Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Oct;94(4):1597–1604. doi: 10.1172/JCI117501

Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis.

L A Fitzpatrick 1, A Severson 1, W D Edwards 1, R T Ingram 1
PMCID: PMC295319  PMID: 7929835

Abstract

Coronary atherosclerosis is frequently associated with calcification of arterial plaque. To understand the mechanisms responsible for the formation of atherosclerotic calcification, we examined human coronary arteries for the presence and extent of mineral. In sections stained specifically for mineral, staining was diffuse and present in all atherosclerotic plaques. Hydroxyapatite was not detected in normal coronary artery sections. Distribution of hydroxyapatite coincided with a similar distribution of calcium detected by a radiodense pattern using contact microradiography of the same sections before cytochemical staining. By energy-dispersive x-ray microanalysis, the chemical composition of calcified sites was identical to hydroxyapatite (Ca10[PO4]6[OH]2), the major inorganic component of bone. Osteopontin is a phosphorylated glycoprotein with known involvement in the formation and calcification of bone and is regulated by local cytokines. Human coronary artery segments (14 normal and 34 atherosclerotic) obtained at autopsy were evaluated immunohistochemically using polyclonal antibodies generated against human osteopontin. Immunohistochemistry for osteopontin indicated intense, highly specific staining in the outer margins of all diseased segments at each calcification front; staining was evident throughout the entire plaque. Conversely, arterial segments free of atheroma and calcification and sections treated with nonimmune serum had no evidence of positive staining. Osteopontin, a protein involved in mineralization is specifically associated with calcific coronary atheroma and may play an important role in the onset and progression of this disease in human coronary arteries. The deposition of noncollagenous proteins such as osteopontin may regulate the presence or absence of calcification and ultimately alter vessel compliance.

