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Abstract

Background: Skeletal muscle wasting is a debilitating consequence of large number of disease states and conditions. Tumor
necrosis factor-a (TNF-a) is one of the most important muscle-wasting cytokine, elevated levels of which cause significant
muscular abnormalities. However, the underpinning molecular mechanisms by which TNF-a causes skeletal muscle wasting
are less well-understood.

Methodology/Principal Findings: We have used microarray, quantitative real-time PCR (QRT-PCR), Western blot, and
bioinformatics tools to study the effects of TNF-a on various molecular pathways and gene networks in C2C12 cells (a
mouse myoblastic cell line). Microarray analyses of C2C12 myotubes treated with TNF-a (10 ng/ml) for 18h showed
differential expression of a number of genes involved in distinct molecular pathways. The genes involved in nuclear factor-
kappa B (NF-kappaB) signaling, 26s proteasome pathway, Notch1 signaling, and chemokine networks are the most
important ones affected by TNF-a. The expression of some of the genes in microarray dataset showed good correlation in
independent QRT-PCR and Western blot assays. Analysis of TNF-treated myotubes showed that TNF-a augments the activity
of both canonical and alternative NF-kB signaling pathways in myotubes. Bioinformatics analyses of microarray dataset
revealed that TNF-a affects the activity of several important pathways including those involved in oxidative stress, hepatic
fibrosis, mitochondrial dysfunction, cholesterol biosynthesis, and TGF-b signaling. Furthermore, TNF-a was found to affect
the gene networks related to drug metabolism, cell cycle, cancer, neurological disease, organismal injury, and abnormalities
in myotubes.

Conclusions: TNF-a regulates the expression of multiple genes involved in various toxic pathways which may be
responsible for TNF-induced muscle loss in catabolic conditions. Our study suggests that TNF-a activates both canonical and
alternative NF-kB signaling pathways in a time-dependent manner in skeletal muscle cells. The study provides novel insight
into the mechanisms of action of TNF-a in skeletal muscle cells.

Citation: Bhatnagar S, Panguluri SK, Gupta SK, Dahiya S, Lundy RF, et al. (2010) Tumor Necrosis Factor-a Regulates Distinct Molecular Pathways and Gene
Networks in Cultured Skeletal Muscle Cells. PLoS ONE 5(10): e13262. doi:10.1371/journal.pone.0013262

Editor: Neeraj Vij, Johns Hopkins School of Medicine, United States of America

Received July 9, 2010; Accepted September 14, 2010; Published October 12, 2010

Copyright: � 2010 Bhatnagar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health grant RO1 AG029623 to AK. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ashok.kumar@louisville.edu

. These authors contributed equally to this work.

Introduction

Skeletal muscle atrophy or wasting is a common phenomenon

in a large number of systemic diseases including sepsis, diabetes,

chronic obstructive pulmonary disease, heart failure, and cancer

[1,2,3,4]. Accumulating evidence suggests that inflammatory

cytokines especially TNF-a play a major role in the development

of muscular abnormalities resulting in loss of skeletal muscle mass

and function [5]. Increased levels of TNF-a have been observed

under conditions that lead to skeletal muscle atrophy such as

chronic heart failure, cancer, AIDS, and cachexia induced by

bacteria [6]. TNF-a transduces its biological activities by binding

to two 55- and 75-kDa receptors [7]. Trimeric occupation of TNF

receptors by the ligand results in the recruitment of receptor-

specific proteins leading to the activation of a cascade of protein

kinases such as IkB kinase (IKK), transforming growth factor-b
activated kinase 1 (TAK1), mitogen-activated protein kinases

(MAPKs), and Akt and several downstream transcription factors

[7,8,9].

Nuclear factor-kappa B (NF-kB) is a major proinflammatory

transcription factor that regulates the expression of a plethora of

genes especially those involved in inflammatory and immune

responses [10,11]. Depending on the type of stimuli, the activation

of NF-kB can occur via either canonical or alternative pathway

[10]. The canonical NF-kB signaling pathway involves the

upstream activation of inhibitors of kB (IkB) kinase-b (IKKb)

and subsequent phosphorylation and degradation of IkB proteins.

