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Abstract
This paper surveys our current understanding of the statistical properties of radiological images and
their effect on image quality. Attention is given to statistical descriptions needed to compute the
performance of ideal or ideal-linear observers on detection and estimation tasks. The effects of
measurement noise, random objects and random imaging system are analyzed by nested conditional
averaging, leading to a three-term expansion of the data covariance matrix. Characteristic functionals
are introduced to account for the object statistics, and it is shown how they can be used to compute
the image statistics.
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1. INTRODUCTION
Image quality is an inherently statistical concept. It must be defined in terms of the average
performance of some observer on some task of interest, and this performance is limited by
many stochastic effects. For a fixed object and imaging system, the image is random because
of Poisson noise in the radiation flux and excess noise in the detector. In addition, the object
being imaged is never known exactly and must be treated as random, and in many cases the
characteristics of the imaging system itself are random. The effect of these sources of
randomness on task performance depends on the nature of the task and on the observer, but
also on how the data are acquired and processed before being presented to the observer.

It is the goal of this paper to present a unified view of the statistics of radiological images and
to survey recent progress in their mathematical characterization. Attention will focus on
statistical properties needed to compute the performance of ideal or ideal-linear observers on
detection and estimation tasks. Much of the discussion will follow the approach and notation
of Barrett and Myers1 and related papers.2–5

The treatment begins in Sec. 2 with a survey of the sources of randomness in radiological
images, illustrating the general principles with examples from SPECT, digital radiography and
ultrasound. In Sec. 3 we briefly discuss some mathematical descriptions of random images,
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and in Sec. 4 we relate them to task performance. These general principles are applied to
radiographic detectors in Sec. 5, where we also suggest some ways of improving task
performance by rapid online processing of the detector signals. Sec. 6 focuses on the role of
object randomness, with emphasis on models referred to as lumpy and clustered lumpy
backgrounds. Sec. 7 shows how object statistics propagate through an imaging system and
influence image statistics, and Sec. 8 summarizes the paper.

2. SOURCES OF RANDOMNESS
2.1. Mathematical basics and notation

Objects of interest in imaging are functions of two or three spatial variables, time and possibly
other variables such as photon energy or direction of emission. For simplicity we consider only
the spatial dependence and write the object as f(r), where r = (x, y, z), or more abstractly as f.
If we wish to think in terms of vector spaces, the function f is a vector in an infinite-dimensional
Hilbert space.

Digital images, on the other hand, are vectors in a finite-dimensional vector space. If an imaging
system acquires M measurements, {gm, m = 1, …, M}, they can be arranged as an M × 1 data
vector denoted g. The vector g can refer to raw data or to a processed or reconstructed image
in tomography.

Thus the imaging system can be construed as an operator  that maps an infinite-dimensional
vector to an M-dimensional one. Abstractly,

(2.1)

where n is an M × 1 random vector describing the noise in the measurements.

If the system (including the reconstruction algorithm if used) is linear, this mapping can be
expressed as1

(2.2)

where hm(r) expresses the sensitivity of the mth measurement to radiation originating at point
r. Thus hm(r) can be called a point-response function (PRF).

The image g is random because of the random noise n, but also because the object f is random.
In addition, the PRF, or equivalently the system operator , can be random.

2.2. Examples
SPECT imaging systems use photon-counting detectors, and it is often said that the data are
Poisson-distributed and uncorrelated. This statement is true only for a fixed object and a fixed
imaging system, and only if we consider the raw projection data. Complicated correlations are
generated by the reconstruction algorithm, and the object (the distribution of a
radiopharmaceutical in SPECT) can vary from patient to patient, and from day to day for one
patient. Patient motion is also a source or randomness, especially for long-exposure studies
like SPECT.

The system in SPECT is always random if we think of scattering and attenuation of the radiation
in the patient’s body as part of the system. There may also be unknown mechanical errors or
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other uncertainties in the system configuration that can be described as random. Moreover, any
reconstruction algorithm must use an assumed or measured matrix representation of the system
operator , and uncertainties in this matrix can be treated as random, even when they remain
the same for multiple patients.

In digital radiography, the random noise results from a complicated cascade of processes in
the detector; it is not Poisson, not white, and not stationary. In fact, it is not even Gaussian, in
general, as we shall see below. The object is random because of patient-to-patient variations
and patient motion, and the image-forming system is random if we include scatter within the
patient’s body in .

