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Abstract
Objectives—To propose a Bayesian approach to uncertainty analysis of sexually transmitted
infection (STI) models, that can be used to quantify uncertainty in model assessments of policy
options, estimate regional STI prevalence from sentinel surveillance data and make inferences about
STI transmission and natural history parameters.

Methods—Prior distributions are specified to represent uncertainty regarding STI parameters. A
likelihood function is defined using a hierarchical approach that takes account of variation between
study populations, variation in diagnostic accuracy as well as random binomial variation. The method
is illustrated using a model of syphilis, gonorrhoea, chlamydial infection and trichomoniasis in South
Africa.

Results—Model estimates of STI prevalence are in good agreement with observations. Out-of-
sample projections and cross-validations also show that the model is reasonably well calibrated.
Model predictions of the impact of interventions are subject to significant uncertainty: the predicted
reductions in the prevalence of syphilis by 2020, as a result of doubling the rate of health seeking,
increasing the proportion of private practitioners using syndromic management protocols, and
screening all pregnant women for syphilis, are 43% (95% CI: 3–77%), 9% (95% CI: 1–19%) and
6% (95% CI: 4–7%) respectively.

Conclusions—This study extends uncertainty analysis techniques for fitted HIV/AIDS models to
models that are fitted to other STI prevalence data. There is significant uncertainty regarding the
relative effectiveness of different STI control strategies. The proposed technique is reasonable for
estimating uncertainty in past STI prevalence levels and for projections of future STI prevalence.
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INTRODUCTION
Mathematical models of sexually transmitted infections (STIs) serve a number of purposes.1
However, the results of mathematical models can only be accepted as an adequate
approximation to reality if their key assumptions are supported by empirical data. This
requirement is difficult to meet when modelling STIs, as there is much uncertainty regarding
the natural history and efficiency of transmission for most STIs, and parameters such as the
average duration of untreated infection and the probability of transmission per contact are very
difficult to estimate reliably.2, 3

Several modellers have attempted to demonstrate the veracity of their models by showing that
the model outputs are consistent with observed levels of STI prevalence in the population being
modelled.4–7 However, this only partially resolves the problem of parameter uncertainty, as
there will usually be many different combinations of parameters that give a similar degree of
correspondence to observed prevalence, and these different parameter combinations – although
they might be considered equally plausible a priori – do not necessarily produce the same
conclusions for users of the model outputs. In addition, it is possible that the true prevalence
of the STI in the population may differ from that observed due to bias in the sample or imperfect
sensitivity and specificity of the test used to detect STIs, or random sampling error.
Demonstration of similarity between model estimates and observations therefore does not
guarantee that all model outputs are realistic, nor does dissimilarity between model estimates
and observations necessarily imply that model outputs are unrealistic.

A more formal approach to dealing with parameter uncertainty is to use uncertainty analysis
techniques such as Latin hypercube sampling or Monte Carlo simulation.8–10 This involves
specifying probability densities to represent uncertainty regarding key model parameters,
randomly sampling from these densities and running the model for each sampled parameter
combination in order to estimate the range of uncertainty around the model outputs. When
applying such techniques to models of STIs, one might wish to consider uncertainty subject to
certain output constraints being met – typically, the constraint is that model estimates of STI
prevalence must be roughly consistent with observed STI prevalence. These constraints are
usually specified in terms of likelihood functions or ‘sum of squares’ criteria, and several
approaches have been proposed in the case of HIV modelling.11–15 However, relatively little
work has been done in assessing uncertainty in models of STIs other than HIV. Although it
would be possible to apply the techniques developed for HIV to other STIs, STI prevalence
data are typically more limited than HIV prevalence data, particularly in developing countries,
and this makes it necessary to combine STI data from multiple sources.16, 17 In addition, the
sensitivity and specificity of the tests used for other STIs are typically much lower than those
used for HIV,18, 19 and variability in diagnostic accuracy is therefore an important factor to
consider when defining the likelihood function.

This paper proposes a Bayesian approach to uncertainty analysis of models of STIs other than
HIV. The proposed technique is applied to a model of syphilis, gonorrhoea, chlamydial
infection and trichomoniasis in South Africa. It is shown that the method can be used to assess
uncertainty with respect to STI model predictions, to estimate STI prevalence at a national
level from limited sentinel surveillance data, and to make inferences about STI natural history
and transmission parameters.

METHOD
The Bayesian approach described below follows three steps: (1) specification of prior
distributions to represent uncertainty regarding input parameters, (2) specification of a
likelihood function to represent ‘goodness of fit’ to observed levels of STI prevalence, for a
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given parameter combination, and (3) calculation of the posterior distribution. The technique
is applied to a deterministic model of STIs in South Africa, which produces estimates of STI
prevalence in the South African national population, as well as in various subpopulations
(pregnant women, women attending family planning clinics, commercial sex workers, and men
and women in households). The model assumptions about sexual behaviour and HIV have been
have been fixed at the mean values estimated in a previous analysis,20, 21 and the STI
prevalence data used to define the likelihood function are presented in a review of South African
STI prevalence data.22 A summary description of the model and the data is provided in the
online appendix.

Prior distributions on input parameters
Prior distributions are specified to represent uncertainty around the key model input
parameters. These key parameters, represented by parameter vector φ, include the probability
of STI transmission in a single act of unprotected sex with an infected partner, the proportion
of cases that become symptomatic, the average length of time spent in different infection states
(if the STI is not treated), the average duration of immunity following recovery from infection,
and the proportion of STI cases that were correctly treated prior to the adoption of syndromic
management protocols. Beta distributions are specified for probabilities and proportions, while
gamma distributions are specified for average durations, since beta and gamma distributions
relate to variables defined on the ranges [0, 1] and [0, ∞) respectively. The means and 95%
confidence intervals of these prior distributions are shown in Table 1 (for gonorrhoea,
chlamydial infection and trichomoniasis) and Table 2 (for syphilis). The sources on which
these prior distributions are based are referenced in the online appendix.

Likelihood for observed STI prevalence
To define a likelihood function, it is necessary to allow for differences between observations
in terms of sample type (antenatal clinic, family planning clinic, sex worker or household
survey), diagnostic type and time. It is also necessary to allow for variation in prevalence
between communities, since all observations are specific to particular communities and none
of the data are nationally representative. Suppose that Yi is the number of individuals testing
positive in the ith study. It is assumed that Yi is binomially distributed with parameters ni and
θi, where ni is the number of individuals tested in the ith study, and θi is the prevalence that one
would expect to observe in the ith study. To allow for additional variation between observations
due to variation in prevalence between communities and variation in diagnostic accuracy, it is
assumed that θi ~ beta(αi, βi). The number of individuals testing positive in the ith study
therefore follows a beta-binomial distribution, i.e.

(1)

Parameters αi and βi are estimated using the method of moments, by first estimating the mean
and variance of θi. Suppose that M (si, ti, φ) represents the model estimate of the prevalence
of the STI in sample type si (pregnant women, women attending family planning clinics,
commercial sex workers, men in households or women in households), in year ti, given a set
of input parameters which is denoted by the parameter vector φ. If ρi is the true prevalence of
the STI in the ith study population, then a plausible model for the distribution of ρi might be

(2)
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where it is assumed that . The bi term represents the difference (on the logit scale)
between the prevalence in the ith study population and the prevalence that would be expected
in a nationally representative sample. The logit transformation is introduced to normalize the
variance of the bi terms. Since the standard deviation of the study effects, σb, is unknown, a
prior distribution is placed on this parameter. A gamma prior is used for σb, with its mean and
standard deviation based on the standard deviations of the logit-transformed STI prevalence
levels prior to fitting the model to the data. The same mean (0.30) and standard deviation (0.15)
are used for all STIs (see Tables 1 and 2).

Equation (2) can be re-expressed as follows:

(3)

θi is then calculated, taking into account the sensitivity and specificity of the test used in the
ith study, Sei and Spi respectively:23

(4)

The mean and variance of θi are then obtained by noting that

(5)

and

(6)

The means and variances of the Sei and Spi terms are estimated based on reviews of the
sensitivity and specificity of various diagnostic tests,18, 24–26 and are shown in the online
appendix. For a given set of input parameters φ, a third-order Taylor approximation to ρi (about
the point bi = 0) is used to approximate the mean and variance of ρi. Having obtained the mean
and variance of θi using equations (5) and (6), the αi and βi parameters are calculated using the
method of moments, and the beta-binomial likelihood for the ith observation is then computed.

Posterior calculation
By Bayes’ theorem, the posterior density is proportional to the product of the joint prior density
and the likelihood function. Since the distribution of this product cannot be evaluated
analytically, the posterior distribution is evaluated numerically using Sampling Importance
Resampling (SIR).27 This was implemented by randomly sampling 20,000 parameter
combinations from the joint prior, running the model for each parameter combination and
calculating the associated likelihood, and then drawing a resample of 500 parameter
combinations from the initial set of 20,000, using the likelihood values as sample weights. This
sample of 500 parameter combinations is a sample from the posterior distribution and is used
to generate the results presented.
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Validation
To assess the validity of the model predictions and the model estimates, the model is (a) refitted
after having omitted the most recent observations, and (b) refitted after having randomly
omitted half of the observations. The resulting estimates of STI prevalence in 2005 are
compared with those obtained in the initial analysis. In addition, the omitted observations are
compared with the distributions of estimated prevalence levels, expressing the former as
percentiles of the latter and plotting a histogram of the percentiles, similar to the verification
rank histogram.28 If the model has good validity, the histogram of percentiles should be
approximately uniform. The model fitting procedure is also validated by comparing the model
estimates of syphilis prevalence with nationally representative survey results,29 which have
been excluded from the likelihood calculation so that they can be used for independent
validation.

RESULTS
The model estimates of trends in STI prevalence in the 15–49 age group are shown in Figure
1, together with observed levels of STI prevalence in ‘low risk’ groups (antenatal attenders,
family planning clinic attenders and men and women in households). Model estimates are
generally consistent with observations. However, the 95% confidence intervals around the
model estimates are narrower than the ranges of variation in observed prevalence levels, since
the former reflect only the uncertainty around the population mean, while the latter reflect the
variability of the study effects, the variation in diagnostic accuracy, differences in sample type,
as well as random binomial variation. Model estimates of STI prevalence in women tend to be
similar when comparing pregnant women, family planning clinic attenders and women in
households, but are substantially higher in commercial sex workers (see Table 12 in the online
appendix).

The observations used in defining the likelihood (Figure 1) do not suggest any clear trend in
STI prevalence over time, but the model fits a downward trend as a result of the model
assumption that condom usage and use of syndromic management protocols have both
increased since the mid-1990s. In the case of syphilis, it is possible to validate this modelled
decline in prevalence by comparison with levels of syphilis prevalence measured in the
nationally representative antenatal surveys.29 Figure 1(a) shows that the modelled decline in
syphilis prevalence in women is consistent with that observed in the antenatal clinic surveys
(open diamonds), although the nationally representative antenatal data have not been used in
calculating the likelihood function.

Tables 1 and 2 show the posterior means and 95% confidence intervals for the parameters for
which prior distributions were specified. In most cases, prior and posterior means are similar,
but the posterior distributions tend to have a lower variance, especially in the case of the
standard deviation of study effects and the average duration of immunity parameters. For
syphilis and gonorrhoea, the posterior mean female-to-male transmission probability is
substantially greater than the prior mean, and for trichomoniasis and gonorrhoea, the posterior
mean male-to-female transmission probability is greater than the prior mean. The posterior
mean of the standard deviation of study effects is substantially greater than the prior mean in
the case of trichomoniasis, indicating that there is relatively high inter-study variation in
trichomoniasis prevalence.

Figure 2 compares the estimates of STI prevalence in 2005 for three analyses: (1) using all the
available data, i.e. the same results as presented in Figure 1; (2) omitting the most recent data;
and (3) randomly omitting half of the data. The model estimates in the second and third analyses
are not significantly different from those in the first analysis. The distribution of the omitted
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observations, expressed as percentiles of the model estimates, is also not significantly different
from uniform in either analysis (results not shown).

