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Abstract

Ferryl species are important catalytic intermediates in heme enzymes. A recent experimental
investigation of a diheme protein MauG reported the first case of using two Fe(IV) species as an
alternative to compound I in catalysis. Both Fe(IV) species have unusual Mésshauer properties,
which was found to originate from novel structural features based on a quantum chemical
investigation. With comparison to the previously reported Fe!V=0 and Fe!V—-OH species, results here
provide the first evidence of a couple of new mechanisms by which proteins influence the properties
of ferryl species by directly providing the O via Tyr, or stabilizing exogenous O via hydrogen bonding
interaction. These results expand our ability to identify and evaluate high-valent heme proteins and
models.
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High-valent Fe(IV) species are important intermediates in the catalytic cycles of many heme
enzymes.1~9 57Fe Mésshauer spectroscopy is an invaluable tool to probe iron sites and
determine quadrupole splitting (AEq) and isomer shift (5r) parameters, which are related to
the electric field gradient and charge density at the iron nucleus, respectively.* Fe(1V) species
in heme proteins*~8 are characterized by small 8¢ values ranging from 0.03-0.14 mm/s
(Figure 1). In contrast, AEq values*8 span a larger range of 1.02-2.29 mm/s. Thus, AEqg may
be a more sensitive structural probe. Recent studies suggest that AEq is an indicator of the
protonation state of the oxo group,®6:8 with large and small AEq values proposed for the
protonated and unprotonated ferryl species, respectively. A model compound with an
unprotonated Fe'V=0 moiety® defined crystallographically has indeed a AEq value (1.24 mm/
s) at the lower end of this range.
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MauG10 contains two c-type hemes and catalyzes a six-electron oxidation to complete the
biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.
Méssbauer spectroscopy revealed that MauG stabilizes a bis-Fe!V intermediate with unusual
AEq values for each Fe!V heme.1? Heme 1 was regarded as an Fe!V=0 species, but its AEq
value of 1.70 mm/s lies between the average experimental AEq values in heme proteins for
protonated and unprotonated forms#~8 (Figure 1). For heme 2, both the AEq and 6, values
are larger than any previous known data for Fe(IV) species in heme proteins.12 These results
suggest that they may possess structural features that have not been described before. MauG
is also the first known protein using two Fe!V centers as an alternative to compound 1 in
biological oxidation reactions.12

Quantum chemical investigations of Mdssbauer parameters have been useful in elucidating
structural features of iron sites in proteins and models.13—22 Here, we present a quantum
chemical investigation of these two novel Fe!V species in heme proteins, using a recently
determined MauG X-ray crystal structure3 as a starting point. The DFT method used here has
predicted SEq and Sre values in iron proteins and model systems covering all iron spin states
and coordination states and almost all the iron oxidation states. The theory-versus-experiment
correlation coefficient for AEg prediction is R2=0.98 in 48 systems covering an experimental
range of 8.80 mm/s and that for 5, prediction is R2=0.97 in 49 systems covering an
experimental range of 2.34 mm/s (see Supporting Information for computational details). The
standard deviation of these dg, calculations is 0.07 mm/s. It should be noted that our method
was calibrated using the small molecules' X-ray structures and the residual errors were found
to generally decrease upon using better quality X-ray structures.2® For instance, the error in
AEq prediction for the ferryl model compound that has a high resolution X-ray structure is
0.01 mm/s.21 Therefore, this type of calculations has assisted in structure refinement for iron-
containing proteins.20~22 In this work, this approach was used to evaluate different Fe(1V)
models in MauG.

Heme 1 is five-coordinate with a His residue as the axial ligand?® and a vacant site to bind
0, or H,0,. Five Fe!V-oxo models (1a—1e in Table 1) were investigated to examine the
difference between the unprotonated Fe!V=0 and protonated Fe!V—OH species, and possible
hydrogen bonding effects from nearby amino acid residues. As found with the experimental
studies,*~9:12 the predicted &, values in these models are similar and within the expected
region, while AEq values are much more sensitive to the structural variations.

As seen from Table 1, for the unprotonated Fe!V=0 model 12, the predicted Fe-oxo distance
and O-Fe-Ny;s angle are similar to those seen in the X-ray structure of an Fe!V=0 model
compound (1.646 A and 178.9°) with a neutral N-coordination ligand similar to His
investigated here. The predicted spin densities in Fe and O are also similar.21 Its AEq value
of 1.45 mm/s is close to the average value of 1.4 mm/s seen for unprotonated Fe!V=0 species
in heme proteins (Figure 1). For the protonated Fe'V—OH model 1b, the Fe-O distance and Fe
spin density are similar to those of the Fe!'V—OH species in heme proteins.>:6:8 The 103%
increase in AEq caused by protonation of the oxo group (see Table 1 for results of 1b vs. 1a)
is comparable to an average increase of 112% in other heme proteins.>:6:8