Ultrasound images suffer from Gaussian electronic noise and also from a form of coherent
noise called speckle. The object is random because it varies from patient-to-patient, and also
because ultrasound essentially measures the sound-wave reflectivity from complicated rough
interfaces. Indeed, it is this roughness that leads to the speckle noise in the first place. The
system in ultrasound is random because the wave incident on an interface and reflected from
it must propagate through a complicated medium with spatially varying speed of sound, and
this medium produces random phase distortions on the wave reaching the transducer.

3. CHARACTERIZATION OF RANDOM IMAGES
3.1. Random data vectors

In principle, random images can be characterized by a multivariate probability density function
pr(g), but the size and complexity of this description should not be underestimated. As noted
above, g is an M × 1 random vector, and M can be huge. For a 1000 × 1000 detector used in
direct imaging, M = 106, and for CT M can be 108 or more.

An equivalent – and equally huge – description is the characteristic function, defined by

(3.1)

where the angle brackets in the first form denote statistical expectation, and the integral in the
second form is over all M components of g. The frequency-like variable ξ (not to be confused
with a spatial frequency) is another M × 1 vector and ξt is its transpose; thus ξt g is a scalar
product in an MD space. The characteristic function can be viewed either as the expectation
of the Fourier kernel or the MD Fourier transform of the PDF.

Lower-dimensional – and hence more tractable – descriptions of the random vector can be
derived from either the PDF or the characteristic function. The mean ḡ is an M × 1 vector with
components given by

(3.2)

The integral in the first form is over all M components of g, but the second form shows that
only the univariate marginal PDF pr(gm) is needed to compute the mean component ḡm; the
third form shows how the mean can be obtained by differentiating the characteristic function.
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Second moments can be defined similarly, either in terms of bivariate PDFs or second
derivatives of the characteristic function. As we shall see below, the most important second
moment is the covariance matrix Kg, given in component form as

(3.3)

A more compact way of writing this result is in terms of outer products. If a and b are both
M × 1 vectors, their outer product abt is an M × M matrix with components ambm′. Thus

(3.4)

Note that the diagonal elements of the covariance matrix are the variances of the components.

3.2. Objects as random processes
An object f(r) is a random function, also called a random process, and it is a vector in an infinite-
dimensional Hilbert space. Thus a PDF pr(f) would have to be infinite-dimensional. If,
however, we fix the position vector, say at r = r0, then f(r0) is a scalar random variable, and
the mean at that position can be computed from knowledge of the univariate density pr[f(r0)];
doing this for all r0 generates a nonrandom function f̄(r) which is the mean of the random
process f(r).

Similarly, from knowledge of the bivariate density pr[f(r), f(r′)] we can define the
autocovariance function, which is the continuous analog of the covariance matrix:

(3.5)

This function of six variables can be regarded as the kernel of a covariance operator denoted
as .

Marginal PDFs, means, covariances and all other statistical properties can be derived from the
infinite-dimensional counterpart of the characteristic function defined in (3.1). For an MD
random vector g, the characteristic function is a function of another MD vector ξ; for a random
function, M is infinite and the frequency-like vector ξ must be replaced with a function denoted
s(r) or s. Thus the characteristic function becomes a characteristic functional (function of a
function), defined by analogy to (3.1) as

(3.6)

where † denotes adjoint (analogous to transpose) and hence s† f is the scalar product, ∫ d3r s
(r) f(r).

As we shall see in Sec. 6, there are many random processes for which the characteristic
functional is known analytically.
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3.3. Stationarity and Fourier descriptions
Largely for historical reasons, there is a tendency in imaging to work in terms of Fourier
transforms of objects and images rather than the space-domain descriptions used above. Fourier
transforms are especially natural (and can be justified in terms of group theory1) for problems
with translational symmetry, but imaging systems virtually never exhibit such symmetry.

In electrical engineering, from which so much of imaging theory springs, a linear electrical
filter is translationally invariant if its response to an impulse is independent of the time that the
impulse arrives. This condition requires merely that the components of the filter (resistors,
capacitors, inductors) are themselves independent of time, so there is no preferred origin on
the time axis. In that case the response to a general signal f(t) is obtained by convolving it with
the impulse response (and adding noise if appropriate), and the filter is said to be shift-invariant.

