt +ag” Bp1+agBy)
2)_.2 2 > 2,p-1 2
Be =75~ (ag' Bi+0+ag'Bs+ - +ag” " Bpor+ag’By)

BY=t ~ (@f Brval Brral Byt - +af? ™' By 1+0)

Without losing generality, we only show that the solutions of the first two equations are equal,
that is, ﬁgl)z f)z). The proof for other solutions is similar.

In order to show

1_ 12 13 Lp-1 1 291 23 2.p-1 2
Yo~ P2—ay P3—- '_Q’OP ﬁp—l_aopﬁpzyo_a’o Br—ay B3—- ._aop ,Bp—l_a'opﬁp (A1)
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we add E(Xy)B1 + E(Xp)B2 + -+ + E(Xp)Bp to both sides of (A1), and then the left side of (A1)

becomes

YotEXB1HE®X2) — ap ot - (EXp-1) — ay? Bp1 HEX,) — ) )Bp (A2)

Because E(X J-|X,-):ag+a"1jX,-, we can get the following result:

E(X)=E(E(X;|X)=a +a{ EX)) (A3)

Hence, we can replace ( E(X;) — agj) with a}jE(Xl) in (A2) and obtain the following result:
1 12 Lp-1 1p _1 12 lp
YotEXDBi1+a; BEX)+a)” Bp 1 EXD)+a ) BoEX)=yp+(Bi+a; Pat - +a " Bp)E(X)) (A4)

Because f1, ..., and 3, are the solutions of M = y;, we can obtain the following result:

12 lpn _ .1
Bita;Pat - +a )" Bp=y (A5)

Hence, the right side of (A4) becomes yé+y}E(X1), which equals to E(Y) because
E(Y)=E(E(YX0)=E(/g+7 X)=Yo+7 E(X1).

Similarly, we can proof the right side of (A1) plus E(Xy)f1 + E(Xp) 2 + -+ + E(Xp)pp is also
equal to E(Y). This completes the proof.

APPENDIX B: SOLUTION FOR TWO PREDICTORS CASE

When p =2, we can also have an explicit formula for the derivative of § = g(a, ) with respect
toagr; andy, Vg(a, v), for the two independent variables case. Here, Vg(a, y) is used to calculate
the variance of p and predicted values.
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Ve@.y)=| ™ i w
o B T )
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()10 ()10 ()10
9Po Py P
o 0y
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By B 9B,
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APPENDIX C: SOLUTION FOR THREE AND FOUR PREDICTORS

When there are three predictors in the model, D and D;, (i = 1, 2, 3) are given as follows:

and

1 a,12 1
Da=| o2 117%_31223112132
3= @ o =(vi+ayiay tyieya) =y
afl o o

31 13 21,32

12 21 13 .31, 23 32)

21 23 | _ 12,23 _ 2 2
aj 1 a7 |=(1+a; afay +aara)) — (e e ey e ag

a/fl afz 1

o} o el .
N Fn
Ty

L, .
IR

a7 @

2 2
13,3 1,23 3-)

1,33, 12,2 13,2 32y _ 2.2 33
=(rjay +aayy ey yia) = (@ v raTyia by e

1 23 3)

233, 12 13 213y _ (13,2 31, 121 33
=(rjay tya7 ey ey ayyy) = (@ yiay ryjapar Ty,

131, 12 213, 2 32
17 raTa yityiar)

If there are four predictors in the regression model, the D and D;, (i = 1, 2, 3, 4) are as follows:
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' 1 ap o 23 34 42\, 24 32 43 2332 24 42 34 43
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APPENDIX D: SIMULATION STUDY ON THE MODIFIED SYNTHESIS

We performed a simulation study to assess the performance of the modified method, as
described in the discussion section, for the two independent-variable case when the vector of
two covariates follows a bivariate normal distribution or bivariate log-normal distribution. We
also compared this modified method with the other combining methods, including mean,
median, minimum, and maximum of multiple estimates for a same regression parameter. For
each of the three univariate linear models, E(Y | X1), E(Y | X2), and E(Xy | X2), there were the
estimates from five different studies. We selected the sample size for each of the five studies
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for each univariate model to be equal (1000 and 100) or unequal (100, 200, 500, 1200, 3000)
or (10, 20, 50, 120, 300). We assessed the performance of the modified synthesis method using
the weighted mean, mean, median, minimum, and maximum of combing results from the five
studies.