On the other hand, activation of the alternative NF-kB pathway
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requires the upstream activation of NF-kB-inducing kinase (NIK)

and IKKa and the proteolytic processing of p100 subunit into p52

[10,12]. Several recent studies have provided strong evidence that

constitutive activation of NF-kB leads to skeletal muscle wasting

and its inhibition prevents the loss of skeletal muscle mass in

response to various catabolic stimuli including TNF-a
[10,13,14,15,16,17]. Li et al [17] showed that TNF-a-induced

activation of NF-kB is responsible for the up-regulation of

ubiquitin-conjugating E2 enzyme UbcH2 resulting in increased

activity of ubiquitin-proteasome system and degradation of

myofibril proteins. Furthermore, the inhibitory effect of TNF-a
on myogenesis is mediated through the activation of NF-kB which

downregulates the levels of myogenic regulatory factor MyoD in

myoblasts through distinct mechanisms [18,19,20].

It is also noteworthy that the catabolic action of TNF-a in

skeletal muscle may require the presence of other proinflammatory

cytokines, such as TNF-related weak-inducer of apoptosis

(TWEAK), interleukin-1b (IL-1b), interleukin-6 (IL-6), and

interferon c (IFN-c) [16,21,22,23]. A combination of TNF-a
and IFN-c has been reported to cause a strong down-regulation of

muscle specific gene products including MyoD in cultured muscle

cells [18]. However, it is not yet clear whether TNF-a augments

the expression of other inflammatory cytokines or they are

expressed by independent mechanisms in skeletal muscle cells.

Recent investigations involving genome-wide gene expression

profiling in skeletal muscle has helped in identifying several novel

genes which mediate the loss of skeletal muscle mass in different

muscle-wasting conditions [24,25,26,27,28]. However, the effects

of TNF-a on the global gene expression and intracellular pathways

that it affects in skeletal muscle remain poorly understood. To

attain a better molecular insight into the mechanisms of action of

TNF-a in skeletal muscle, we focused the present investigation on

identification of TNF-regulated gene expression, gene networks,

and molecular pathways in skeletal muscle. Microarray analyses of

control and TNF-treated myotubes revealed that TNF-a regulates

the expression of several genes and pathways which may be related

to its catabolic action in skeletal muscle. Furthermore, our study

provides the initial evidence that TNF-a activates both canonical

and alternative NF-kB signaling pathways in skeletal muscle

cells.

Results

We have used microarray approach to identify the set of genes

which TNF-a regulates in cultured C2C12 myotubes. To detect

the expression of both early and late responsive genes, we have

performed mRNA profiling after 18h of TNF-a treatment.

Analysis using MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl

tetrazolium bromide] dye showed no significant difference in cell

viability between control and TNF-treated C2C12 myotube

cultures after 18h (not depicted). Raw and normalized data of

this microarray experiment has been submitted to ArrayExpress

database (http://www.ebi.ac.uk/microarray-as/ae/) with acces-

sion number E-MEXP-2592.

Identification of differentially expressed genes in TNF-
treated C2C12 myotubes by microarray technique