Similarly, the noise statistics in electrical engineering are invariant to shifts along the time axis
if the physical mechanisms that generate the noise (currents and temperatures) are independent
of time. A temporal random process f(t) is said to be stationary (in the wide sense) if its mean
is independent of time and its autocovariance function K(t, t′) depends only on the time
difference t − t′.

In virtually every imaging system, however, there is a preferred spatial origin: the optical axis
in a lens system, the center of the detector in digital radiography or the axis of rotation in
tomography. Thus neither shift invariance nor stationarity can hold exactly, and great care must
be exercised in invoking these properties even as approximations.

The general linear mapping described by the integral in (2.2) is never exactly a convolution,
but there are two circumstances in which it is tempting to approximate it by one. First, in
tomographic imaging where gm is the grey level in the mth voxel of a linear reconstruction, one
might replace the integral in (2.2) by a sum (∫ d3r → Σn) and assume that hm(r) = h(rn − rm),
in which case (2.2) is a discrete 3D convolution. Second, in digital radiography we might take
f(r) to be the 2D radiation distribution on the detector, rather than the transmission of the 3D
object through which the radiation passed, and assume that the PRF is the same for all detector
pixels, so that hm(r) = h(r − rm). In that case gm in (2.1) can be regarded as a noisy sample of
a 2D convolution integral. Both of these approximations are commonly made, at least
implicitly, in the imaging literature, but the resulting errors are seldom discussed.

The conditions for spatial stationarity of the noise are also very difficult to meet. Interesting
objects virtually never have a mean that is independent of location or an autocovariance
function Kf (r, r′) that is just a function of Δr ≡ r − r′. If we assume that these unrealistic
conditions do hold, however, we can define a power spectral density or Wiener spectrum as
the Fourier transform of the autocovariance function:

(3.7)

This function of three variables describes the fluctuations of f(r) in the 3D spatial-frequency
domain, but only for stationary random processes.

A more general description, applicable to all random processes, is the Wigner distribution
function, defined by

(3.8)
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This function of six variables describes the fluctuations jointly in space and spatial frequency,
and it reduces to the power spectral density for stationary random processes. It is especially
useful for approximately stationary random processes where  is a slowly
varying function of r0.

For digital images, stationarity in the discrete image domain means that the covariance matrix
is Toeplitz or block Toeplitz. An M × M matrix K is Toeplitz if Kmm′ depends only on m − m
′, where 1 ≤ m ≤ M and 1 ≤ m′ ≤ M. This assumption might hold for a 1D detector illuminated
by a uniform flux of x rays in digital radiography. For a 2D detector, the matrix is block Toeplitz
if Kmm′ depends only on rm − rm′, where rm is the 2D location of the mth detector element.

In an attempt to apply Fourier methods to imaging, Toeplitz matrices are often approximated
as circulant matrices by imposing a completely unphysical wrap-around as illustrated in Fig.
1.

The advantage of the wrap-around approximation is that circulant matrices are diagonalized
by discrete Fourier transforms (DFTs). For 2D images we can define a 2D matrix D such that
Dg = G, where G is the 2D DFT of g. The covariance matrix of G is given by [cf. (3.4)]

(3.9)

where the dagger denotes the adjoint (complex conjugate transpose) of the matrix. If Kg is
circulant, then the covariance matrix of the DFT components is diagonal:

(3.10)

The diagonal elements, which are the variances of the DFT components, are universally
referred to in the digital radiography literature as a noise power spectrum. Moreover, it is always
tacitly assumed that the off-diagonal elements of KG are zero by virtue of the circulant model,
but the authors know of no example in the literature where this assumption has been verified.

3.4. Multiply stochastic random vectors
As noted in Sec. 2, g is random because of random noise, random objects and possibly a random
system. A general way of treating these multiple stochastic effects is the method of nested
conditional averages, which we shall illustrate by considering just noise and object variability.

