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Abstract
Increasing knowledge about the organization of proteins into complexes, systems, and pathways
has led to a flowering of theoretical approaches for exploiting this knowledge in order to better
learn the functions of proteins and their roles underlying phenotypic traits and diseases. Much of
this body of theory has been developed and tested in model organisms, relying on their relative
simplicity and genetic and biochemical tractability to accelerate the research. In this review, we
discuss several of the major approaches for computationally integrating proteomics and genomics
observations into integrated protein networks, then applying guilt-by-association in these networks
in order to identify genes underlying traits. Recent trends in this field include a rising appreciation
of the modular network organization of proteins underlying traits or mutational phenotypes, and
how to exploit such protein modularity using computational approaches related to the internet
search algorithm PageRank. Many protein network-based predictions have recently been
experimentally confirmed in yeast, worms, plants, and mice, and several successful approaches in
model organisms have been directly translated to analyze human disease, with notable recent
applications to glioma and breast cancer prognosis.
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1. Introduction: predicting phenotype from proteomics
Model organisms have proven invaluable for better understanding protein function and
interactions, both for enabling studies of single proteins via genetic and biochemical
tractability, as well as for enabling global surveys of thousands of proteins. Large-scale
maps of pair-wise protein interactions [1–3], protein complexes [4–7], genetic interactions
[8,9], transcription factor-target interactions [10–13], protein localization [14], and other
complementary datasets have accelerated the characterization of protein function on a
proteome-wide scale. The bulk of these studies have occurred in yeast and the nematode C.
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elegans, but increasingly in Arabidopsis, mouse, and fly, leading the way for applications to
human cell culture.

These rapidly accumulating large-scale biological data have necessitated a corresponding
growth in theoretical methods for interpreting them. One major goal has been to translate
such knowledge of proteomic organization into models capable of associating genetic
changes with changes to measurable traits, phenotypes, and diseases. In principle, such
models will help to better interpret the rapidly growing genotype-based and genome
sequence-based data characterizing genetic variation among individuals, whether individual
humans or individuals of another species altogether. Models exploiting proteomic
organization in order to relate genetic changes to altered traits could, for example, guide the
identification of new disease genes, of genes underlying susceptibility to infection, and of
genes underlying major crop traits or of many other naturally occurring traits with genetic
components. Here, again, model organisms are leading the way: over the past few years, a
variety of computational methods, most exploiting large-scale proteomic and genomic
datasets, have begun to show strong advances in predicting the phenotypic consequences of
mutations and successfully identify genes underlying mutational traits.

One powerful strategy has been to exploit the principle of guilt-by-association (GBA) in
protein networks (reviewed in [15]). In this scheme, the function of a protein will more often
than not resemble the functions of those proteins with which it interacts, or is co-expressed,
or is co-localized, and so on. Thus, knowledge of a few proteins’ functions, in combination
with large-scale maps of protein-protein associations, provides substantial traction for
characterizing the portions of the proteome that are as yet poorly understood. Interestingly,
this strategy, developed initially for inferring protein function [16], has recently proved to be
a powerful approach for linking genes to phenotypic traits and diseases.

That such an approach might work can be seen intuitively from an examination of arguably
one of the simplest “diseases”: lethality of a yeast cell following deletion of an essential
gene. Comparisons of the components of yeast protein complexes, measured at large-scale
using mass spectrometry [4–7], with genes known from systematic gene deletion
experiments to be essential for growth in standard laboratory medium [17], have shown that
proteins encoded by essential genes tend to co-occur in the same physical complexes [18,19]
(Fig. 1a). There is a general trend for proteins in the same physical complex to be encoded
either mostly by essential genes or mostly by non-essential genes; complexes are
systematically depleted for intermediate mixtures of essential and non-essential genes [19]
(Fig. 1b). Thus, essentiality appears to be a function of the complex — the intact molecular
“machine” — rather than the individual gene. Recent observations have further shown that
essential complexes tend to be larger than non-essential complexes [20,21], which provides
a physical explanation for a long-standing observation about gene essentiality, that proteins
encoded by essential genes tend to have more interaction partners than non-essential ones
(the “centrality-lethality rule”) [22].