C2C12 myotubes were treated with TNF-a (10ng/ml) for 18h

and the mRNA levels of different genes were monitored by

cDNA microarray technique. The microarray gene expression

profile appeared normally distributed for TNF-treated samples

(Figure 1A) indicating that our analyses of differentially expressed

genes is not biased due to skewed distribution of certain genes. Out

of approximately 25,000 genes present on our microarray chips,

TNF-a significantly (p,0.05) affected the expression of a total of

5,939 genes, out of which 3,349 genes were down regulated and

2,590 genes were up regulated. We have also filtered the genes

with the fold change $1.2 or #1.2, which yielded 1,822

differentially regulated genes. In particular, 723 genes were

significantly down regulated whereas 1,099 genes were signifi-

cantly up regulated by TNF treatment. The volcano plot of

differentially expressed genes with these cut-off p-values and fold

changes is presented in the Figure 1B. Further analysis of

differentially regulated genes showed that about 51 genes were

differentially regulated by TNF with p-values #0.0001 (28 up-

regulated and 23 down-regulated with fold values $1.2), 181

genes with p-value #0.001 (91 up-regulated and 90 down-

regulated), 751 genes with p-values #0.01 (406 up-regulated and

345 down-regulated), and 839 genes with p-values #0.05, of

which 574 genes were up-regulated and 265 genes were down-

regulated (Table 1). The functional annotations of important

genes differentially expressed in TNF-treated myotubes are

presented in the Table S1. Several genes such as transforming

growth factor beta 3 or TGF-b3 (21.28 fold), tissue inhibitor of

metalloproteinase 1 or TIMP1 (1.6 fold), nuclear factor of kappa

light chain gene enhancer in B-cells inhibitor, alpha or IkBa (3.98

fold), and chemokine (C-X-C motif) ligand 5 or Cxcl5 (8 fold) are

with p-values #0.0001. Genes such as inhibitor of DNA binding 3

or ID3 (21.63 fold), protein kinase inhibitor, alpha or PIKa
(21.38 fold), cyclin-dependent kinase inhibitor 1C or Cdkn1c

(21.3 fold), forkhead box d2 or FoxD2 (21.27 fold), nuclear factor

related to kappa B binding protein or NFRkB (21.28 fold), B-cell

leukemia/lymphoma-6 or BCL6 (21.24 fold), jagged 2 or Jag2

(21.22 fold), vascular endothelial growth factor c or VEGFc (1.28

fold), insulin-like growth factor binding protein 7 or IGFbp7 (1.6

fold), tumor necrosis factor-alpha induced protein-3 or TNFaIP3

(1.6 fold), nuclear factor of kappa light chain gene enhancer in B-

cells 1, p105 or NFkB1 (1.6 fold), colony stimulating factor or

CSF1 (2-fold), chemokine (C-C motif) ligand 5 or Ccl5 (3.6 fold),

and chemokine (C-C motif) ligand 2 or Ccl2 (3.8 fold) were with p-

values #0.001. Among the genes with p-values #0.01, notch

homolog1 or Notch1 (21.6 fold), procollagen, type IV or Col4a2

(21.4 fold), early growth response 1 or EGR1 (21.3 fold),

adenylate cyclase 9 or Adcy9 (21.3 fold), insulin-like growth factor

binding protein-6 or IGFbp6 (21.25 fold), tumor necrosis factor

receptor superfamily, member23 or Tnfrsf23 (21.25 fold), fork-

head box O6 or FoxO6 (21.23 fold), TGF-b induced early growth

response 3 or Tieg3 (21.2 fold), signal transducer and activator of

transcription 5a or STAT5a (1.2 fold), tachykinin receptor 3 or

Tacr3 (91.2 fold), forkhead boxD3 or FoxD3 (1.23 fold), breast

cancer 1 or BRCA1 (1.27 fold), a disintegrin and metalloprotease

domain 29 or Adam29 (1.3 fold), cAMP response element binding

protein 3 or CREB3 (1.3 fold), myocyte enhancer factor 2B or

Mef2B (1.32 fold), Maf oncogene or v-maf (1.36 fold), chemokine

(C-X-C motif) receptor 3 or Cxcr3 (1.38 fold), nuclear factor of

kappa light polypeptide gene enhancer in B-cells 2, p49/100 or

NFkB2 (1.4 fold), matrix metalloproteinase-9 or MMP-9 (1.5 fold),

interleukin-6 or IL-6 (1.66 fold), and TAF2 RNA polymerase II,

TATA box binding protein (TAB)-associated factor, 150kDa (2.7

fold) are important genes regulating many pathways. Similarly,

myogenic differentiation 1 or MyoD1 (21.3 fold), mitogen

activated protein kinase 4 or MAPK4 (21.3 fold), myocyte

enhancer factor 2c or Mef2c (21.27 fold), CD27 binding protein

or Siva (21.24 fold), superoxide dismutase 1 or SOD1 (21.23

fold), Jun oncogene (21.2 fold), histone deacetylase 10 or

HDAC10 (21.2 fold), and vascular cell adhesion molecule 1 or

Vcam1 (2.91 fold) are very important genes differentially regulated

by TNF-a with p-values #0.05.

TNF-a Networks in Myotubes
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We next sought to determine whether the expression levels of

some of the genes which showed significant up- or down-

regulation in microarray experiment can be recapitulated in

independent quantitative real time-PCR (QRT-PCR) assays.