Let T(g) be some arbitrary function of g. Its average is

(3.11)

where the double overbar denotes an average with respect to both measurement noise and object
randomness. We can also define a single-bar average over just measurement noise:

(3.12)

The covariance matrix on g with both measurement noise and object variability is defined by
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(3.13)

Adding and subtracting ḡ(f) in each factor gives

(3.14)

Since 〈[g − ḡ(f)]〉 g|f = 0, we see that

(3.15)

The first term in this expression is just the noise covariance matrix Kn averaged over f. The
second term represents object variability as seen in the mean image. Thus we define

(3.16)

This division of the overall covariance does not require any assumptions about the form of
either pr(g|f) or pr(f). In particular, it does not require that the noise be object-independent, and
it does not require that either the noise or the object be Gaussian.

A similar decomposition with three terms arises if we also consider the system randomness,
in which case we obtain5

(3.17)

The first term in this equation vanishes if there is no measurement noise, the second vanishes
if the object is not random, and the third vanishes if the system is not random. For more details,
especially on the third term, see Ref. 5.

4. EFFECTS OF RANDOMNESS – TASK PERFORMANCE
An emerging consensus in medical imaging holds that image quality must be defined by the
performance of some observer on some task of clinical or scientific interest, where the task
refers to the information that is desired from the image and the observer is the means of
extracting the information. This approach is known as objective or task-based assessment of
image quality.1–5

Tasks can be classification, estimation, or a combination of the two. In a classification task the
goal is to label the object that produced the image as being in one of two or more classes.
Equivalently, we can say that the task is to discriminate among two or more hypotheses. If
there are only two classes or hypotheses, the classification task is said to be binary. An example
of a binary classification task is detection of a tumor or other specified signal in a medical
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image. In this case the classes are signal-absent and signal-present; the null hypothesis H0 is
that the signal is absent and the alternative hypothesis H1 is that it is present.

In an estimation task, the goal is to assign numerical values to one or more parameters of
interest. When a patient has a known tumor, for example, we might want to estimate its volume
or its position. A joint detection/estimation task would be to detect the tumor and, if the decision
is made that it is present, estimate its volume and location.

A binary classification task can always be performed by computing some scalar-valued
function of the data, denoted t(g) and referred to as a test statistic. If t(g) is a linear function of
g, it is referred to as a linear discriminant function.

The test statistic is usually constructed so that it has higher values, on average, when H1 is true
than when H0 is true, and in that case the decision can be made by comparing the test statistic
to a threshold τ and deciding that H1 is true whenever t(g) > τ. Of course this decision is not
always correct, and we can have false positives (where t(g) > τ but the signal is actually not
present) or true positives (where again t(g) > τ but now the signal is present). Increasing τ
reduces the number of false-positive decisions but also reduces the number of true detections.

A generally applicable figure of merit (FOM) for binary classification tasks is the area under
the receiver operating characteristic (ROC) curve, which is a plot of the true-positive fraction
(TPF) vs. the false-positive fraction (FPF) as the threshold τ is varied. A common surrogate
FOM, however, is a scalar separability measure or signal-to-noise ratio (SNR) defined by

(4.1)

where 〈t〉j is the expectation of the test statistic when hypothesis Hj is true (j = 0, 1) and
Varj(t) is the corresponding variance. If the test statistic is normally distributed under both
hypotheses, as it often is for linear discriminants, the area under the ROC curve is a simple
monotonic function of the SNR.1

For an estimation task where P parameters are to be estimated, we can assemble them into a
P × 1 vector θ, and an estimate of this parameter vector, derived from an image vector g, is
denoted θ ̂ (g). A common figure of merit is the ensemble mean-square error defined by

(4.2)

where the angle brackets denote an average over all sources of randomness in g and also over
some prior probability density on θ itself.

The most common joint classification/estimation task is detection and localization, and the
corresponding FOM is the area under the localization ROC (LROC) curve. This concept has
recently been extended by Clarkson6 to the estimation ROC (EROC) curve.

4.1. Ideal and ideal-linear observers for binary classification
The ideal observer for a binary classification task can be defined as one that maximizes the
area under the ROC curve (AUC). The test statistic for this observer is the likelihood ratio,
defined by7,8
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(4.3)

Equivalently, the ideal observer can use the logarithm of the likelihood ratio, given by

(4.4)

Comparing λ(g) to ln τ leads to the same decision as comparing Λ(g) to τ and thus produces
the same ROC curve and the same AUC.