Since our results on the simulated data from the bivariate normal distribution are similar to
those on the simulated data from the bivariate log-normal distribution, we only report the results
on the bivariate normal distribution case. Tables DI-DIV show the bias and MSE for each of
the regression parameters g, f1, > as well as the mean bias, MSE, correlation, and SEE (mean
of SE estimates) for the predicted values.
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Table Il

Mean bias, MSE, correlation and SE for predicted values with two independent variables following a normal
distribution.

Sample size, method Mean bias MSE Correlation SEE

; i . 0.0108 0.8046 0.9949 6.0496
n=300(m|=m,=m;= 100)’ New

. i . 14.1519 221.1321 0.9900 —
n=300(m}=m,=m;= 100)’ SHR

i . —-0.0092 0.0723 0.9996 1.8656
n=3000(m =m,=m3=1000) .

¥ - 14.0304  209.9250 0.9954 —
n=3000(m,=m,=m;=1000) ¢

Note: Correlation is the mean correlation between observed and predicted values across simulations. SEE is the mean of standard error estimates for
predicted values.

*
The sample size for a subset with only outcome Y and predictor X1.
TThe sample size for a subset with only outcome Y and predictor X2.

iThe sample size for a subset with only predictors X1 and X2.
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Table IV

Mean bias, MSE, correlation and SE for predicted values with two independent variables following a log-normal
distribution.

Sample size, method Mean bias MSE Correlation SEE

i . —10.2079  199764.1000 0.9376 254.6255
n=300(m)=my=m3=100) \.,

. i . 85.9998 47835.6600 0.9335 —
n=300(m}=m,=m;= 100)’ SHR

N . 1.0546 17442.6700 0.9918 71.3051
n=3000(m =m,=m3=1000) .

i . 66.5488 12226.2700 0.9328 —
n=3000(m,=m,=m;=1000) ¢

Note: Correlation is the mean correlation between observed and predicted values across simulations. SEE is the mean of standard error estimates for
predicted values.

*
The sample size for subset with only outcome Y and predictor X1.
TThe sample size for subset with only outcome Y and predictor X2.

iThe sample size for subset with only predictors X1 and X2.
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Parameter estimates (SE) for the NHANES blood pressure example.

Table V

Variables  Gold standard § NEW method fyew  SHR method*fspr

Intercept 76.207 (2.556)
AGE 0.601 (0.017)
BID 0.379 (0.045)
TCHOL 0.024 (0.007)
LOGTRIG 1.374 (0.529)

73.482 (4.531)
0.634 (0.050)
0.403 (0.128)
0.029 (0.018)
1.506 (0.931)

83.401
0.681
0.337
0.006
0.160

*
Cannot calculate SE using this method.
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Table DIl

Mean Bias, MSE, Correlation and SEE for predicted values with equal sample sizes.

Method Mean bias MSE  Correlation SEE

Total sample size N = 1000 x 3 x 5 equal sample size) = 15 000
Weighted mean (Mean) 0.0019 0.0301 0.9998 0.9109
Total sample size N = 100 x 3 x 5 (equal sample size) = 1500

Weighted mean (Mean) 0.0126 0.3741 0.9956 3.0272
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Table DIV

Mean Bias, MSE, Correlation and SEE for predicted values with unequal sample sizes.

Method Mean bias MSE Correlation SEE

Total sample size N = (100+200+500 +1200+3000) x 3 = 15 000
Weighted mean 0.0201  0.0994 0.9886 1.1105
Mean —0.0219  0.1134 0.9825 1.2773
Total sample size N = (10+20+50+120+300) x 3 = 1500

Weighted mean —0.01580 0.3394 0.9900 4.1135
Mean 0.1993  0.3550. 0.9789 4.3768
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