From a practical perspective, the observation that proteins in the same physical complexes
tend to be linked to similar mutational phenotypes suggests that knowing physical
complexes and a subset of genes linked to a trait, one could confidently predict additional
genes relevant to that trait based upon their interaction partners. Indeed, this strategy works
reasonably well [23–25]; even better predictive performance comes from considering
broader biological pathways and functional associations, for which this trend also appears to
hold, rather than considering physical complexes alone [24,26]. In fact, studies have shown
that highly but transiently connected proteins (e.g. kinases) often play key roles in complex
disease [27]. Thus, a general consideration of functional associations, whether restricted to
the same physical complex or not, appears to be a reasonable strategy for linking genes to
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traits. This general strategy – exploiting the tendency for genes underlying the same trait to
encode functionally associated proteins – has proven generally applicable and has now been
tested for a wide variety of traits and phenotypes, and even human diseases (e.g., [23–
26,28], among others).

Just as for the initial collection of the underlying large-scale proteomic data, model
organisms have served as a productive test-bed for these approaches. Here, we discuss
several of the major computational approaches for computationally integrating proteomics
and genomics observations into integrated protein networks, then applying these networks in
order to identify genes underlying traits. While much work has gone into identifying causal
genes for traits, e.g. by association studies (reviewed in [29]) or integrating genotypic and
genomic data (e.g., [30–32]), we primarily focus here on GBA methods, reviewing the basic
approaches, discussing recent bioinformatics developments (such as a growing recognition
of the relationships between these methods and Google’s web search algorithm PageRank),
and presenting recent examples of experimental validation of these approaches at linking
genes to traits in organisms ranging from yeast to mammals to plants.

2. Protein networks: the basics
For the purposes of GBA, protein networks can consist solely of direct measurements of
protein-protein or genetic interactions, such as might come from a single large-scale yeast
two-hybrid or mass spectrometry assay. Typically, though, many such measurements are
first computationally integrated into a composite network. Diverse methods exist for
constructing integrated protein networks from mixed proteomic and genomic data sets, and
rapidly increasing amounts of data from high-throughput experiments have pushed this field
to be very active. Networks are increasingly used for modeling a wide variety of biological
relationships, often requiring complex construction strategies. Given that we wish to focus
here on the value of the resultant networks for discovering protein function and relevance to
traits, we provide only a brief high-level overview of the different strategies of network
construction (Fig. 2). For more in-depth reviews of this field, see [33–37]; in some cases,
step-by-step instructions are available (e.g., [26,38]).

Building a network begins with the selection of relevant data. Generally, any data which
suggest relationships between pairs of proteins can be used. For example, proteins whose
corresponding mRNAs exhibit correlated expression levels across different cellular
conditions are often likely to be functionally associated [16,39]. Similarly, protein-protein
interaction data, such as from mass spectrometry of purified complexes or yeast two-hybrid
assays, can often provide strong support for proteins to function together. Such data might
be used directly for inferring protein function or organization (e.g., as in Refs. [40,41]), but
can also be logically combined with other types of proteomic or genomic data. Naturally, the
motivation of the network guides the choice of data used. For example, in order to study
host-pathogen interactions between humans and the H. pylori bacteria, Tyagi et al. used
predictions of transmembrane protein-protein interactions and virulence factors [42]. In
another recent twist, Park et al. applied population-level disease patterns to study disease co-
morbidity [43]. For basic protein networks, a common strategy is to integrate a mixture of
proteomics and genomics datasets in order to infer protein-protein associations, as the
resultant networks tend to be more complete and robust [26,28,38,44–55]. In an early
example of a large-scale integrative network, Troyanskaya et al. demonstrate how the
combination of various data sources provides for better coverage and accuracy of predicted
functional relationships [56].

The integration of multiple types of data may be approached from many avenues, with two
general frameworks used most commonly: correlative and causal networks. In the former
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case, network edges are undirected and represent functional coupling between pairs of
associated proteins. For example, such a network might summarize evidence for pairs of
proteins to physically interact, but would not indicate which protein in such a pair is
upstream in the biological pathway. Methods for constructing correlative networks include
combining clustering coefficients of data of varying weights [57] and training support vector
machines to identify co-complexed protein pairs [58]. In naïve Bayesian networks,
likelihood scores of proteins participating in the same pathway are calculated for each line
of evidence and then combined as a weighted sum [59], providing a (weighted) Bayesian
estimate for linked proteins to participate in the same cellular processes. Caveats to this
approach include the reliance on current annotations (e.g., the Gene Ontology Consortium
[60]) for training the networks. As annotations are often incomplete and may serve to
propagate errors, there is a danger of introducing circularity. Nonetheless, many approaches
may be taken to minimize this, such as using independent annotation test sets,
benchmarking, and weighting of data (e.g., [30,44,45,61]). Importantly, networks
constructed in this manner have proven strongly predictive for gene functions that lie outside
of the annotated gene set, as discussed below (e.g., in the MouseFunc contest [62]).