The ideal test statistics Λ (g) or λ (g) are usually complicated nonlinear functions of the data
g, and computing them requires knowledge of the complete MD probability law of the data
under both hypotheses. As we stressed above, M is huge in imaging problems, but nevertheless,
there are many circumstances where the ideal observer is computationally tractable. The
likelihood ratio can be computed if the data are multivariate normal (described by an MD
Gaussian PDF), and in virtually any situation where the measurement noise dominates and the
signal to be detected is nonrandom. It can also be computed by a method known as Markov-
chain Monte Carlo or MCMC1,9 if a parametric model for the random object is available (see
Sec. 6).

In many realistic cases, however, the PDFs pr(g|Hj) are unknown or too complicated to be
useful. A common recourse is then the ideal linear or Hotelling observer,10–12 for which the
test statistic is the linear discriminant that maximizes the SNR defined in (4.1). This optimal
linear discriminant is given by

(4.5)

where the superscript t denotes transpose, the angle brackets denote averages over all sources
of randomness (background object, signal to be detected, system and measurement noise) and
Δ〈g〉 ≡ 〈g〉1 − 〈g〉0 is the difference between the mean data vectors under the two hypotheses.

The Hotelling observer performs only linear operations on data, and it requires knowledge of
the mean data vectors and covariance matrices under the two hypotheses rather than the full
PDFs needed by the ideal observer. The Hotelling observer is ideal, in the sense of maximizing
the area under the ROC curve, if the data are normally distributed with the same covariance
matrix under the two hypotheses.

Note that the Hotelling discriminant, as we have defined it here, requires true ensemble means
and covariances, in contrast to the familiar Fisher discriminant which uses means and
covariances derived from samples. An M × M sample covariance is singular unless the number
of samples exceeds M, so the Fisher discriminant is virtually never applicable to image data
where each sample is an image and M is huge. In practice, we might use sample images to
estimate the object term in the covariance expansion (3.17), but fundamentally the covariance
matrix is defined by an average over an infinite ensemble.

The computational difficulties in estimating and inverting a large covariance matrix are often
avoided by the use of a small set of features rather than raw image data. If the features are
derived by passing the image data through a few linear operators called channels, then the ideal
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linear discriminant operating in this much smaller data space is called the channelized Hotelling
observer (CHO). The channels can be chosen so that they mimic the spatial-frequency-selective
channels found in the human visual system, or they can be chosen to minimize the loss in
detectability SNR attendant to the dimensionality reduction. Channelized linear observer that
are designed to predict the performance of human observers are said to be anthropomorphic,
while those that attempt to predict the performance of the true Hotelling observer operating on
the image data are called efficient.

For much more on these topics, see Barrett and Myers1 and the now copious literature on CHOs.

4.2. Ideal and ideal-linear observers for estimation
The EMSE defined in (4.2) is minimized by an ideal estimator which computes7,8

(4.6)

The first form shows that the ideal estimator computes the posterior mean of the parameter
(i.e., the mean with respect to the PDF on the parameter after the data are acquired). The second
form, obtained by use of Bayes’ theorem, shows that it equivalently computes the mean with
respect to the likelihood pr(g|θ) weighted by the prior pr(θ). As with the ideal observer for
classification, the requisite PDFs are difficult to know, and the estimate is generally a nonlinear
function of the data (unless the data are Gaussian).

The linear estimator that minimizes the EMSE is the generalized Wiener estimator (not to be
confused with a Wiener filter), given by1,7,8

(4.7)

where θ ̄ is the prior mean of the parameter vector, 〈g〉 is again the data vector averaged over
all sources of randomness, and Kθg is the P × M cross-covariance between the parameter vector
being estimated (θ) and the data vector g.

As with the Hotelling observer for a detection task, the Wiener estimator requires that we know
the overall data covariance matrix, and it also requires the cross-covariance Kθg.

5. MEASUREMENT NOISE
We have seen that the covariance matrix plays a key role in linear estimators and classifiers,
and that it can be divided into three terms as in (3.17). This section examines the first term in
more detail; the following two sections do the same for the other two terms.

5.1. Photon counting
A prime example of a photon-counting detector is the Anger scintillation camera used for
SPECT. In that application, the raw data form an M × 1 vector g where M is the number of
projection angles × the number of pixels in each projection. Conditional on a specific object
and imaging system, the data are described rigorously by
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(5.1)

where ( f)m is the conditional mean of the data for one pixel at one projection angle. This
Poisson law is exact even when we consider the detector quantum efficiency, scatter in the
object or detector, background radiation, and the effects of the position-estimation algorithm
and the energy window. We emphasize, however, that it is conditional on an object and a
system.

The corresponding conditional covariance matrix is given by diag{ f}, where diag{x} denotes
a diagonal matrix with vector x along the diagonal. The diagonal elements in this case are just
the means of the Poisson random variables.

With random objects and/or systems, the PDF is no longer Poisson, but nevertheless the the
first term in (3.17) remains diagonal; it has elements given by

(5.2)

Thus the diagonal elements of the noise covariance term are just the average object f ̄ imaged
through the average system .

5.2. Integrating detectors
Integrating detectors as used in CT and digital radiography have much more complicated noise
statistics than photon-counting detectors. The initial x-ray interaction with the detector is
randomly either a Compton scatter or a photoelectric absorption which occurs at a random 3D
position in the material. The amount of energy deposited at this initial interaction site is
therefore random, but there can also be multiple subsequent interactions. If the initial
interaction is Compton, the scattered photon can be scattered again or photoelectrically
absorbed, and if it is photoelectric, the ensuing fluorescent x-ray photons can be absorbed or
scattered. Thus the energy deposition is a complex spatial random process, which then acts as
the energy source for production of secondary particles (optical photons in the case of
scintillation detectors, electron-hole pairs) in the case of semiconductor detectors). The number
of such secondaries produced at a given location is a stochastic function of the energy deposited
there, and the secondary particles then propagate randomly to the external readout elements
(photodetectors or electrodes). The readout elements themselves contribute additional
randomness as a result of dark current or electronic noise.

The result of this complex sequence of events is that each absorbed x-ray photon contributes
a pulse of random amplitude and random spatial distribution to the final, integrated image. The
random variations in pulse amplitude increase the variance of the image, by the reciprocal of
a quantity called the Swank factor, and the spatial distribution causes the noise term in the
covariance matrix to have off-diagonal terms.

There is a large literature, much of it originating in the SPIE Medical Physics Conference, on
analyzing the image statistics of x-ray images obtained with integrating detectors. Often the
results are based on assumptions of spatial stationarity, but an alternative description based on
nonstationary point process is also possible. The conditional mean vector and covariance
matrix for fixed object and system can be calculated with all random effects taken into account,
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and the subsequent average over random object and system is relatively straightforward
because the conditional noise covariance is a linear functional of the x-ray fluence.13

There is probably no field of imaging for which the statistics of the measurement noise have
been so thoroughly investigated and are so fully understood as in digital radiography. A recent
publication that illustrates the state of the art and discusses practical computational issues is
Satarivand et al.14

5.3. Photon counting with integrating detectors
If an integrating detector is operated at a rapid frame rate with a weak enough photon flux, it
is possible to resolve the individual regions of energy deposition. From the pixel values
associated with individual events, it is possible to estimate the coordinates of the initial
interaction and the energy of the photon. Researchers at the University of Arizona15, 16 have
been using this approach with integrating arrays of cadmium zinc telluride (CZT)
semiconductor detectors for over a decade, and more recently it has been shown by several
groups17–22 that the method also works well with scintillation detectors.

Fig. 2 shows an example from the work of Miller et al.,22 who used a lens with a high numerical
aperture to couple the light from a columnar CsI scintillator to a low-noise CCD detector.
Shown on the left is a single frame of image data with a 99m Tc gamma-ray source. The image
on the right was obtained with an algorithm that parses the data frame for clusters of pixels
associated with a single absorbed gamma ray, reads out an N × N array of pixel values for each
cluster, and applies a centroiding algorithm to estimate the center of the cluster. Note that all
of the readout noise has disappeared, the blur from nonlocal energy deposition is gone and a
substantial improvement in spatial resolution has been obtained. In essence, the low-resolution
integrating detector has been converted to a high-resolution photon-counting detector by post-
detection processing.

Further improvement in performance can be obtained by performing maximum-likelihood
(ML) processing16, 21, 22 on each cluster of pixels. Fig. 3 shows an example of 3D position
estimation in a CZT detector, and Fig. 4 shows the improvement in energy resolution that can
be obtained.

Though these examples are for radioisotope sources in SPECT, recent advances in CCD
detectors offer considerable promise that similar results will be obtainable for digital
mammography and perhaps even CT. Current CCD devices can read out about 108 pixels per
second, and the use of multiple CCD chips and multiple readout lines per chip can push this
number to 109 or even 1010 pixels per second. At such rates a mammographic image could be
acquired in a minute or less with well-resolved clusters of pixels for individual absorbed x rays.

Additional interesting statistical issues arise when the clusters do overlap, even with rapid
frame rates. In that case we cannot identify the pixels associated with individual x-ray
interactions, yet we do not have so many interactions contributing to each pixel that we can
invoke the central-limit theorem and assume Gaussian statistics. Some initial investigations of
the ideal observer for this intermediate case have been presented,23 but further work is needed.

6. OBJECT STATISTICS
Mathematical models for describing random objects include parametric shape models; wavelet
models and other filter-bank models; cuspy, kurtotic models; normal and log-normal texture
models; filtered noise; and lumpy and clustered lumpy models. These approaches are reviewed
in Chap. 8 of Barrett and Myers1; here we concentrate on the lumpy models as a way of
illustrating the mathematical description of random objects.
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6.1. Generation of lumpy and clustered lumpy backgrounds
The term “lumpy background” originated in the work of Rolland,24 who generated a random
object by superimposing “lumps” of a predetermined shape. The resulting object was thus given
by

(6.1)

where N is the number of lumps in the image and rn defines the center of the nth lump. The
random process is thus defined by N + 1 random parameters, the N vectors rn (which may be
either 2D or 3D) and N itself.

The lump function l(r) was a Gaussian spatial distribution in Rolland’s work, but other authors
have used different functions. Examples of backgrounds with Gaussian lumps are shown in
Fig. 5. By proper choice of parameters, these backgrounds can be made to resemble the textures
seen in radionuclide images.

A useful extension of Rolland’s model is the clustered lumpy background devised by Bochud
et al.25 to represent the texture in mammograms. In that work, a cluster of identical blobs forms
a “superblob”, and the final model is a superposition of superblobs:

(6.2)

Examples are shown in Fig. 6.

6.2. Statistical properties of lumpy and clustered lumpy backgrounds
The free parameters in a lumpy background are the number of lumps N and the lump centers
{rn}. The number of lumps is almost always taken to be a Poisson random variable, and centers
are statistically independent, identically distributed, and described by a PDF given (for a 3D
object) by

(6.3)

where b(r) is the mean number of lumps per unit volume and S is the support of the object.
The denominator in (6.3) is the mean number of lumps in S, denoted N̄.

The autocovariance function Kf (r, r′) of this object model can be computed for any choice of
lump shape and b(r). If b(r) is a specified nonrandom function, the covariance properties are
determined completely by that function and the shape of the lump function, but for more
flexibility b(r) can also be a random process.

If b(r) is independent of position, the process is stationary within the support S, and if the lumps
are Gaussian Kf (r − r′) is a Gaussian spatial function. It does not follow, however, that f(r) is
a Gaussian random process; the univariate PDF pr[f(r)] can be far from Gaussian if the lumps
are widely spaced. In the limit of large N̄, however, many lumps overlap at each point
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(analogously to the pixel clusters in an integrating detector) and the object PDF approaches a
Gaussian by the central-limit theorem.

A complete description of the statistics of a lumpy background is the characteristic functional.
For nonrandom b(r), it is given by1

(6.4)

All statistical properties of the lumpy background are contained in this characteristic functional,
and a similar expession can be given for the clustered lumpy background.

7. FROM OBJECT STATISTICS TO IMAGE STATISTICS
7.1. Linear transformation of means and covariances

For lumpy and clustered lumpy backgrounds, and many other random object models, we can
presume that the mean f̄(r) and the autocovariance function Kf (r, r′) (or abstractly, f ̄ and )
are known analytically. We now show how to use this information to compute the mean vector
and covariance matrix for the image.

If the imaging system, including the reconstruction algorithm if used, is linear and nonrandom,
the mean image vector is given by

(7.1)

where here the single overbar indicates an average over measurement noise only.

Similarly, the object term in the covariance expansion (3.17) is given by

(7.2)

where  is the adjoint or backprojection operator for the system.