Full text

PDF
1599

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLANKENHORN D. H., STERN D. Calcification of the coronary arteries. Am J Roentgenol Radium Ther Nucl Med. 1959 May;81(5):772–777. [PubMed] [Google Scholar]
  2. Boström K., Watson K. E., Horn S., Wortham C., Herman I. M., Demer L. L. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993 Apr;91(4):1800–1809. doi: 10.1172/JCI116391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burleigh M. C., Briggs A. D., Lendon C. L., Davies M. J., Born G. V., Richardson P. D. Collagen types I and III, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis. 1992 Sep;96(1):71–81. doi: 10.1016/0021-9150(92)90039-j. [DOI] [PubMed] [Google Scholar]
  4. Butler W. T. The nature and significance of osteopontin. Connect Tissue Res. 1989;23(2-3):123–136. doi: 10.3109/03008208909002412. [DOI] [PubMed] [Google Scholar]
  5. CARLSTROM D., ENGFELDT B., ENGSTROM A., RINGERTZ N. Studies on the chemical composition of normal and abnormal blood vessel walls. I. Chemical nature of vascular calcified deposits. Lab Invest. 1953 Sep-Oct;2(5):325–335. [PubMed] [Google Scholar]
  6. Doherty T. M., Detrano R. C. Coronary arterial calcification as an active process: a new perspective on an old problem. Calcif Tissue Int. 1994 Mar;54(3):224–230. doi: 10.1007/BF00301683. [DOI] [PubMed] [Google Scholar]
  7. ENOS W. F., HOLMES R. H., BEYER J. Coronary disease among United States soldiers killed in action in Korea; preliminary report. J Am Med Assoc. 1953 Jul 18;152(12):1090–1093. doi: 10.1001/jama.1953.03690120006002. [DOI] [PubMed] [Google Scholar]
  8. Ennever J., Vogel J. J., Riggan L. J. Calcification by proteolipid from atherosclerotic aorta. Atherosclerosis. 1980 Feb;35(2):209–213. doi: 10.1016/0021-9150(80)90085-4. [DOI] [PubMed] [Google Scholar]
  9. Feldman T., Glagov S., Carroll J. D. Restenosis following successful balloon valvuloplasty: bone formation in aortic valve leaflets. Cathet Cardiovasc Diagn. 1993 May;29(1):1–7. doi: 10.1002/ccd.1810290102. [DOI] [PubMed] [Google Scholar]
  10. Fisher L. W., Hawkins G. R., Tuross N., Termine J. D. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem. 1987 Jul 15;262(20):9702–9708. [PubMed] [Google Scholar]
  11. Fisher L. W., Termine J. D. Noncollagenous proteins influencing the local mechanisms of calcification. Clin Orthop Relat Res. 1985 Nov;(200):362–385. [PubMed] [Google Scholar]
  12. Frink R. J., Achor R. W., Brown A. L., Jr, Kincaid O. W., Brandenburg R. O. Significance of calcification of the coronary arteries. Am J Cardiol. 1970 Sep;26(3):241–247. doi: 10.1016/0002-9149(70)90790-3. [DOI] [PubMed] [Google Scholar]
  13. Giachelli C. M., Bae N., Almeida M., Denhardt D. T., Alpers C. E., Schwartz S. M. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993 Oct;92(4):1686–1696. doi: 10.1172/JCI116755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giachelli C., Bae N., Lombardi D., Majesky M., Schwartz S. Molecular cloning and characterization of 2B7, a rat mRNA which distinguishes smooth muscle cell phenotypes in vitro and is identical to osteopontin (secreted phosphoprotein I, 2aR). Biochem Biophys Res Commun. 1991 Jun 14;177(2):867–873. doi: 10.1016/0006-291x(91)91870-i. [DOI] [PubMed] [Google Scholar]
  15. Gijsbers B. L., van Haarlem L. J., Soute B. A., Ebberink R. H., Vermeer C. Characterization of a Gla-containing protein from calcified human atherosclerotic plaques. Arteriosclerosis. 1990 Nov-Dec;10(6):991–995. doi: 10.1161/01.atv.10.6.991. [DOI] [PubMed] [Google Scholar]
  16. Glimcher M. J. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec. 1989 Jun;224(2):139–153. doi: 10.1002/ar.1092240205. [DOI] [PubMed] [Google Scholar]
  17. Gorski J. P. Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int. 1992 May;50(5):391–396. doi: 10.1007/BF00296767. [DOI] [PubMed] [Google Scholar]
  18. Hirota S., Imakita M., Kohri K., Ito A., Morii E., Adachi S., Kim H. M., Kitamura Y., Yutani C., Nomura S. Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol. 1993 Oct;143(4):1003–1008. [PMC free article] [PubMed] [Google Scholar]
  19. Ikeda T., Shirasawa T., Esaki Y., Yoshiki S., Hirokawa K. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest. 1993 Dec;92(6):2814–2820. doi: 10.1172/JCI116901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ingram R. T., Clarke B. L., Fisher L. W., Fitzpatrick L. A. Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res. 1993 Sep;8(9):1019–1029. doi: 10.1002/jbmr.5650080902. [DOI] [PubMed] [Google Scholar]
  21. Ingram R. T., Park Y. K., Clarke B. L., Fitzpatrick L. A. Age- and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodeling. J Clin Invest. 1994 Mar;93(3):989–997. doi: 10.1172/JCI117106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levy R. J., Howard S. L., Oshry L. J. Carboxyglutamic acid (Gla) containing proteins of human calcified atherosclerotic plaque solubilized by EDTA. Molecular weight distribution and relationship to osteocalcin. Atherosclerosis. 1986 Feb;59(2):155–160. doi: 10.1016/0021-9150(86)90044-4. [DOI] [PubMed] [Google Scholar]
  23. Löwel H., Dobson A., Keil U., Herman B., Hobbs M. S., Stewart A., Arstila M., Miettinen H., Mustaniemi H., Tuomilehto J. Coronary heart disease case fatality in four countries. A community study. The Acute Myocardial Infarction Register Teams of Auckland, Augsburg, Bremen, FINMONICA, Newcastle, and Perth. Circulation. 1993 Dec;88(6):2524–2531. doi: 10.1161/01.cir.88.6.2524. [DOI] [PubMed] [Google Scholar]
  24. McCarthy J. H., Palmer F. J. Incidence and significance of coronary artery calcification. Br Heart J. 1974 May;36(5):499–506. doi: 10.1136/hrt.36.5.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKee M. D., Glimcher M. J., Nanci A. High-resolution immunolocalization of osteopontin and osteocalcin in bone and cartilage during endochondral ossification in the chicken tibia. Anat Rec. 1992 Dec;234(4):479–492. doi: 10.1002/ar.1092340404. [DOI] [PubMed] [Google Scholar]
  26. McNamara J. J., Molot M. A., Stremple J. F., Cutting R. T. Coronary artery disease in combat casualties in Vietnam. JAMA. 1971 May 17;216(7):1185–1187. [PubMed] [Google Scholar]
  27. Murata K., Motoyama T. Collagen species in various sized human arteries and their changes with intimal proliferation. Artery. 1990;17(2):96–106. [PubMed] [Google Scholar]
  28. Noda M., Yoon K., Prince C. W., Butler W. T., Rodan G. A. Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type beta transforming growth factor. J Biol Chem. 1988 Sep 25;263(27):13916–13921. [PubMed] [Google Scholar]
  29. Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rose G. ABC of vascular diseases. Epidemiology of atherosclerosis. BMJ. 1991 Dec 14;303(6816):1537–1539. doi: 10.1136/bmj.303.6816.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schmid K., McSharry W. O., Pameijer C. H., Binette J. P. Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis. 1980 Oct;37(2):199–210. doi: 10.1016/0021-9150(80)90005-2. [DOI] [PubMed] [Google Scholar]
  32. Stary H. C. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J. 1990 Aug;11 (Suppl E):3–19. doi: 10.1093/eurheartj/11.suppl_e.3. [DOI] [PubMed] [Google Scholar]
  33. Tanimura A., McGregor D. H., Anderson H. C. Calcification in atherosclerosis. I. Human studies. J Exp Pathol. 1986 Summer;2(4):261–273. [PubMed] [Google Scholar]
  34. Tanimura A., McGregor D. H., Anderson H. C. Calcification in atherosclerosis. II. Animal studies. J Exp Pathol. 1986 Summer;2(4):275–297. [PubMed] [Google Scholar]
  35. Uretsky B. F., Rifkin R. D., Sharma S. C., Reddy P. S. Value of fluoroscopy in the detection of coronary stenosis: influence of age, sex, and number of vessels calcified on diagnostic efficacy. Am Heart J. 1988 Feb;115(2):323–333. doi: 10.1016/0002-8703(88)90478-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES