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Abstract

Background: MicroRNAs (miRNAs) are considered to be very important in regulating the growth, development, behavior
and stress response in animals and plants in post-transcriptional gene regulation. Pinewood nematode, Bursaphelenchus
xylophilus, is an important invasive plant parasitic nematode in Asia. To have a comprehensive knowledge about miRNAs of
the nematode is necessary for further in-depth study on roles of miRNAs in the ecological adaptation of the invasive species.

Methods and Findings: Five small RNA libraries were constructed and sequenced by Illumina/Solexa deep-sequencing
technology. A total of 810 miRNA candidates (49 conserved and 761 novel) were predicted by a computational pipeline, of
which 57 miRNAs (20 conserved and 37 novel) encoded by 53 miRNA precursors were identified by experimental methods.
Ten novel miRNAs were considered to be species-specific miRNAs of B. xylophilus. Comparison of expression profiles of
miRNAs in the five small RNA libraries showed that many miRNAs exhibited obviously different expression levels in the
third-stage dispersal juvenile and at a cold-stressed status. Most of the miRNAs exhibited obviously down-regulated
expression in the dispersal stage. But differences among the three geographic libraries were not prominent. A total of 979
genes were predicted to be targets of these authentic miRNAs. Among them, seven heat shock protein genes were targeted
by 14 miRNAs, and six FMRFamide-like neuropeptides genes were targeted by 17 miRNAs. A real-time quantitative
polymerase chain reaction was used to quantify the mRNA expression levels of target genes.

Conclusions: Basing on the fact that a negative correlation existed between the expression profiles of miRNAs and the
mRNA expression profiles of their target genes (hsp, flp) by comparing those of the nematodes at a cold stressed status and
a normal status, we suggested that miRNAs might participate in ecological adaptation and behavior regulation of the
nematode. This is the first description of miRNAs in plant parasitic nematodes. The results provide a useful resource for
further in-depth study on molecular regulation and evolution of miRNAs in plant parasitic nematodes.
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Introduction

MicroRNAs (miRNAs) are single-stranded RNAs of ,22nt in

length that are generated from endogenous hairpin-shaped

transcripts (reviewed in [1]). They function as guide molecules in

post-transcriptional gene regulation by base-pairing with the target

mRNAs, usually in the 39 untranslated regions (UTRs), or, in a few

cases, with target sites in the coding regions [2]. Since the original

description of lin-4 in 1993 [3,4], miRNAs have been found in a

wide range of eukaryotic organisms ranging from sponges to

mammals [5]. So far, more than ten thousand miRNAs of 115

species have been registered in miRBase (ftp://mirbase.org/pub/

mirbase/, release 14.0, September 2009). It was reported that

miRNAs regulate at least 10% of Caenorhabditis elegans genes

through conserved interactions and a number of nematode

miRNAs regulate biological processes by targeting functionally

related genes [6]. Computational study has suggested that over

one third of human genes are possibly targeted by miRNAs, and

most of which are transcriptional and developmental factors [7].

Besides, abnormal expressions of miRNA genes may cause human

disease, dramatic phenotype changes or death (reviewed in [8,9]).

Furthermore, stress-inducible miRNAs were discovered in re-

sponse to specific conditions [10,11]. MiRNAs act as rheostats to

make fine-scale adjustments to protein output [12]. So, miRNAs

have received much attention by biological scientists in recent

years. MiRNAs and other small noncoding RNAs, e.g. small

interfering RNAs (endo-siRNAs) and piwi-interacting RNAs

(piRNAs) have been intensely studied in Caenorhabditis elegans
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[13–16] and closely related species [17]. Recently, miRNAs were

also reported in the human filarial parasite Brugia malayi [18] and

the necromenic nematode Pristionchus pacificus [17]. Nevertheless,

there are no reports about miRNAs and other small RNAs in plant

parasitic nematode.

The pinewood nematode, Bursaphelenchus xylophilus (Steiner et

Burhrer), is a successful invasive plant parasitic nematode, which

kills living pine trees and causes many thousands of pine trees to

die in Asia [19–21]. This nematode species is believed to be native

to North America, and usually only damages exotic pine trees

there. Two morphological forms exist in the native region, i.e., the

‘R’ form with a round female tail and the ‘M’ form with a

mucronate female tail [22–25]. It was reported that the

pathogenicity of the two forms differs. The ‘R’ form is strongly

pathogenic, and the nematodes now present in Asia are the ‘R’

form. The pathogenicity of the ‘M’ form is weaker than that of the

‘R’ form [23,25]. This nematode has complex and intriguing life

cycles, including a propagative cycle and a dispersal cycle. Under

favorable conditions (suitable moisture, food and temperature), the

nematode development follows a reproductive pathway in host

trees. When within-wood conditions deteriorate, the nematode

development switches from the second-stage propagative larvae

(L2) to the third-stage dispersal juvenile (J3)[26,27]. When the

larvae of vector beetle (Monochamus spp.) pupate, the third-stage

dispersal juveniles aggregate on the wall of the pupal chamber.

Then, the juveniles molt to the fourth-stage dauer juveniles at the

time of the vector beetle eclosion, and they enter into the

respiratory system of the newly eclosed adult beetle for dispersal. It

was suggested that chemical substances play an important role

during the process [26]. Moreover, the pinewood nematode has a

widespread ecological adaptation, and an extensive distribution

range [20,28]. Cold and heat tolerance tests showed that the

nematode has a strong tolerance to temperature stresses [21].

Because miRNAs regulate gene expression and play important

roles in the development, metabolism and behavior of animals

(reviewed in [29]), identification of miRNAs and other small

RNAs could be a critical step to facilitate our understanding of the

molecular regulation mechanisms of the nematode. In this study,

by constructing five specific small RNA libraries (the Chinese,

American and Canadian nematodes, third-stage dispersal juveniles

and cold stressed nematodes) and sequencing with the Illumina/

Solexa deep sequencing technology, miRNA candidates were

predicted by a computational pipeline and 57 miRNAs were

verified successfully by experimental methods. We compared

miRNA expression profiles in the five small RNA libraries and

predicted their potential target genes. We especially paid more

attention to two sorts of target genes: heat shock protein genes

(hsps) and FMRFamide-like neuropeptides genes (flps). The former

are related to environmental stress and the latter are related to

neuronal sensitivity and modulate sensory and motor functions.

We explored the roles of miRNAs in ecological adaptation of the

pinewood nematode. Moreover, as miRNAs are evolutionarily

conserved across species, our results may become a useful resource

for miRNA studies in other plant parasitic nematodes.

Results

An overview of small RNA sequencing results
Five different small RNA libraries were constructed and

sequenced using Illumina/Solexa sequencing technology

(Table 1), including one invasive sample (ZJ, ‘R’ form, from

Zhejiang, China), two native samples (CAN, ‘M’ form, from

Canada, detail unknown; and USA, ‘R’ form, from Texas, USA),

one cold stressed sample (ZJ-COLD, ‘R’ form, from Zhejiang,

China) and one dispersal J3 stage sample (ZJ-DJ3, ‘R’ form, from

Zhejiang, China). Except for ZJ-DJ3, all samples were sequenced

using full stages (including eggs, larvae and adults) in propagation

cycles. A total of ,753Mb small RNA data (,103.24–174.63Mb

per library) was produced. Sequencing details are listed in Table 1.

Except for the cold stressed library (ZJ-COLD), the sequenced

reads of each population are approximately the same (,8,500,000

reads). The length distributions of small RNAs sequenced in the

five libraries were similar (Figure 1). Small RNAs of 21–23nt in

length were the most abundant.

After removing the low-quality reads, sequence reads were

converted into unique sequence tags with associated counts.

Identical sequence reads were further grouped into clusters based

on their sequence similarity. It was shown that the dispersal J3

small RNA library (ZJ-DJ3) had the highest number of unique

sequence tags and sequence clusters, whereas ZJ-COLD had the

least (Table 1). By MegaBLAST searching, sequenced reads that

perfectly matched ESTs of B. xylophilus and B. mucronatus, and with

known rRNAs of nematodes, were removed. The remaining clean

sequenced reads were used to search for both conserved and novel

miRNAs. It was shown that miRNAs were the most abundant

small RNA class in all of the five small RNA libraries, consisting of

more than 70% (71.5%–90.7%) of sequenced small RNAs in each

library (Figure 2).

Identification of MicroRNAs from the small RNA libraries
by computational algorithms

By a computational pipeline, a total of 810 miRNA candidates

were predicted from the five small RNA libraries of B. xylophilus

and 59% of them were detected in all libraries. Of these, 49

Table 1. Summary of the deep sequencing results in five small RNA libraries of B. xylophilus.

Library name Nematode Source Description No. of sequenced reads No. of unique reads No. of clusters

ZJ Zhejiang, China All nematode stages in
propagation cycle, ‘R’ form

8,481,706 476,094 271,852

ZJ-COLD Zhejiang, China All nematode stages in propagation
cycle, ‘R’ form, cold shocked at 4uC

5,061,769 264,782 177,237

ZJ-DJ3 Zhejinag, China 3rd juvenile stage (J3) in dispersal
cycle, ‘R’ form

8,793,150 885,411 534,187

CAN Canada
(detail unknown)

All nematode stages in propagation
cycle, ‘M’ form

8,452,428 468,652 328,123

USA Texas, USA All nematode stages in propagation
cycle, ‘R’ form

8,496,594 307,140 206,042

doi:10.1371/journal.pone.0013271.t001

MicroRNAs in Pinewood Nematode
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conserved miRNA candidates comprised of 30 miRNA families

were found based on the consensus ‘seed’ region (2–7nt in 59 end

of mature miRNA) with the published miRNAs (supplemental

Table S1). Nineteen miRNAs were homologues with known C.

elegans miRNAs. Thirty one miRNA candidates were detected in

all the five libraries, in which, miR-100, miR-1, let-7, miR-72, miR-

71, miR-34 and miR-252 were abundantly expressed (Table 2). The

sequenced counts of these miRNAs could be as high as more than

one million, several orders of magnitude greater than most small

RNAs detected here. The most abundant miRNA was miR-100,

with more than 2 million counts reaching an abundance of more

than 12,000 copies per Mb in the USA library. However, miR-10,

miR-184, miR-228, miR-275, miR-279, miR-44 and miR-81 were

detected only in ZJ-DJ3 (supplemental Table S1).

For novel miRNAs, although there are different computational

methods to be developed for miRNAs prediction from deep-

sequencing small RNA data, most need additional genome sequences

as background data. As the genome data of B. xylophilus is unpublished

at present, we developed a computational pipeline to predict novel

miRNA/miRNA* candidates following Wei’s method [30], which is

based on a 1–2nt 39 overhang pattern generated by Dicer cleavage

during mature miRNA generation. A total of 761 novel miRNA

duplex-like pairs were predicted (supplemental Table S2). Among

these, 447 were found in all libraries. The top ten of the most

Figure 1. Length distribution of sequenced small RNAs.
doi:10.1371/journal.pone.0013271.g001

Figure 2. Distribution of different small RNA classes.
doi:10.1371/journal.pone.0013271.g002
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abundant sequenced candidates are listed in Table 3. However,

17.3% of novel miRNA candidates were only detected in one library.

Comparing the abundance of miRNAs in these five small

libraries, it was shown that ZJ-DJ3 was enriched with the most

miRNA candidates (43 conserved and 677 novel), and ZJ-COLD

with the least (38 conserved and 499 novel). As shown in Figure 3,

among the three special-phase libraries of the Chinese population

(ZJ, ZJ-COLD, ZJ-DJ3), a lot of special miRNAs (115) belonged to

the dispersal stage (ZJ-DJ3). While, among the three geographic

population libraries (China, Canada and USA), more of the special

miRNAs (82) belonged to the Chinese library (ZJ).

In addition, we have obtained a small dataset of pinewood

nematode genome sequences by using the 454/Roche sequencing

approach (data unpublished). When we combined this dataset with

the small RNA libraries, we identified five additional novel

miRNAs and their corresponding pre-miRNAs (bxy-novel-10/17/

21/26/29, see in supplemental Table S3) by the use of miRDeep

[31], despite these very low expression abundances in general.

Experimental verification of miRNAs
The predicted miRNA/miRNA* duplexes were verified by

amplification of miRNA precursors using polymerase chain

reaction (PCR). Twenty conserved miRNA precursors encoding

22 mature miRNAs were detected by PCR (supplemental Table

S3, Figure 4A). Clustal W alignments with published miRNA

precursors in miRBase highlight the fact that these B. xylophilus

miRNA precursors are conserved with miRNAs precursors in C.

elegans, flies and human (Figure 4B). Thus, we named these

miRNAs after their homologues. Among these conserved

miRNAs, miR-100, miR-45, miR-1, miR-72 and let-7 were

sequenced most abundantly. The sequences of these pre-miRNAs

and their miRNA homologues in other animals are listed in

supplemental Table S3.

All of these miRNAs can be folded into characteristic miRNA

stem-loop secondary hairpin structures (1-2nt 39 overhang, etc.)

(Figure 4C, see supplemental Figure S1 for all). Alignments of

sequenced miRNAs and their precursor sequences provide a vivid

view of mature miRNAs processed by Dicer. Figure 4D shows the

different expression patterns of several miRNAs in each of the

sequenced small RNA libraries (Figure 4D, see supplemental

Figure S2 for all), which provide strong evidences to support the

identity of these conserved miRNAs in B. xylophilus.

Interestingly, two miRNAs* are also frequently sequenced: miR-

234* and miR-9*. Neither of them have potential homologues with

Table 2. Sequences, abundance and homologues of top ten predicted conserved miRNA candidates in five small RNA libraries.

Name Sequence Counts/Mb Homologues*

ZJ ZJ-COLD ZJ-DJ3 CAN USA

miR-100 AACCCGUAGAUCCGAACUUGUGU 9,798.0 234.8 150.0 9,283.8 12,227.3 hsa-miR-100

miR-1 UGGAAUGUAAAGAAGUAUGUAG 1,133.8 3,823.0 587.9 1,342.1 1,052.7 cel-miR-1

let-7 UGAGGUAGUAGGUUGUAUAGUU 360.2 1,307.8 507.0 302.9 482.1 cel-let-7

miR-71 UGAAAGACAUGGGUAGUGA 79.9 21.7 63.0 86.3 87.3 cel-miR-71

miR-34 UGGCAGUGUGGUUAGCUGGUUG 62.2 84.2 248.7 49.7 42.7 cel-miR-34

miR-72 AGGCAAGAUGUUGGCAUAGCUGA 49.0 270.8 271.5 67.9 60.4 cel-miR-72

miR-252 CUAAGUAGUAGUGCCGCAGGUAA 30.7 58.3 16.3 29.7 40.4 cel-miR-252

miR-87 GUGAGCAAAGUUUCAGGUGUGC 7.3 8.5 6.5 10.6 4.1 cel-miR-87

miR-86 UAAGUGAAUACUUUGCCACAGUC 3.8 4.9 1.2 4.4 4.7 cel-miR-86

miR-50 UGAUAUGUCUAGUAUUCUUGGG 3.8 1.6 3.0 5.9 4.8 cel-miR-50

Note: * Homologues are identified by homology search in miRBase (release 14.0). cel, C. elegans; hsa, H. sapiens.
doi:10.1371/journal.pone.0013271.t002

Table 3. Sequences and abundance of top ten predicted novel miRNA candidates in five small RNA libraries.

Name Sequence Counts/Mb Corresponding miRNA name

ZJ ZJ-COLD ZJ-DJ3 CAN USA

Candi-1 UGAGAUCAAAGGUUUUAGGGUAU 5,238.1 11,375.5 8,093.8 6,406.6 7,766.1 bxy-novel-18

Candi-2 UGACUAGAUCCAUACUCAGCU 2,216.1 1,843.6 5,488.6 1,859.0 2,535.7 bxy-miR-45

Candi-3 AACCCGUAGAAUUUACUUUCGUU 722.2 76.4 368.8 853.4 676.0 bxy-novel-02

Candi-4 UGAGGUAUUGUCAUCAUGUCUAU 433.9 550.4 291.4 455.7 509.3 bxy-novel-11

Candi-5 UGAGAUCAGACUAGACUCAUCU 426.8 160.7 111.4 412.7 407.6 bxy-novel-13

Candi-6 UGAGAUCAUAGAUUUAGGGUAC 206.3 392.4 115.8 241.9 272.6 bxy-novel-07

Candi-7 UGAGAUCAUAGAUUUAGGGUA 177.2 434.3 58.9 201.6 218.1 --

Candi-8 UCCCUGAGACUAUAACUGU 172.0 128.8 10.1 179.8 141.2 --

Candi-9 UCCCUGAGACUAUAACUGUGA 148.3 75.0 113.5 166.8 135.1 --

Candi-10 UGAGAUCGGUUCGGAUUCGUCA 136.2 656.0 93.4 122.0 202.0 --

doi:10.1371/journal.pone.0013271.t003
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known metazoan mature miRNAs. However, miR-9* shares the

same ‘seed’ with hsa-miR-320a/b/c/d, while miR-234* might be a

B. xylophilus species-specific miRNA (Table 4).

Thirty three novel miRNA precursors encoding 35 mature

miRNAs are verified by PCR (Figure 5A). A homology search in

miRBase revealed no known miRNA precursors. Thus, we

classified these miRNAs and precursors as novel B. xylophilus

miRNAs and named them as ‘novel’. All of the novel pre-miRNAs

have secondary structures of characteristic stem-loop hairpins

(Figure 5B, see supplemental Figure S1 for all) and their

alignments with sequenced small RNAs further support the

identification of their identities of miRNA precursors (Figure 5C,

see supplemental Figure S2 for all). Among them, 28 novel

miRNAs were detected in the small RNA libraries (supplemental

Table S3).

By BLAST search in miRBase, no homologues of the 35 mature

miRNAs were found. However, 26 novel miRNAs showed a

conserved resemblance to known metazoan miRNAs, including 19

miRNAs of C. elegans and 15 miRNAs of Drosophila melanogaster

(supplemental Table S3). For example, novel-07, novel-13 and novel-

18 share the ‘GAGAUC’ motif with cel-miR-1834 and dme-bantam.

We suggest that these miRNAs can be classified into the same

miRNA group, even though the sequences at flanking sites of the

conserved region are always diverged.

Nine miRNAs did not appear to share conserved sequence with

known miRNAs, and can be classified as species-specific miRNAs

in B. xylophilus (Table 4). We further used these miRNAs plus miR-

234* encoded by bxy-mir-234 to BLAST search in the GeneBank

nucleotide database to check whether any of them could have

potential homologues in any species. We found no potential

homologues.

Expression profiles of authentic miRNAs in the five small
RNA libraries

The expression profiles of the verified 57 miRNAs in different

RNA libraries are shown in Figure 6. Fifty miRNAs were observed

in all the small RNA libraries, while 7 miRNAs at very low

expression level (e.g. novel-29) were not detected in at least one

library. In general, more than half of the miRNAs had an

abundance of less than 50 counts/Mb. The average expressed

abundances of miRNAs in each small RNA library differ: the most

abundant were in the USA library (,31,000 counts/Mb), and the

least abundant were in the ZJ-DJ3 library (,19,000 counts/Mb).

In contrast to our finding that miRNAs in the three libraries (ZJ,

CAN and USA) showed a similar abundance (Fig. 6), the miRNAs

with different expression patterns were mostly enriched in the ZJ-

COLD and ZJ-DJ3 libraries.

Approximately 80% of the miRNAs in the libraries of the

propagative (ZJ) and the dispersal (ZJ-DJ3) stages (supplemental

Table S3 and Fig. 6) had very different expression levels. Most of

them were down-regulated in the dispersal stage, such as miR-100,

miR-1, miR-72, novel-02, novel-13, novel-07 and novel-06. In the ZJ-

DJ3 library these were obviously less expressed than in ZJ library.

In contrast, miR-45, novel-27 and miR-124 were more frequently

sequenced in the ZJ-DJ3 library.

Obvious variations in miRNAs abundance were found between

the normal temperature library (ZJ) and the cold-shocked library

(ZJ-COLD). Novel-18, miR-1, let-7, novel-09 and novel-07 were much

more abundant in the ZJ-COLD library; while, miR-100, novel-02,

miR-72 and novel-13 were more abundantly expressed in the ZJ

library (supplemental Table S3 and Fig. 6).

The differences in expression levels were not prominent among

the three libraries from the different geographic populations (ZJ,

USA, CAN) and no negative correlations of miRNA expression

patterns were observed among these libraries.

Other small RNAs
Besides miRNAs, sequences which matched the sense and

antisense strands of ESTs of B. xylophilus were identified as endo-

siRNAs. An example is shown in Figure 7A. In general, these

endo-siRNAs have a 59-G characteristic and are enriched with

reads of ,26nt in antisense strands (Figure 7B) and 20nt in sense

strands (Figure 7C). However, endo-siRNAs in all the five small

RNA libraries were less frequent. In all small RNA libraries, only

34,235 (less than 0.1% of total) reads were recognized as endo-

siRNAs and 2,023,273 reads (5.15% of total) were identified to be

degraded mRNA fragments. The rest of the sequences in the small

RNA libraries, however, were not identified. Reasons included the

limitation of read length and the lack of background data (e.g.

transposon sequences), and many small RNA species (e.g. Piwi-

interacting RNA). Therefore, some of the sequenced data still

remains unclassified (,14% of total sequenced reads) (Figure 2).

Prediction of miRNA targets
Although miRNAs usually function on their target genes by

binding to sequences in the 39 untranslated regions (UTRs), it is

Figure 3. Venn diagrams for the number of predicted miRNAs in different conservation groups. (A) 804 miRNA candidates in three
specific phases libraries (normal, cold-shocked and dispersal) of the Chinese population. (B) 707 miRNA candidates in three geographic population
libraries (Chinese, American and Canadian).
doi:10.1371/journal.pone.0013271.g003
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documented that they can also regulate the expression of their

target genes by binding in protein coding regions [2]. Since little

information about B. xylophilus 39 UTR is available, 13,340 B.

xylophilus ESTs were used for prediction of miRNA targets by using

the program miRanda. Only ESTs that were potential homo-

logues of C. elegans and had a miRanda score of 150 or above were

considered. In total, 2,151 ESTs were predicted to contain at least

one target site of the 57 mature miRNAs identified in our study

(supplemental Table S4). Most of the miRNAs had multiple target

sites (e.g. bxy-let-7), suggesting that these miRNAs are functionally

divergent. Similarly, a single EST could be potentially targeted

using several miRNAs (e.g. CJ979180). According to the

annotation of homologous C. elegans genes in WormBase (www.

wormbase.org), these targeted ESTs can be grouped into 11

molecular function categories (Table 5). The majority of EST

targets fall into the categories of binding, catalytic activity,

transporter activity and structural molecular activity.

A higher miRanda score might give us a more reliable miRNA

target predicted result. The highest score for predicted targets is

for CJ985685, best annotated as Cell-death-Related Nuclease (crn-

Figure 4. Conserved miRNAs verified in B. xylophilus. (A) Electrophoretic analysis of conserved miRNA precursor PCR products. (B) Sequence
alignment of B. xylophilus miRNAs with known animal miRNAs. (C) Hairpin structures of B. xylophilus let-7, mir-1 and mir-100 miRNA precursors.
Nucleotide bases of mature miRNAs are highlighted with green color. (D) Small RNAs derived from the conserved miRNA precursors. The sequence of
the let-7, mir-1 and mir-100 hairpins depicted above their bracket-notation secondary structure as determined by RNAfold (Hofacker et al., 2003).
Below, each of the small RNA sequences that matched the hairpins is listed, with the number of reads representing each sequence and the
corresponding small RNA libraries are shown in the right side. The dominant miRNA sequence is red; the dominant miRNA* species is blue; and the
loop-containing sequence is green.
doi:10.1371/journal.pone.0013271.g004
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1) in WormBase by a homology search. This EST is a potential

target of both bxy-novel-18 and bxy-novel-07 (supplemental Table

S4). The two miRNAs are significantly highly expressed in the cold

shocked small RNA library, ZJ-COLD (Figure 6). Although we

could not find published experimental evidence of miRNAs

targeting crn-1 in C. elegans and other animals, our finding here

might provide some clues for further identification of the miRNA

targets.

A total of 74 records of complete or partial coding regions of B.

xylophilus genes are published in GeneBank thus far. We derived a

39 UTR dataset based on the GeneBank description and used

miRanda to scan for potential miRNA target sites. Only 43

miRNA target sites of 19 miRNAs were predicted that

corresponded to 12 B. xylophilus genes using a miRanda score of

50 (Table 6, supplemental Table S5). Thirty six target sites belong

to FMRF amide-like peptide gene families, including flp-2, flp-3,

flp-6a/b/c/d and flp-14.

Discussion

Efficiency of miRNA prediction by the computational
pipeline

As the whole genome sequences of B. xylophilus are unpublished

at present, it was therefore a challenge to discover novel miRNAs

in B. xylophilus. Normally, Illumina/Solexa sequencing could only

produce reads of no more than 30nt in length in the small RNA

libraries we constructed. Such reads are not long enough to depict

miRNA precursors, which are usually longer than 50nt.

Therefore, many of the methods utilized in searching for novel

miRNAs, including mapping to genome, scanning potential stem-

loop hairpins by computational methods etc., were not applicable

to our study. Wei et al. [30] introduced a new method to discover

novel miRNA precursors in migratory locust, Locusta migratoria.

This method is based on a 1-2nt 39-overhang pattern of a

miRNA/miRNA* duplex, which was processed by Dicer cleavage

during the miRNAs maturation process. With their method, we

further developed a computational pipeline to predict novel

miRNA/miRNA* candidates in B. xylophilus (see Materials and

Methods).

To verify the authenticity of predicted miRNA candidates used

with a dataset from the 454 Life Sciences/Roche sequencing

approach (data unpublished), we first predicted miRNA precursors

by electronic PCR (e-PCR), and then further identified them by

experimental PCR. We assumed that miRNA precursors must

have characteristic miRNA stem-loop structures. However, only

53 miRNA precursors coding 57 miRNAs were obtained.

Precursors for a lot of miRNA candidates have not yet been

amplified. Two things might lead to this result: a false positive rate

or an imperfect 454 dataset. With respect to the false positive rate,

Wei and his associates assessed that it would be lower than 40%

[30]. To test the efficiency of this method, we first used the

published mature miRNAs and their corresponding miRNAs* in

miRBase, the data used by Ruby et al. [15] and Wei et al. [30], to

construct a reference small RNA library. A true positive rate

around 0.5 was observed. The false positive rate might relate to

the dataset size, and increase as data increased. Because our

dataset for miRNA prediction is much larger in this study, this

might lead to a much higher false positive rate. Nevertheless, the

method is feasible for predicting miRNA/miRNA* when no

genome sequence is available. In this study our 454 dataset is small

and imperfect. Many miRNAs cannot be matched to the dataset.

In the future, when the genome sequence is available, we can then

obtain a comprehensive understanding of B. xylophilus miRNAs

and targets.

Characteristics of B. xylophilus miRNAs
In this study, 57 authentic miRNAs (20 conserved and 37 novel)

were discovered in B. xylophilus by computational and experimental

methods. It is the first description of miRNAs in plant parasitic

nematodes. We found that many B. xylophilus miRNAs are

conserved with metazoan miRNAs in the current miRBase

release. We can group all of the 57 B. xylophilus miRNAs into 47

miRNA families by ‘seed’ conservation (supplemental Table S6).

Analysis of the evolutionary conservation of these miRNAs with

previously known miRNAs belonging to C. elegans, flies and human

revealed that 13 miRNA families (including 18 miRNAs) are

conserved in the evolution of animals. 38 miRNAs are conserved

with C. elegans in the ‘seed’ region and can be divided into 27

groups (supplemental Table S6), 23 of which can be sorted into 14

different C. elegans family groups based on sequence identity at the

59 end [32].

Interestingly, three miRNAs (novel-33-5p, miR-184 and miR-9*)

are conserved with fly and human miRNAs in the seed region, but

have no corresponding family members in C. elegans and two other

Table 4. List of ten species-specific miRNAs of B. xylophilus.

Seed Name Sequence Counts/Mb Homologue(s)

ZJ ZJ-COLD ZJ-DJ3 CAN USA

GGGUAU bxy-miR-234 UGGGUAUUCUCUGGCAAUGGACA 1.8 0.8 0.6 1.1 1.0 ND

AUAUCU bxy-novel-06 AAUAUCUGAAAAGUUGGUGUG 118.0 121.0 16.3 112.9 86.0 ND

GCACUC bxy-novel-08 AGCACUCGACGUAUGAAAUCGUUU 2.2 2.8 1.2 4.9 3.1 ND

UUGCGA bxy-novel-09 UUUGCGACUGUUUUCAGGCCUUU 87.5 704.8 86.2 64.1 56.0 ND

CCAGUU bxy-novel-10 UCCAGUUCGAGAUGACGCCU 0.8 0.3 0.0 0.0 3.2 ND

GGGGCG bxy-novel-21 GGGGGCGAAAUAGGAUCGACA 1.0 0.0 0.0 0.3 0.8 ND

AUAGGA bxy-novel-23 UAUAGGAAAUGCGUCACAAGCGAU 11.8 25.4 1.7 6.9 8.1 ND

AAAAUG bxy-novel-28 UAAAAUGGCUGUCAGGUGUAAU 3.7 0.0 7.0 5.2 6.2 ND

ACUGGU bxy-novel-30 AACUGGUCGUCAAAAUCAAAAG 1.2 0.7 0.1 0.0 6.7 ND

UUUCAU bxy-novel-32 UUUUCAUGCCUUUGUAUUCAUA 0.9 0.9 0.0 0.5 0.6 ND

ND: not detected.
doi:10.1371/journal.pone.0013271.t004
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evolutionary closely-related parasitic nematodes Bugia malayi [18]

and Pristionchus pacificus [17] (supplemental Table S6). For

example, miR-184 is found in many animals from the acorn worm

to primates in the miRBase, suggesting that it fulfills an essential

function. Iovino et al. [33] reported that miR-184 has multiple roles

in the Drosophila female germline development. We don’t know

whether miR-184 and the other two miRNAs were lost in the

nematode lineage evolution, or whether they were not found

because of their comparatively lower expression levels, as is true

for the deep-sequencing results of B. xylophilus (see supplemental

Table S3). Identification of these miRNA targets in B. xylophilus, in

order to determine whether they are conserved in C. elegans and

other nematodes and knowledge of how they are regulated by

miRNAs, may provide some insight into the evolution of

parasitism of nematodes.

In our study we found 10 novel B. xylophilus miRNAs that are

species-specific (Table 4, supplemental Table S3). As in previous

studies with four other nematode species we found that less-

conserved miRNAs were expressed at lower levels [17]. These 10

species-specific miRNAs tend to be expressed at much lower levels

Figure 5. Novel miRNAs detected in B. xylophilus. (A) Electrophoretic analysis of novel miRNA precursor PCR products. (B) Hairpin structures of
pine wood nematode novel-11, novel-18 and novel-33 miRNA precursors. Nucleotide bases of mature miRNAs are highlighted with green color. (C)
Small RNAs derived from the novel miRNA precursors. The sequence of the novel-11, novel-18 and novel-33 hairpins depicted above their bracket-
notation secondary structure as determined by RNAfold (Hofacker et al., 1994). Below, each of the small RNA sequences that matched the hairpins is
listed, with the number of reads representing each sequence and the corresponding small RNA libraries are shown in the right side. The dominant
miRNA sequence is red; the dominant miRNA* species is blue; and the loop-containing sequence is green. For novel-33, the equally expressed two
miRNAs (novel-33-5p and novel-33-3p) are shown in pink color.
doi:10.1371/journal.pone.0013271.g005
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than conserved miRNAs (Table 4, Fig. 6). However, two most

abundantly expressed species-specific miRNAs (novel-06 and novel-

09) have an essential/unique role in gene regulation in this plant

parasitic nematode. In a survey of ESTs from 30 nematode

species, about 30–50% of genes in each species seemed to be

species-specific [34]. Moreover, as illustrated in the root-knot

nematode Meloidogyne incognita, plant parasitic nematodes might

contain a more divergent gene regulatory network due to their

peculiar biology that has evolved in adaptation to parasitic life

styles [35]. We believe that identification of the target genes of

these species-specific miRNAs would help us to better understand

the evolution of plant parasitic nematodes.

We detected 3 miRNA star sequences (miR-234*, miR-9* and

novel-03*) and two equally expressed miRNAs (novel-33-3p and

novel-33-5p). MiRNA*s may also play subtle functional roles in

regulatory activity [36]. Mir-9 is an ancient miRNA family in

animals. Interestingly, unlike other species in which the 59 arm is

dominant, the 39 arm is dominant (59/39 read ratio: 1/15) in B.

xylophilus. The 59 arm belongs to the miR-9 group while the 39 miR-

9* belongs to another group when classified according to seed

conservation (supplemental Table S6). This observation supports

the arm-switching hypothesis that some biologically functioning

miRNA* species have undergone transition to mature sequences

[37]. Evidence of the same miRNA evolution pattern has been

identified also in other nematode species [17].

Potential functions of miRNAs in ecological adaptation of
B. xylophilus

Knowledge of potential targets may be of highest importance in

the elucidation of the microRNA regulatory network. Most of the

known metazoan miRNAs target 39 UTR sequences of mRNAs.

Unfortunately, the current data for B. xylophilus 39 UTRs is limited.

Alternatively, we utilized the published ESTs and a small dataset

of B. xylophilus 39 UTRs to predict miRNA targets. 979 target

genes were predicted using miRanda software (supplemental

Table S4 & S5). Of course, the existence of false positive targets is

unavoidable. We are most interested in following two sorts of

Figure 6. Heat map of the expression profiles of 57 verified miRNAs in different small RNA libraries.
doi:10.1371/journal.pone.0013271.g006
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targets, viz, heat shock protein coding genes relating to stress

adaptation; and also the neuropeptide coding genes that relate to

message transmission behaviors. Our goal is to understand the

roles of miRNAs in regulation of the nematode’s ecological

adaptation.

Heat shock proteins are called stress proteins. Organisms

respond to heat or cold shock or other environmental stress by the

induction of the synthesis of heat-shock proteins. 72 ESTs

identified as heat shock protein coding genes with previously

known B. xylophilus mRNAs are predicted to have 89 potential

target sites of 14 miRNAs (supplemental Table S4). A real-time

quantitative polymerase chain reaction (RT-qPCR) was used to

quantify mRNA expression levels of heat shock protein genes

hsp12 and hsp-1 (hsp-70a) and to compare the changes of mRNA

expression levels in a cold shocked vs. a non-shocked status. As

shown in Figure 8, both genes have obvious up-regulated

expression levels in a cold-shocked status (hsp12: df = 16,

t = 2.722, p = 0.15; hsp-1, df = 16, t = 3.134, p = 0.006). Two

miRNAs (bxy-novel-10 and bxy-mir-184) and four miRNAs (bxy-

novel-07, bxy-novel-31, bxy-mir-29, bxy-mir-40) have target sites of

hsp12 and hsp-1 respectively. Although we did not synchronously

quantify the expression level of miRNAs with their targets, we

Figure 7. Small RNA reads match to B. xylophilus mRNA in all libraries. (A) Portions of an EST aligned with small RNA reads that matched the
sense (blue) and antisense (orange) strands. (B) The length and initial nucleotide distribution of the antisense reads. (C) The length and initial
nucleotide distribution of the sense reads.
doi:10.1371/journal.pone.0013271.g007
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referenced the expression levels of these miRNAs in the two

libraries (ZJ and ZJ-COLD) and found that bxy-novel-10, bxy-mir-29

and bxy-mir-40 were down-regulated in the ZJ-COLD library, with

bxy-mir-29 down regulation the more obvious. In addition, bxy-mir-

72 that targeted hsp-60 was also obviously down-regulated in the

ZJ-COLD library. Of course, gene regulation is a complex

network and we still know little about how these miRNAs regulate

their targets, especially those with no obvious negative correlations

to their targets. Except for the human hsa-miR-320, which was

recently reported to regulate the expression of a heat shock

protein, hsp-20 [38], little information of verified microRNA-

regulated hsp genes has been reported in animals. Our finding in

this study may provide clues for further study of microRNA and

heat shock protein targets.

Neuropeptides play important roles in chemical signalling in the

central and peripheral nervous systems. FMRFamide-like neuro-

peptides (FLPs) are the largest family of neuropeptides in

nematodes and they modulate sensory and motor functions [39].

In C. elegans, FMRFamide-like neuropeptide genes (flps) are known

to be key genes related to neuronal sensitivity and other behaviors

[40]. In our research, seventeen miRNAs were predicted to target

the 39 UTR sequences of six B. xylophilus FMRFamide-like

neuropeptides genes (flp-2/-3/-6/-12/-14/-16) (Table 6, supple-

mental Table S4 & S5). The expression levels of these miRNAs in

the dispersal ZJ-DJ3 library were obviously down-regulated

compared with the propagative ZJ library (except miR-124 and

novel-27). Although we have not detected the expression level of flp

genes, we can refer to results of other studies. Kang et al. [41]

reported that flp-3 showed 5.1-fold higher expression in the B.

xylophilus dispersal stage than in the propagative stage. So, the

obvious negative correlation (miRNA expression down-regulated

and flp mRNA up-regulated) clearly indicates that miRNAs

participate in the regulation of flp genes expression. As we

mentioned in the introduction, pinewood nematode has a complex

and intriguing life cycle that involves a propagative cycle and a

dispersal cycle. The third-stage dispersal juvenile (J3) is a special

stage. The juveniles can response to the chemical substances

diffused by the Monochamus beetle pupa and congregate in the

vicinity of the pupal chambers where they molt to the fourth stage

dispersal juveniles at the time of the vector beetle eclosion [26,27].

We postulate that flp genes along with their corresponding miRNA

regulators take roles in the chemical-mediated interaction that

exists between the pinewood nematode and its beetle vectors.

Two well known ancient miRNAs, let-7 and miR-1 were much

more abundantly expressed in cold shocked nematodes (,3.4-fold

and ,3-fold more respectively). Let-7 was discovered in C. elegans

as a timing regulator controlling the L4-adult transition in

development [42], and it is required for regulating normal adult

behavior in flies [43]. MiR-1 was recognized to be a muscle-

specific miRNA [44]. It exhibits a striking decline during adult life

and it was thought that the drop in miR-1 levels might promote

muscle aging in nematodes [45]. It takes an essential role in

maintaining muscle integrity in flies [46]. Considering that

nematodes under cold conditions are normally less active, we

suggest that the promoted expression levels of let-7 and miR-1 in

the cold-shocked nematodes might imply enhanced roles for them

in regulating genes related to activity. The most abundant novel

miRNA, novel-18, has its peak expression abundance (11,926

counts/Mb) in the cold-shocked nematodes. The seed region of

this miRNA is conserved to cel-miR-1834/80/81/82 and dme-

bantam (Table 4). Cel-miR-80/81/82 are reported to function

during adult aging [45], while dme-bantam can stimulate cell

Table 5. Predicted target functions of the identified miRNAs
of B. xylophilus.

Molecular function No. of ESTs

Binding 969

Catalytic activity 886

Structural molecule activity 223

Transporter activity 199

Enzyme regulator activity 81

Transcription regulator activity 33

Translation regulator activity 25

Electron carrier activity 21

Molecular transducer activity 18

Antioxidant activity 11

Proteasome regulator activity 2

doi:10.1371/journal.pone.0013271.t005

Table 6. Predicted miRNA targets of known B. xylophilus genes.

B. xylophilus Gene GenBank Accession No. 39 UTR Targeting miRNA No. of target sites

Actin EU100952 let-7 1

b-1,4-endoglucanase AB179544 miR-86 1

flp-14 EF622046 miR-184 1

flp-2 EU930826 novel-26 2

flp-3 EF422867 miR-40/72/184, novel-08/10/17/26/27 9

flp-16a FJ151415 miR-124/184/242, novel-29 4

flp-16b FJ151416 miR-184/242, novel-16/17/21/29 7

flp-16c FJ151417 miR-50/184/242, novel-27/29 5

flp-16d FJ151418 miR-242, novel-16/17/21/27/29 7

hsp-90 EF490991 novel-21 1

HDAC FJ423634 miR-234* 1

UBC3 EU333281 novel-13/20/26/27 4

Note: flp, FMRF amide-like peptide; hsp, heat shock protein; HDAC, histone deacetylase protein; UBC3, ubiquitin conjugating-3 enzyme.
doi:10.1371/journal.pone.0013271.t006
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proliferation and prevents apoptosis in flies [47]. The high

expression of novel-18 in the cold-shocked nematodes may indicate

its role in the gene regulatory network and it is worthy of special

interest in further research.

Although we tried to find miRNA differences between the ‘R’

form and ‘M’ form (CAN and USA libraries), no remarkable

difference existed. We suggest that miRNAs may not be related to

the pathogenicity and morphological construction of the female

tail. According to the data of computational prediction, more

novel miRNA candidates were predicted in the ZJ library, which

was collected from an invasive area (supplemental Table S2). The

unique miRNA candidates in the ZJ library were more abundant

than in the USA native population (82 vs. 7, Fig. 3). Although we

do not claim that these miRNA candidates are directly related to

the invasiveness of the nematode, at least, the results support the

conclusion of other studies showing that the Chinese invasive

populations have more abundant genetic diversity than do the

native populations [48].

Materials and Methods

Nematode sources
Four isolates of the pinewood nematode were used in this study.

Among of them, three isolates (each from China, USA and

Canada respectively) were cultured on fungal mats of Botrytis cinerea

grown on 1.5% potato-dextrose agar (PDA) plates at 24–25uC.

The Chinese sample was isolated from chips of a dead pine tree of

Zhejiang province. The USA sample was isolated from American

materials (according to the information of its quarantine number,

it was from Texas, USA) intercepted by the Chinese quarantine

departments. The Canada sample was donated by Dr. Li (Nanjing

Agricultural University, China). For a first culture, the nematode

individuals of each sample were isolated from a piece of wood, and

after morphological identification under a high-powered micro-

scope, about 100 individuals of each sample were picked out and

sterilized with 3% H2O2 for 10 min. After they were washed four

or five times with disinfected distilled water (DDW), the nematodes

were cultured on fungal mats grown on PDA plates containing

0.1% Streptomycin Sulfate. Nematodes were isolated with the

Baermann funnel method [49] and the nematodes could pass

through two or three layers of filter-paper while fungal mats could

not. All nematode stages (including egg, larva and adult) in

propagative cycles were used for library construction. The Chinese

sample was also used for a cold stressed library construction by

being cold shocked at 4uC for 48 h before the molecular

experiments. The other isolate used for construction of a third-

stage dispersal juvenile library was achieved by collecting directly

from chips around pupal cells of the vector beetle (Monochamus

alternatus) in a dead pine tree in winter from the same site where the

Chinese propagative isolate was obtained. The sources of

nematodes used for this study are listed in Table 1. Fresh cultured

or isolated nematodes were washed with 0.1 M NaCl solution and

then fully washed several times in disinfected distilled water before

the molecular experiments.

Small RNA library construction and high-throughput
sequencing

Five small RNA libraries were constructed (three propagative

libraries from different geographic populations, one third-stage

dispersal juvenile library and one cold stressed library). Total RNA

of each sample (about 16106 individuals) was extracted using TRI

ReagentH Solution (MRC, Cincinnati, OH) according to the

manufacturer’s protocol. Novex 15% TBE-Urea gel (Invitrogen)

was used to isolate small RNA fragments, 14–30nt in length, from

total RNA. The purified small RNAs were ligated to a 59 adaptor

(Illumina, San Diego, CA, USA) and the ligation products were

purified on Novex 15% TBE-Urea gel. After that, a 39 adaptor

(Illumina) was ligated to the 59 ligation products and further

purified on Novex 10% TBE-Urea gel (Invitrogen). Later, reverse

transcriptase PCR (RT-PCR) was used to amplify the reverse

transcribed DNAs of these ligation products. Then, 6% TBE-Urea

gel (Invitrogen) was used to purify the amplification products.

Lastly, DNA fragments were used for clustering and sequencing

with the Illumina Genome Analyzer at the Beijing Genomics

Institute, Shenzhen, China.

Computational methods to search miRNAs and other
small RNAs

The computational workflow is shown in Figure 9. First, reads

from incorrect sequencing, adaptor sequences and sequences

shorter than 16nt were removed. Unique sequences were retained

with associated count numbers of the individual sequence reads.

Second, all the clean reads were grouped into clusters based on

sequence identity and a minimum of 16nt overlap length. We

Figure 8. Comparison of mRNA expression levels of heat shock protein genes in B. xylophilus. Both genes (hsp12 and hsp-1) have obvious
up-regulated expression levels in a cold-shocked status (P,0.05).
doi:10.1371/journal.pone.0013271.g008
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obtained 13,340 ESTs and 71 rRNAs of B. xylophilus, and 37

rRNAs of B. mucronatus from GeneBank (www.ncbi.nlm.nih.gov)

and 1,053 known RNAs (including rRNAs, tRNAs and snRNAs)

of C. elegans from WormBase (www.wormbase.org). Using Mega-

BLAST search (window size at 7nt), the sequenced reads that

perfectly matched these data were removed. Last, the remaining

clean sequenced reads were used to search both conserved and

novel miRNAs.

Based on the consensuse that the ‘seed’ region (2–7nt in 59 end

of mature miRNA) is conserved in the same miRNA family, we

used BLAST to search conserved miRNAs against the published

miRNA datasets (miRBase release 14.0, September 2009) [50].

Sequenced tags of more than 5 reads that matched perfectly or

near-perfectly (no more than 1 mismatch and mismatch not

positioned in seed region) to metazoan mature miRNAs were

assumed to be conserved miRNA candidates.

We followed the method described by Wei et al. [30] to predict

novel miRNA/miRNA* duplexes. A pipeline was designed in Perl

language to find miRNA/miRNA* duplex candidates in our small

RNA libraries, combining the use of RNAcofold in the RNAfold

softerware package [51]. Parameters were set as Wei et al [30]),

with the minimum free energy (MFE) of miRNA/miRNA*

duplexes#214 kcal/mol; and more than 100 counts. We used

the selected dominant sequences as the query dataset of potential

mature miRNAs to run the Perl script pipeline against all the

remaining clean sequence reads. After searching, only miRNA/

miRNA* duplex candidates with the lowest MFE were retained

and the paired tags belonging to the same cluster were eliminated.

Sequences left were considered to be novel miRNA and miRNA*

candidates.

We applied miRDeep [31] to discover miRNA precursors by

combining high-throughput sequencing small RNA data with a B.

xylophilus genome dataset generated by 454/Roche sequencing in

our laboratory (unpublished), using default parameters. The small

RNAs that matched perfectly with precursors and exhibited a 1–

2nt 39 overhang pattern in hairpin structures were identified as

miRNA/miRNA* pairs.

We also used the RNALfold program in the RNAfold package

[51] to scan the 13,340 ESTs of B. xylophilus. A Perl script was

written to select stem-loop structures that used the following

parameters: (1), MFE #221 kcal/mol; (2), No multi loop; (3),

both the 39 and 59 arms must be perfect matched with sequenced

small RNAs in the stems and no overlap with the loops, and

exhibit a 1–2nt 39 overhang pattern in hairpin structures as found

in many studies [15,52]. Unfortunately, we found no candidates in

the ESTs.

We used BLAST 2.2.6 [53] to search small RNAs that perfectly

match the antisense strand of B. xylophilus ESTs. The matched

small RNAs were identified to be endo-siRNAs.

Finally, Mfold [54] was used to predict the hairpin structures of

precursors.

PCR verification of miRNA precursors
We used experimental methods to verify the miRNA precursors.

Genomic DNA was extracted from all stages of the nematode with

a Gentra Puregene Tissue Kit (Qiagen, Valencia, CA, USA)

following the manufacture’s protocol. For conserved miRNA/

miRNA* candidates, one primer pair was designed at the stem of

each mature miRNA by aligning the miRNA sequence with

metazoan miRNA precursors using Clustal W [55]. Because the

novel miRNA candidates, when mature miRNAs, might locate in

either arm of the precursors, we designed two primer pairs for

each miRNA/miRNA* duplex. Primer3 software [56] was chosen

to evaluate primers using relaxed parameters. Primers for

amplification of 53 miRNA precursors are presented in supple-

mental Table S7.

PCR was carried out by the following scheme: 94uC, 2 min and

35 cycles (94uC, 30 s; an appropriate annealing temperature,

between 50uC–55uC, 30 s; 72uC, 30 s) and a final 72uC step for

10 min. The PCR products were examined by 3.5% agarose gel

electrophoresis. Fragments between 50–100nt in length were

subcloned into pMD18-T vector (Takara, Dalian, Liaoning,

China) for sequencing analysis.

MicroRNA target prediction
MiRanda 3.1 [57] was used to predict microRNA targets based

on 13,340 B. xylophilus ESTs plus a dataset of 39UTRs derived

from 74 records of B. xylophilus genes published in GeneBank

(www.ncbi.nlm.nih.gov). The miRanda score thresholds were set

to be 150 for ESTs and 50 for UTRs. ESTs predicted to contain

miRNA target sites were classified using Gene Ontology (www.

geneontology.org) according to the descriptions of their best hit C.

elegans homologous genes in WormBase (www.wormbase.org) by

BLAST search (e-value: 1e25; $90% identity; $90nt align

length).

Real-time qPCR
A real-time qPCR was performed to compare the mRNA

expression levels of two heat shock protein genes (hsp12, hsp-1) of

the nematode at cold stressed status and at normal status. Total

RNA was extracted from the nematodes in Trizol reagent

(Invitrogen, Carlsbad, CA, USA) following the Invitrogen

protocol. The total RNA was reverse transcribed to cDNA using

a SuperScriptTM First-Strand Synthesis System of RT-PCR kit

(Invitrogen), according to the manufacturer’s instructions. With

cDNA as a template, quantitative PCR was carried out using the

Figure 9. Workflow of the microRNA discovery.
doi:10.1371/journal.pone.0013271.g009
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kit, TransStart SYBR Green qPCR Supermix (TransGen Biotech,

Beijing, China) in a 7500 real-time system (Applied Biosystems,

Carlsbad, CA, USA). The sequences of primers were listed in

supplemental Table S8. A 20-ul reaction mixture including 1 ul of

cDNA, 0.4 ul of each primer (10 mM), 10 ml Power SYBR Green

PCR Master Mix (Applied Biosystems, Warrington, UK) and

8.2 ml H2O was placed in 0.2 ml eight-strip PCR tubes (Axygen).

Cycling conditions were: 95uC for 10 min, followed by 40 cycles of

95uC for 15 s and 60uC for 10s, 72uC for 60 s. The actin gene of B.

xylophilus was used for normalization of cDNA templates. Raw

quantification cycle (Cq) values were calculated with the SDS

software v.2.1 using manual baseline settings from 3 to 15 and a

threshold of 0.2. The comparative threshold cycle (Ct) method was

used for the calculation of fold changes in gene expression [58].

Three technical replications were taken for each sample. The

experiment was repeated three times from RNA preparation to

RT-PCR. Independent-Samples T Test was performed with the

program SPSS 12.0 software [59] to test the differences between

the expression levels of heat shock protein genes in the cold-

shocked and the normal nematodes. The difference was

statistically significant at p,0.05.
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Table S6 B. xylophilus miRNA families, with the corresponding
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Table S7 List of PCR primers for miRNA precursors.
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