Alternatively, in constructing causal networks describing causal relationships between
genes, common strategies include ordering molecular events temporally, or by incorporating
prior knowledge as to cause and effect (e.g., DNA mutations may alter a gene’s expression,
but the reverse is unlikely). Zhu et al. demonstrated this technique by integrating
transcription factor binding and expression QTL data into a probabilistic causal network in
yeast [30]. They first estimated joint probability distributions for various models of causality
between loci and traits, then identified the most likely model which fit their observed data.
Alternatively, Bonneau et al. used time-series DNA microarray measurements of the
transcriptional response to different environmental perturbations to construct causal models
of interactions between environmental factors and transcription factors [63]. Though often
computationally costly in construction, causal networks are of value for simplifying models
of complex protein relationships, and in principle can identify early events in regulatory
cascades, thereby guiding the selection of useful points of intervention for blocking such
cascades (e.g., [64]). To accelerate progress in this field, an annual contest – the DREAM
contest – is held dedicated to testing and improving the algorithms for deriving regulatory
gene networks [65]. For a more in-depth discussion of causal networks, see [66–68]. Both
correlative and causal models capture a wide variety of molecular interactions, ranging from
stable physical interactions to transient interactions to genetic, non-physical interactions, all
of which may be functionally relevant to the pathway of interest.

3. Propagating information through protein networks
Much of the real value of gene and protein networks lies in their utility for elucidating
protein function. Thus, much work has been devoted to forming accurate predictions of
protein functions using network information and previously known protein functions,
generally by propagating annotations across network edges. Given that all current functional
annotations for proteins are incomplete, sometimes woefully so, and that the networks
represent an attempt to objectively reconstruct functional relationships among proteins,
propagating annotations across a network’s edges is often useful, suggesting new functions
for under-annotated proteins. These functional assignments are rarely unambiguous. Instead,
functional prediction methods typically produce a score or rank representing how likely each
protein is to be involved in the function. In order to provide some intuition for the relative
merits of such approaches, we next introduce several methods and compare their abilities to
annotate proteins in correlative networks. We focus on a small number of methods which we
consider to be distinct and interesting; more comprehensive reviews of methods are
available (e.g., [69]).
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One of the most straightforward approaches to predict protein function via a protein network
is that of neighbor counting (NC) [70]. In this approach, for a particular protein function or
pathway, the proteins with the most neighbors associated with that function are themselves
deemed the most likely to share that function. In a slightly more sophisticated variation on
this method, naïve Bayes label propagation (NB), the sum of the network edge-weights to
implicated neighbors is used, rather than the count of interactions [26,38,46]. This latter
approach relies on network edge-weights that correspond to log likelihood scores for
proteins to participate in the same process; thus, the sum of edge-weights to a set of genes of
interest corresponds to a naïve Bayes estimate for a gene to also belong to the gene set of
interest. NC and NB are both limited in that they only score direct neighbors of annotated
proteins. However, as discussed later, these simple methods have made many
experimentally verified predictions.

Alternatively, “network diffusion” methods have been developed in order to effectively
diffuse information throughout a network, thus overcoming a major limitation of methods
such as NC and NB that consider only direct associations. Here we consider two methods
which diffuse information from a single node to directly and indirectly connected nodes over
the course of several iterations. In the first, which we term iterative ranking (IR), the score
for a protein to be linked to a particular function or phenotype consists of an initial score and
the normalized scores or weighted “votes” of each neighbor (e.g., [71]). As scores are
updated in successive iterations, information about proteins relevant to the function of
interest propagates across network edges, “smearing” the initial functional assignments
across the network. Another diffusion method we consider is Gaussian field label
propagation, which we refer to here simply as Gaussian smoothing (GS). In GS the
minimization of two distances is computed: the difference between a protein’s initial and
final scores and the weighted score difference between the protein and each neighbor [72].
Box 1 and Fig. 3 present more detailed explanations of network diffusion algorithms, and
should provide some intuition regarding their uses.