It can be seen from Table 1 that the experimental AEq value of MauG heme 1 lies between the
AEq values of the protonated Fe!V-OH model 1b and the unprotonated Fe'V=0 model 1a, and
is closer to the latter one. This suggests that a secondary effect from nearby residue(s) may
operate on the unprotonated Fe!V=0 species in MauG heme 1. Therefore, models 1c-1e were
built on the basis of the unprotonated Fe!V=0 model which includes residues GIn103 and
Pro107 that reside near heme 1 in the crystal structure to investigate such effects. Model 1c
includes only GIn103 with its terminal N-H hydrogen bonded to the oxo group of the ferryl
moiety (see Supporting Information for computational details). Interestingly, as shown in Table
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1, this hydrogen bond reduces the error in the Eq prediction from 0.25 mm/s in 1ato 0.11
mm/s in 1c. The error can be further reduced to be 0.03 mm/s in 1d (see Figure 2A), if GIn103
is allowed to move with no constraints from the resting state X-ray structure to further optimize
its interaction with the Fe!VY=0 group. This kind of hydrogen bond effect is similar to the
AEq changes of 0.1-0.2 mm/s reported previously in other heme protein systems.8:24 Results
here suggest for the first time that an Fe(IV)=0 species may be stabilized by an active site
residue, which in MauG was experimentally found to be remarkably stable.12 It is also
intriguing that the alignment of the amino acid sequences of MauG proteins indicates that
GIn103 is absolutely conserved (see Figure S2 in reference 23). These results suggest that
GIn103 may play a functional role in this site, which will be further investigated by mutation
studies. In contrast to GIn103, the presence of Pro107 in 1e compared to 1c has minimal effects
on the geometries, spin densities, and Mdssbauer parameters. Thus, the role of Pro107 is likely
structural and perhaps related to the fact that MauG does not require substrate binding to prime
it for reactions with oxygen.23 These results suggest that quantum chemical studies of
characteristic spectroscopic properties for proteins may help identify the roles of active site
residues.

For heme 2, the MauG X-ray structure reveals an unusual His/Tyr ligation.23 It has never been
observed for c-type hemes or any other heme proteins where function requires the formation
of an Fe!V oxidation state. In principle, three major types of Fe!V hemes may be formed upon
the binding of O, or H,0, to MauG: 1) His-Fe!V-O(H) (2a and 2b); 2) (H)O-Fe!V-Tyr (2c and
2d); 3) His-Fe!V-Tyr (2e). However, as shown in Table 1, for type 1 and 2 models, either
AEq or dg predictions have much large errors compared to the experimental data, which
supports the proposal in the original experimental investigation of MauG that this Fe!V heme
site has two protein residues as axial ligands.12 To examine the consequence of an Fe!V heme
with the unique His/Tyr ligand set (type 3), model 2e of Fe!V(Por)2~(His)(Tyr)1~ was
investigated (Figure 2B). The average Fe and porphyrin nitrogen distance (Rgen-por) in 26 is
similar to the values of 2.01-2.03 A seen in the isoelectronic Fe!V-OH species in previously
studied heme proteins® and the Fe!V—OH heme model (1b) here. The long Fe-O bond length
of 1.839 A in 2e is similar to the Fe—O bond (1.84 A) in a model compound,® Fe!V(TMP)
(OCH3y), (TMP = tetramesitylporphyrin), with the same coordinate state and a similarly high
AEg value of 2.12 mm/s.2® It should be noted that the Fe!V—OCH3 group is isoelectronic to a
Fe!V-OH species. So, the AEq value of Fe!V (TMP)(OCHy3); is close to the AEq value of 2.06-
2.29 mm/s seen with the Fe!V—OH species in other heme proteins.>/6:8

A notable difference from the previously investigated Fe!V=0 and Fe!V—OH heme species is
that the Mulliken spin densities of the oxo and iron atoms (meO and paBFe) in2eareca.05e
smaller than the two electrons expected for an S=1 state. However, the spin densities of the
whole Tyr group and Fe of 1.92 e are indeed close to the expected value, suggesting a
delocalization effect of the conjugated Tyr residue. Compared to the Fe!V-OH/OCHj5 species
reported before®:6:8:25 that have dual anionic axial ligands, the unique ligand set of His/Tyr
makes 2e isoelectronic to 1b, which also has one neutral His axial ligand and one anionic axial
ligand. Note that 1b has a AEq value larger than those of previously reported Fe!V—OH/
OCHg species, which is the same for 2e. Since Tyr has only one formal negative charge, which
is smaller than the two formal negative charges for an oxo group, 2e has a much longer Fe-O
bond compared to those in other Fe!V-oxo porphyrins investigated here (see Table 1) and
previously.#~8 This decreases the electron charge density at the iron nucleus, which is
negatively proportional to 8¢ and thus results in a much large 8gcvalue.* To further examine
the effect of this unique Tyr/His ligand set on Mdssbauer parameters, a calculation of
Fe!V(Por)2~(His)%(Tyr')L~ using a simple non-substituted porphyr with no protein structural
restraints (2f) was performed. As seen from Table 1, both the geometric and Mdssbauer results
are not identical to those of 2f, indicating an effect of the protein environment. However, both
AEq and ¢ values of 2f are again much larger than those reported previously, which further
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supports an important role of the His/Tyr ligand set in determining the unusually large
Mésshauer parameters. These results support for a novel Fe!Vprotein state without an
exogenous non-protein ligand.

Overall, the geometric, electronic, and Mdssbauer properties from this work suggests new
mechanisms by which proteins influence the properties of Fe!V=0 hemes by directly providing
the O via Tyr, or stabilizing exogenous O via hydrogen bonding interaction. These results
expand our ability to identify and evaluate high-valent heme proteins and models.
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Figure 1.
Experimental Mossbauer properties for Fe(1V) heme proteins.#~8:12 Green squares, black

squares, and blue triangle points are for compounds | Fe!V=0, compound II/ES Fe!V=0, and
compound 11 Fe!'V—OH species, respectively.
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Active site models of MauG Fe!V heme sites: (A) 1d; (B) 2e. The green dotted line in (A)

represents a hydrogen bond.
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