To illustrate the importance of uncertainty analysis to users of STI model outputs, we consider
three possible strategies for reducing the prevalence of syphilis: doubling the rate at which
individuals with syphilis symptoms seek treatment (from initial rates of 0.23 per week in
women and 0.57 per week in men); increasing the proportion of private practitioners using
syndromic management protocols (from 45% to 80%); and increasing the proportion of
pregnant women who are screened and treated for syphilis (from 60% to 100%). If the syphilis
parameters are set at the prior means in Table 2 (which produce estimates of syphilis prevalence
consistent with the observations shown in Figure 1(a)), the projected reduction in syphilis
prevalence by 2020, for the three strategies, is 12%, 4% and 6% respectively. However, using
the 500 parameter combinations in the posterior sample, the estimated average reductions are
43% (95% CI: 3–77%), 9% (95% CI: 1–19%) and 6% (95% CI: 4–7%) respectively. Although
improved antenatal screening is the least effective strategy on average, it is the most effective
strategy for 7% of the posterior parameter combinations and is more effective than expanding
syndromic management in the private health sector for 23% of the posterior parameter
combinations. The absolute and relative effectiveness of the different strategies are therefore
both subject to significant uncertainty.

DISCUSSION
This paper extends uncertainty analysis techniques for fitted HIV/AIDS models to models that
are fitted to other STI prevalence data. The proposed approach differs from approaches that
have been described for HIV models12–14 in two important respects. Firstly, allowance has
been made for uncertainty regarding diagnostic accuracy in the definition of the likelihood
function; this is necessary in view of the variable sensitivity and specificity of the tests
commonly used to detect STIs. Secondly, data from a number of sources have been used in
defining the likelihood function: antenatal clinics, family planning clinics, community
household surveys and samples of commercial sex workers. Since STI prevalence data may
be limited in many developing countries, it is necessary to make use of these multiple data
sources when fitting the model. Ideally the STI model should be capable of estimating different
prevalence levels for each of these sample types, in order to control for the biases associated
with different sample types, and this is a valuable feature of the model that has been used in
this analysis. Nationally representative data could also be incorporated into the analysis, by
setting the bi term in respect of the national data to zero, by setting the Var(ρi) term in equation
(6) to zero, and by making appropriate adjustment to the ni term in equation (1) to take account
of the survey design.

The Bayesian approach that we have proposed has three key uses. Firstly, it can be used to
assess uncertainty regarding STI model predictions. For example, it has been shown that the
relative effectiveness of different syphilis treatment strategies is subject to significant
uncertainty, and considering only a single combination of syphilis parameters that appears to
give outputs consistent with survey data may lead to a false sense of confidence in the relative
effectiveness of different strategies. Although cost-effectiveness analyses of STI interventions
have typically considered uncertainty regarding cost and efficacy parameters,30–33 this
analysis shows that uncertainty regarding STI transmission and natural history parameters may
also contribute significantly to the overall uncertainty regarding the cost-effectiveness of a
particular intervention.

The second use of the proposed Bayesian approach is the estimation of STI prevalence at a
national level from limited sentinel surveillance data. The informal validation of the model in
the case of syphilis (Figure 1(a)) confirms that model estimates of trends in syphilis prevalence
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are reasonably consistent with nationally representative data. The more formal validation
results suggest that the method is reasonable for estimating past STI prevalence levels and for
short-term projections of future STI prevalence (<5 years beyond the most recent observation),
but for longer-term projections there are insufficient data to validate the method. Although
other studies have estimated STI prevalence at national or regional levels from sentinel
surveillance data,16, 17 these analyses have not been based on dynamic models of STI
transmission and have therefore been forced to assume that STI prevalence levels are stable
over time. In addition, these studies have not allowed for variability in diagnostic accuracy. It
would be useful to assess whether the method we have proposed produces plausible results
when applied in other countries, such as China, where sentinel surveillance data have suggested
increases in syphilis prevalence over the last decade.34

The third use of the proposed Bayesian approach is the estimation of STI transmission and
natural history parameters, which are notoriously difficult to estimate empirically. Although
the posterior distributions are generally not substantially different from the prior distributions,
and generally have high variance, there are a few cases in which the STI prevalence data are
informative and induce a posterior distribution that differs substantially from the prior. For
example, the unusually high observed prevalence of trichomoniasis in South African women
(Figure 1(g)) leads to a substantially higher posterior estimate on the male-to-female
transmission probability than was assumed a priori, on the basis of a model fitted in other
settings.5