Box 1 The use of diffusion algorithms in network-based prediction of protein
function

Diffusion algorithms are common in the growing body of work applying GBA in
functional networks to predict protein function. Generally, network-based prediction
algorithms utilize two pieces of information: f0, an initial vector of scores representing
each protein's prior known association with a function, and W, the network topology
matrix. The initial scores are propagated throughout the network, resulting in a set of
final scores indicating each protein's predicted association to a function. The basic format
for a diffusion algorithm is

(1)

where the vector of scores f is a combination of X, which contains initial scores for
nodes, and Y, which contains information on the network topology. This convex
combination allows the two components to be weighted differentially, along with some
other mathematical conveniences. In contrast, in simpler neighbor counting and naïve
Bayes methods, where a protein's score is the count or sum of edge-weights to seeds, the
two components are combined (Table 1, Fig. 3b). Diffusion algorithms are advantageous
because they assign scores to indirectly connected nodes. Additionally, the final scores
are often readily computed. Below we describe two diffusion methods that have been
successfully employed in various studies.
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Iterative ranking (IR)
This algorithm was first developed in 1941 to model the input–output flows of economic
industries by Nobel Prize winner Wassiliy Leontief [95]. It was more recently
popularized by Larry Page and Sergey Brin as a method (PageRank) to rank internet
search query results using the link topology of the web [96]. With minor adjustments, IR
has been applied to numerous biological problems, including prioritizing functionally
associated proteins [97–100], identifying protein clusters [101,102], identifying genes
responsible for adverse drug reactions [103], and improving protein identification in
high-throughput methods [71,104]. In the context of predicting protein function, the IR
score of a protein is the combination of the initial seeds and the weighted average of IR
scores of the protein's neighbors. Since each protein's score depends on that of its
neighbors, the computation is iterative:

(2)

where ft are the scores at time t and U is the matrix of normalized network edges. The
final scores are obtained when f stabilizes to within some threshold, or as the solution to
the linear equation (Table 1,Fig. 3c). The type of network edge normalization performed
is dependent on the application. In ranking internet search results, where each edge is
equal weight, a page which points to a multitude of other sites, such as a home page, is
likely unspecific in topic. Thus, each edge is normalized by the total number of outgoing
edges from the node. In predicting protein function, where network edges are usually
weighted, we wish to normalize each neighbor's contribution to a node's score. Thus,
edges here are normalized by the total weight of incoming edges to the node. A more in-
depth description of normalization differences is available [105].

Gaussian smoothing (GS)
This Gaussian field label propagation algorithm [72] minimizes the Euclidean distance
between (1) the initial and final scores of a protein and (2) a protein's score and that of
each of its neighbors:

(3)

where wij is the edge weight between protein i and its neighbor j. This can be derived
from the assumptions that the error between initial and final scores f – f0 is normally
distributed, f follows a multivariate normal distribution, and the covariance matrix Σ is
equivalent to the inverse graph Laplacian matrix:

(4)

Network edge normalization may also be useful when implementing this algorithm. The
authors of GS normalize each edge by the square root of the sum of incoming edges and
the square root of the sum of outgoing edges for each node [72]. Similar to IR, the GS
score of a protein depends on an initial score and the scores of neighboring proteins. The
solution to this minimization problem also reduces to a linear equation (Table 1, Fig. 3d).
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Table 1

Components of diffusion algorithms.
Algorithm X term Y term U ffinal

naïve Bayes Uf0 - W Uf0

Iterative
ranking

f0 Uf α[I − (1 − α)U]−1f0

Gaussian
smoothing

(f − f0)T(f − f0) fTUf D–W
where

Dii = Σj wij
and Dij = 0

if i≠j

A wide variety of approaches can be imagined for propagating information across a
network, and many such approaches, often initially developed in fields outside of biology,
are proving useful for linking proteins to functions or traits. For example, Markov clustering
(MCL) groups nodes based on simulation of stochastic flow in the network [73]. This
method was originally applied to predict protein families based on sequence similarity.
While this method is useful for identifying clusters of functionally related proteins, it does
not directly identify proteins of a particular function. Instead, it identifies clusters containing
proteins of interest, but does not rank candidate genes within each cluster. However,
proteins can then be prioritized by a variety of other approaches, such as by considering the
sum of a protein’s edge-weights within a cluster relative to all of its edge-weights, with
larger sums indicating more relevance to the functions captured by that cluster.