Both (7.1) and (7.2) can be averaged further over  if the system is random.

7.2. Linear transformation of the characteristic functional
Random processes for which the characteristic functional is known analytically include lumpy
and clustered lumpy backgrounds, any Poisson random process (stationary or not), any
Gaussian random process (complex or real, arbitrary covariance), fully developed speckle,
certain texture models related to non-Gaussian speckle, and the image-plane irradiance in
adaptive optics. These statistical descriptions of the object can be used to compute properties
of the image if we can show how characteristic functionals are transformed by imaging systems.

Consider first a noise-free linear mapping g = f. The characteristic function of the random
vector g is given by
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(7.3)

where the last step follows from the definition of the adjoint.1 Thus

(7.4)

This is a very powerful result: If we know the characteristic functional for f, we immediately
have the characteristic function for f, and therefore we know all statistical properties of the
random vector (image) g.

This result can be modified to include noise. If g = f + n and n is independent of f, the
characteristic function for the data is

(7.5)

where ψn(ξ) is the characteristic function for the noise. In many cases, signal-independent noise
is Gaussian and ψn(ξ) is easy to write down.

For Poisson noise, it is found that26

(7.6)

where Γ is an operator defined by

(7.7)

To summarize this section, if we know the mean and autocovariance function for an object
random process and the system is nonrandom and linear, we can compute the mean image and
the object term in the covariance by (7.1) and (7.2) respectively. If we know the characteristic
functional for the object model, as we do in many cases, we can get the characteristic function
for the data with signal-independent or Poisson noise from (7.5) or (7.6).

8. SUMMARY AND CONCLUSIONS
Image quality is all about image statistics, and images are random because of measurement
noise, random objects and random imaging systems. For objective assessment of image quality
with ideal observers, we need to know the probability density functions of the data for all object
classes or all values of a parameter to be estimated. For ideal linear observers we need to know
mean data vectors and covariance matrices.

This paper has surveyed the current state of our understanding of these statistical descriptors.
The object was viewed as a nonstationary random process and the image as a finite random
vector. The general method of nested conditional averaging was introduced and shown to lead
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to an exact three-term decomposition of the covariance matrix, with terms accounting for
measurement noise, object variability and system variability.

The noise term in the covariance was discussed for photon-counting detectors as in SPECT
and integrating detectors as in digital radiography. It was shown that integrating detectors can
function as photon counters if the radiation flux is low enough, and that maximum-likelihood
methods can be applied in that case to improve spatial resolution, estimate the depth of
interaction and energy of each absorbed photon and eliminate readout noise. Though most
obviously applicable to radionuclide imaging, the prospects for applying these estimation
methods in digital radiography are good.

The effect of the object randomness on the image statistics can be studied starting with either
the autocovariance function of the object random process or with the characteristic functional
– an infinite-dimensional generalization of the familiar characteristic function for random
variables. Characteristic functionals are known analytically for many complicated, realistic
object models, and they can be used to compute image statistics for an arbitrary linear system
and either Poisson or Gaussian noise
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Figure 1.
Left: a 9 × 9 Toeplitz matrix that might represent the covariance matrix of a 9-element linear
detector in digital radiography. Right: the corresponding circulant matrix obtained by
pretending that the distances are computed modulo 9.
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Figure 2.
Illustration of photon counting with a lens-coupled CCD detector. Left: A single frame of data
showing clusters of pixels excited by individual 140 keV photons, superimposed on
considerable readout noise. Right: Image obtained by event detection and centroiding for
position estimation.
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Figure 3.
Illustration of 3D position estimation in an integrating CZT detector array.16 The detector used
a 2 mm thick slab of CZT, a 64 × 64 array of pixel electrodes on a 380 μm pitch; readout was
by a multiplexer with a 1 ms frame time. The illumination for this figure was a collimated beam
of 140 keV photons incident at 45 degrees to the detector face.
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Figure 4.
Illustration of improvement in energy resolution obtained by ML processing with an integrating
CZT array.16 Left: Pulse-height spectrum for a single pixel. Right: ML energy estimate. The
detector in this case used a 48 × 48 array of pixels on a 125 μm pitch.
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Figure 5.
Illustration of lumpy backgrounds with Gaussian lumps
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Figure 6.
Illustration of clustered lumpy backgrounds
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