A potential criticism of the model that has been used is that it assumes individuals are
temporarily immune to reinfection following spontaneous resolution of gonorrhoea and
trichomoniasis, contrary to expert opinion that such immunity does not exist.35–37 Attempts
were made to fit the model to the gonorrhoea, trichomoniasis and chlamydial infection
prevalence data on the assumption of no immunity following recovery, but this produced
significantly poorer fits (results not shown). This points to a source of uncertainty not explicitly
addressed in this analysis: uncertainty regarding the choice of model structure. Further work
is required to evaluate more formally the appropriateness of different model structures, using
techniques such as Bayesian Model Averaging.38

A further limitation of this analysis is that it does not allow for correlation between
measurements in the same geographical location. Although it is unrealistic to assume that
prevalence measurements in the same location would be independent of one another,
regressions of observed STI prevalence levels on various covariates did not reveal residual
patterns that differed significantly between locations. This suggests that modifying the method
to allow for correlation between measurements in the same location would probably not change
results substantially. A related concern is that sentinel surveillance systems are often not
geographically representative. In South Africa, for example, there is a strong surveillance bias
towards urban areas and towards the KwaZulu-Natal and Gauteng provinces,22 which could
potentially bias model estimates of STI prevalence. There is thus a need to improve the
collection of STI prevalence data, with a particular focus on surveillance in regions that have
previously been under-sampled.

In conclusion, the Bayesian approach to uncertainty analysis of STI models provides a useful
means of integrating prior knowledge about STI epidemiology and STI prevalence data,
allowing for more reliable estimation of STI prevalence levels and better evaluation of the
impact of STI control strategies.

Key messages
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• Model estimates of the impact of STI control programmes are subject to significant
uncertainty, which needs to be assessed through formal uncertainty analysis.

• The uncertainty analysis approach proposed here allows for estimation of STI
prevalence at a national level from sentinel surveillance data obtained using
different laboratory methods.

• The approach can be used to integrate data from different sample types (antenatal
clinics, family planning clinics, households and surveys of sex workers).

• The Bayesian approach to uncertainty analysis allows for integration of prior
knowledge about STI epidemiology into model parameter estimation.
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Figure 1. Comparison of observed and estimated prevalence levels
Dots represent observed STI prevalence in household surveys and surveys of antenatal clinic
and family planning clinic attenders (after adjustment for expected sensitivity and specificity).
Open diamonds represent syphilis prevalence levels observed in nationally representative
antenatal clinic surveys (not included in likelihood calculation). Solid black lines represent
posterior mean estimates of prevalence in population aged 15–49, and dashed lines represent
corresponding 95% confidence intervals (2.5 and 97.5 percentiles of the posterior sample of
estimates).
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Figure 2. Comparison of model prevalence estimates when using different sets of observations to
fit the model
Bars represent average levels of STI prevalence obtained from the posterior sample, and error
bars represent 95% confidence intervals (2.5 and 97.5 percentiles of the distribution of STI
prevalence levels in the posterior sample).
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Table 2

Prior and posterior distributions for syphilis

Parameter Prior
distribution

Prior
(mean, 95% CI)

Posterior
(mean, 95% CI)

Male-to-female transmission probability Beta 0.18 (0.09–0.29) 0.17 (0.12–0.23)

Female-to-male transmission probability Beta 0.15 (0.07–0.26) 0.19 (0.13–0.27)

Average time (in weeks) from

     Primary to secondary Gamma 6.6 (3.3–11.1) 6.1 (3.0–10.7)

     Secondary to latent Gamma 15.6 (8.8–24.4) 14.9 (9.1–22.1)

     Latent to spontaneous resolution Gamma 520 (269–853) 572 (355–883)

     Recovery in early disease to seronegativity Gamma 26.0 (12.8–43.9) 23.0 (12.8–42.6)

     Recovery in latent infection to seronegativity Gamma 52.0 (25.5–87.7) 51.5 (25.5–84.4)

Proportion of primary cases seronegative immediately after successful treatment Beta 0.40 (0.21–0.60) 0.42 (0.24–0.60)

Proportion of cases correctly treated prior to syndromic management Beta 0.70 (0.49–0.87) 0.76 (0.62–0.90)

Standard deviation of study effects Gamma 0.30 (0.08–0.66) 0.38 (0.28–0.50)

Sex Transm Infect. Author manuscript; available in PMC 2010 October 12.