Finally, another interesting method analyzes the flow through a network using concepts
from electric circuit analysis [74]. In this circuit-based method (CB), the protein network is
represented by an electrical circuit, where edge-weights are analogous to conductance (1/
resistance) and implicated proteins are assigned as ground nodes. A current is
simultaneously applied to each protein, and the nodes emerging with the highest current
flowing through are predicted to be most likely to be associated with the ground nodes.

Because strongly connected nodes in a functional protein network are likely to work
together in the same biological processes, they are also likely to share similar loss-of-
function phenotypes. This can be demonstrated using correlative functional networks
available for C. elegans [26] and S. cerevisiae [46] along with 318 RNAi phenotype gene
sets available from WormBase [75], 100 loss-of-function phenotype sets from McGary et al.
[24], and statistics of 282 morphological parameters for 4718 yeast gene deletion mutants
from the Saccharomyces Cerevisiae Morphological Database (SCMD) [76]. In order to
analyze the quantitative data from SCMD, we assigned the genes corresponding to the 40
largest and smallest values for each morphological feature as phenotype sets, resulting in
564 total sets. Fig. 4 illustrates the relative performance of the various algorithms discussed
above at identifying genes underlying traits, focusing on RNAi knockdowns in C. elegans
(Fig. 4b) and loss-of-function mutational phenotypes (Fig. 4c) and morphological
phenotypes (Fig. 4d) in yeast. A standard strategy for evaluating such algorithms is to
perform 10-fold cross-validation, separating known examples into distinct training and test
sets of proteins. Using this approach, for each phenotype, we calculated the true-positive
rates (TPR) and false-positive rates (FPR) as a function of a method’s score or rank and
plotted the corresponding ROC curve. Fig. 4a provides an example ROC curve illustrating
the predictive ability of each method for correctly identifying genes responsible for
abnormal locomotion of C. elegans following RNAi knockdown. The area under a ROC
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curve (AUC) provides a convenient summary of a method’s predictive ability on that
phenotype; a curve along the diagonal line and an AUC near 0.5 has no predictive ability,
while one pushed to the top left of the plot with an AUC closer to 1 has strong predictive
ability.

The overall performance of each algorithm at predicting loss-of-function phenotypes in
worm and yeast is shown as distributions of AUC values in Fig. 4b–d. NC and GBA
methods perform quite similarly, presumably because a minimum edge weight threshold
applied in network construction [26,46] causes the NC method to return similar rankings to
the NB method. The MCL and CB methods, originally developed for different purposes, did
not adapt well to task of phenotype prediction. However, MCL performance would most
likely improve with further refinements to the ranking of proteins within clusters and to the
optimization of clustering parameters. Overall, the two diffusion methods outperform the
others by a notable margin. Some guides for effective use come from these analyses: In
some cases, the diffusion methods perform poorly for small FPR and extremely well for
higher FPR. Therefore, when choosing a predictive algorithm, the false-positive cost for the
particular experiment should be considered; NC or NB methods are appropriate when false-
positives are costly and diffusion methods suit cases where a more exhaustive set of
predictions is desired. Notably, the relative performance of each method was robust to
choice of organism and test set. The tests in C. elegans yielded higher average AUCs and a
stronger performance boost from diffusion methods. These methods can also be further
adapted to predict quantitative gene-pathway based traits (e.g., predicting quantitative yeast
phenotypes with a modified NB method [77]). Finally a general caveat is merited: we have
observed that the various network label propagation methods tend to perform differently for
different applications, and it is often advisable to test several to see which performs best for
a particular test of interest.

4. Validated applications to model organisms
While much work on the computational analysis of gene networks has relied on
computational tests, such as the cross-validation employed above, the last few years have
seen increasing direct experimental validation of network-based predictions of protein
functions and involvement in phenotypes. Here again, model organisms have proven
invaluable for enabling rapid in vivo tests of the validity of these methods. In some studies,
simple loss-of-function experiments have confirmed very striking phenotypes. For example,
protein networks have successfully predicted genes whose RNAi knockdown suppresses the
loss of the retinoblastoma tumor suppressor, validated in C. elegans (Fig. 5a) [26]. In A.
thaliana, novel regulators of drought sensitivity and lateral root development were
discovered using NB predictions (Fig. 5b) [38]. Similarly, in E. coli, many proteins were
predicted to play roles in cell envelope biogenesis. Cells in which these proteins were
deleted exhibited differential sensitivity to peptidoglycan assembly inhibitors [78]. In
another study, Qi et al. construct a yeast synthetic lethal genetic interaction network in order
to predict pathway memberships and genetic interactions. Using a diffusion method similar
to IR (described above), they identified and confirmed 18 novel genetic interactions for the
transcriptional cofactor Ada2 and 20 for Esa1, a subunit of the histone acetyltransferase
complex [79].

Beyond the simple scheme of mapping single genes to single phenotypes is the goal of
understanding how complex phenotypes arise. For example, a time-dependent yeast protein
interaction network revealed the role of Cdk1 in protein complex formation throughout the
cell cycle [80]. In a separate study employing an integrative yeast network, Hess et al.
confirmed 140 of 235 predicted mitochondrial biogenesis genes (one such example is
reprinted in Fig. 5c) [81]. In another study, a tissue-specific functional interaction network is
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constructed in order to study tissue-specific regulation patterns in worm. Several genes
predicted to express in the hypodermis, muscle, or neurons were confirmed using promoter-
GFP constructs (Fig. 5e) [82]. Similarly, using a co-expression gene network, Ghazalpour et
al. predicted factors which influence the body weight of mice [83]. The addition of non-
proteomics datasets, including genome sequence or genotype data, has proven to often
extend the scope of studies considerably. Applying genome-wide association data to a yeast
functional network facilitated the identification of thousands of genetic interactions between
protein complexes [84], and a model of protein dosage sensitivity [85]. Using an extensive
collection of chemical genetics datasets, Venancio et al. built a chemical-protein complex
network and identified potential interactions between drugs and protein complexes [86].

Efforts to exploit proteomics and genomics data in order to better annotate model organism
genes recently culminated in an international contest, MouseFunc, to annotate mouse genes
with Gene Ontology (GO) annotations. Nine teams from around the world independently
developed computational methods to predict gene function from a large collection of M.
musculus data [62]. The data included protein sequence pattern annotations, experimentally
determined protein-protein interactions, mRNA expression across multiple tissues, gene-
phenotype associations, disease associations of human orthologs, and phylogenetic
distributions of mouse genes. Each team predicted blinded GO annotations for mouse genes,
and were assessed on withheld annotations and annotations newly identified since the start
of the contest. The strengths and weaknesses of each algorithm were assessed, and several
methods emerged as strong performers. For example, the Gaussian smoothing algorithm
GeneMANIA (Box 1, [72]) performed well. Performance using a computational approach
known as support vector machines, combined with GO annotations over a Bayesian
framework, was robust to the number of genes in the test set [87]. Finally, Funckenstein,
composed of two methods combined by logistic regression, produced high precision
predictions for a wide range of GO annotations [88]. This method uses guilt-by-association
in gene networks in addition to guilt-by-profiling: exploiting the correlation between gene
function and other gene characteristics. The ultimate result of this contest was a unified set
of predictions over all teams’ approaches that averaged 41% precision over all GO
annotations. Moreover, 26% of GO terms achieved a precision > 90%. Many new
predictions emerged for 5000 previously uncharacterized genes. Predictions for one of these,
the gene Fuz, implicated in vertebrate birth defects, were recently confirmed experimentally
in transgenic mice and knockdown experiments in frogs (Fig. 5d) [89].

5. Prospects for humans
Overall, the work in integration of large-scale data sets and functional prediction in model
organisms builds toward the ultimate goal of understanding complex human traits and
phenotypes. Linding et al. approached this goal on a signaling level and developed an in
vivo phosphorylation network, modeling kinase and phosphoprotein relationships [90]. They
identified substrates of kinases previously overlooked by motif-based methods alone,
including those of ATM (a primary regulator of DNA damage response) and CDK1 (a driver
of cell cycle progression). On a different level, genes or proteins associated with human
diseases can be predicted through the network propagation methods discussed earlier, and
such methods are increasingly being applied to human protein networks. For example,
Ostlund et al. recently discovered genes with abnormally high connectivity to cancer genes
and defined a novel method for ranking these new cancer gene candidates [91]. Other
studies have focused on specific diseases and understanding certain properties of interest.
One commonly used approach is to identify network characteristics which map to such
properties. For example, Huttenhower et al. first build small networks of biological
relationships between genes, then extract disease level information from these models [92].
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Sun et al. identified modules of genes which they predicted to be responsible for metastasis
of oral cavity tumors [47].

In two striking recent examples, the construction of gene interaction networks has led
directly to predictions in patient prognosis. First, Carro et al. built a transcriptional
regulatory network which models glioma cancer cell transition into an aberrant
mesenchymal phenotype [64]. Using gene expression profiles and array comparative
genomic hybridization of 76 high-grade gliomas, they were able to infer C/EBPβ and
STAT3 to be transcription factors responsible for initiating and regulating mesenchymal
transformation. As a validation of their model, they found that patients with tumors double-
positive for C/EBPβ and STAT3 were associated with worse clinical outcome than patients
with either single- or double-negative tumors (Fig. 6a). Second, Taylor et al. studied breast
cancer patient outcome by analyzing the hub proteins in a human protein interaction network
in the context of genome-wide expression data in 79 human tissues [93]. They identified two
classes of protein network hubs: intermodular hubs, which display low correlation of co-
expression with neighbors, and intramodular hubs, which display high correlation of co-
expression with neighbors. Mutations of intermodular hubs were more strongly associated
with cancer phenotypes. Using a cohort of breast cancer patients, they defined correlation of
co-expression signatures corresponding to good and poor prognosis patients. The model
strongly predicts patient outcome, as demonstrated in the Kaplan-Meier survival curves (Fig.
6b). On a broader level, patient records have recently been integrated into models in order to
build disease networks [43,94]. These networks elucidate disease-disease relationships and
offer insight into disease progression and co-morbidity, and it is reasonable to expect that
such models can be usefully integrated with protein association networks to better
characterize the genetic basis for human diseases.

The preceding network models and network methods reveal just small portions of the black
box of interactions underlying complex phenotypes, but models that integrate multiple types
of experimental datasets (e.g., combinations of proteomics and gene expression data) clearly
perform best. Importantly, the wide availability of proteomics and genomics data is
significantly boosting the ability to link genes to traits. These methods, proven initially in
model organisms, are beginning to show utility for human diseases, in spite of a still
significant lack of human proteomics data. As a result, most models are verified using high-
throughput experiments on model organisms or cell lines, various annotation databases, and
occasionally cohort data. Given reasonable expectations for technology developments in
proteomics and genome and transcript sequencing to improve data quality and reduce the
cost barriers to producing data, it seems safe to expect that the proteomics efforts proven in
model organisms will increasingly translate into human studies, dramatically improving our
ability to link genes to human diseases and traits.
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Fig. 1.
The “simplest” disease – lethality – appears tied not to the protein itself, but rather to the
molecular complex or module in which that protein participates, as for the examples of yeast
protein complexes drawn in (a). Proteins are depicted as colored circles and experimentally
detected memberships in the same protein complexes as connecting lines. (b) Across the
complete set of yeast protein complexes, a systematic trend is apparent for members of the
same complex to either be all essential, or all non-essential, with depletion for intermediate
mixtures of essential and non-essential proteins. Figures are adapted from ref. [19].
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Fig. 2.
The flow from proteomics and genomics datasets to predicting protein function and
ultimately associating genes to traits, phenotypes, and diseases involves several major steps,
discussed in the main text. One major strategy involves the construction of protein networks
from the large-scale datasets, which then serve as theoretical frameworks for generating
more specific hypotheses about each protein’s function and the likely downstream impacts
of perturbing it.
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Fig. 3.
A comparison of diffusion algorithm-based methods for predicting genes associated with a
function. In (a) two proteins are known to have a particular function, indicated by their
color. The strength of association between proteins is indicated along each edge. (b) Naïve
Bayes assigns scores to neighboring nodes. The ranking of scores is indicated by the shade
of color: higher ranked proteins are more darkly colored. Note that several proteins have no
score because they are not directly linked. In (c) and (d), all proteins are assigned to a score,
but the overall rankings differ.
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Fig. 4.
Results of a comparative test of the performance of various protein network-based
algorithms for linking genes to phenotypic traits. (a) Presents a ROC curve illustrating the
relative predictive abilities of six algorithms for identifying the genes associated with
abnormal locomotion in worm following RNAi knockdown. A method assigns each gene in
the genome a score or rank, and this is used to calculate the true-positive rate (TP/(TP +
FN)) and false-positive rate (FP/ (FP + TN)), using 10-fold cross-validation to assess the
performance. Performing this test systematically across many distinct phenotypes allows the
relative merits of the different algorithms to be measured. (b), (c), and (d) present the
distributions of the areas under ROC curves (AUCs) obtained from each method for
identifying the causal genes underlying 318 C. elegans RNAi phenotypes, predicted using a
worm gene network [26], and 100 yeast deletion mutant phenotypes and 564 morphological
phenotypes, predicted using a yeast gene network [46], respectively. 10, 25, 50, 75, and 90
percentiles are plotted. Dashed blue lines and corresponding blue text denote mean AUCs.
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Fig. 5.
Examples of experimentally validated network-guided predictions of genes underlying
specific traits in yeast, plants, and animals. (a) The lin-15A;B(n765) strain of C. elegans has
inactivated synMuv A and synMuv B retinoblastoma tumor suppressor pathways, causing a
synthetic multivulval phenotype, in which altered cell fate specification causes normally
epithelial cells to adopt a vulval cell fate, creating ectopic vulvae that are a C. elegans model
for tumor formation [105]. RNAi against genes that antagonize the pathways, such as
R08C7.3, suppress the phenotype, as predicted by network guilt-by-association. Figure
adapted with permission from Macmillan Publishers Ltd: [26], 2008. (b) When the
Arabidopsis gene lrs1-1 is disrupted by a T-DNA insertion, the number of lateral roots is
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strongly reduced (middle panel) compared to wild-type plants (left panel). Reintroduction of
the functional gene as a transgene restores wild-type phenotype (right panel), confirming a
role in root development predicted from an Arabidopsis gene network. Figure adapted with
permission from Macmillan Publishers Ltd: [38], 2010. (c) A confirmed roles for candidate
yeast protein YIR003W in mitochondrial biogenesis, predicted using computational methods
from proteomics and genomics datasets, can be seen reflected in mitochondrial motility
defects in a YIR003W deletion strain, measured by dual channel immunofluorescence of
mitochondria (red) and actin (green) (adapted from ref. [81]). (d) A mouse protein network
[48] and results of large-scale computational predictions of mouse protein function [62]
suggested a role for the birth-defect relevant gene Fuz in vesicle trafficking and biogenesis
of cilia that was confirmed by knockdown in developing Xenopus embryos [89]. The top
panel shows a wild-type multiciliated cell flanked by secretory cells in X. laevis. Note the
exocytotic pits indicated by the yellow arrowheads. Fuz morphants show ciliogenesis
defects as well as failure of exocytosis in secretory cells (bottom); note the apical membrane
blebs indicated by green arrowheads. Figure adapted with permission from Macmillan
Publishers Ltd: [89], 2009. (e) Using GFP-reporter constructs, C. elegans gene network-
predicted tissue-specific gene expression was verified in the hypodermis, intestine,
hypodermis, neurons, and muscle of worms by Chikina et al. (adapted from Ref. [82]).
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Fig. 6.
Examples of experimentally validated network-guided predictions of genes underlying
outcomes of human disease. (a) shows a network of transcription factors which regulate
mesenchymal transformation, as predicted from a glioma-specific regulatory network
inferred from DNA microarray datasets [64]. Activation of transcription factors C/EBPβ and
STAT3 correlates with aggressive gliomas and poor clinical outcome, as shown in the
Kaplan-Meier plot at the right (Figure adapted with permission from Macmillan Publishers
Ltd: [64], 2010). (b) Modularity of the human protein interactome can be used as an
indicator of breast cancer prognosis. Taylor and colleagues calculated a subnetwork of hubs
with either low or high correlation of co-expression with their interaction partners, termed
intermodular (red) and intramodular (blue) hubs, respectively [93]. Patients with hubs that
had highly altered correlation of co-expression had a high probability of poor prognosis, as
plotted at right (Figure adapted with permission from Macmillan Publishers Ltd: [93],
2009).
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