QRT-PCR assays were performed for the genes which showed

high fold change and/or have a direct or indirect relation with

skeletal muscle wasting. As shown in Figure 2A, the expression of

Nfkbia (also known as IkBa), Nfkb1, Nfkb2, IL-6, Vcam1, Ccl5,

Cxcl5, and Ccl2 was found to be significantly increased in TNF-

treated samples in QRT-PCR assays. Similarly, the reduced

expression of Notch1, TIMP2, and MyoD in TNF-treated samples

was confirmed by independent QRT-PCR assays (Figure 2B)

suggesting a direct correlation between microarray and QRT-

PCR analysis for almost all the genes tested.

C2C12 myoblasts differentiate into myotubes in low serum

conditions. However, the differentiation of C2C12 myoblasts into

myotubes is never complete [29]. C2C12 cultures incubated in

differentiation medium still contain a significant number of

undifferentiated myoblasts [29]. We investigated whether the

observed changes in gene expression in response to TNF-a occur

in undifferentiated myoblasts or myotubes or both in C2C12

cultures. To answer this question, we first studied whether TNF-a
can affect the gene expression in undifferentiated C2C12

myoblasts incubated in growth medium. Treatment with TNF-a

Figure 1. Gene distribution and volcano plots of differentially expressed genes in TNF-treated C2C12 myotubes. A) Distribution curve
of differentially expressed genes in response to TNF treatment detected by cDNA microarray analysis. The normalized fold changes were plotted on
y-axis on logarithmic scale. B) Volcano plots of differentially expressed genes in response to TNF treatment. Here 2log10 p-values were plotted on y-
axis and log2 values of normalized ratios were plotted on x-axis.
doi:10.1371/journal.pone.0013262.g001

Table 1. Number of differentially expressed genes with different p-values and $1.2 fold in TNF-a treated C2C12 myotubes.

p-value Up regulated genes Down regulated genes Total genes

#0.0001 28 23 51

.0.0001 but #0.001 91 90 181

.0.001 but #0.01 406 345 751

.0.01 to 0.05 574 265 839

doi:10.1371/journal.pone.0013262.t001

TNF-a Networks in Myotubes

PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13262



significantly increased the mRNA levels of NFKB1, NFKB2, and

VCAM-1 (Figure 3A) and reduced the levels of MyoD and

Notch1 (Figure 3B) in C2C12 myoblasts.

To evaluate whether TNF-a affects gene expression in myotubes,

we performed QRT-PCR assays for a few select genes using myosin

heavy chain 4 (MHC4, expressed only in differentiated muscles) as

the normalizing gene. The mRNA levels of NFKB1, NFKB2, and

VCAM-1 were significantly higher (Figure 4A) and that of MyoD

were significantly lower (Figure 4B) in TNF-treated cultures

compared to untreated cultures. Taken together, these results

indicate that TNF-a modulates gene expression in both myotubes

and myoblasts in a similar fashion.

In addition to TNF-a, several other proinflammatory cytokines

such as IL-1b and IL-6 have been postulated to be the mediators

of muscle-wasting in various chronic diseases [6]. We investigated

whether IL-1b and IL-6 can also modulate gene expression in

C2C12 cultures similar to TNF-a. Interestingly, we observed that

IL-1b but not IL-6 significantly augmented the expression of

NFKB1, NFKB2, and VCAM-1 in C2C12 cultures. However, the

fold increase in their mRNA levels in response to IL-1b was

significantly lower compared to TNF-a (Figure 4A). Moreover,

we found that while TNF-a significantly reduced mRNA level of

MyoD in C2C12 myotubes, neither IL-1b nor IL-6 had any

significant effect on the expression of MyoD (Figure 4B). The

Figure 2. Validation of genes differentially regulated by TNF-a by QRT-PCR. C2C12 myotubes were treated with 10 ng/ml of TNF for 18h
followed by isolation of total RNA and QRT-PCR. Untreated myotubes under similar conditions were taken as control. The relative expression values
(normalized with b-actin) from the QRT-PCR analysis were plotted for each gene are mean 6 SD (n = 3). ‘*’ represents the statistical significance (p-
value #0.01). A). Data presented here show that mRNA levels of NFKB1, NFKB2, IkBa, IL-6, VCAM1, Ccl5, Cxcl5, and Ccl2 were significantly increased in
TNF-treated C2C12 cells. B). Data presented here show that mRNA levels of MyoD, Notch1, and Timp-2 were significantly reduced in TNF-treated
C2C12 myotubes.
doi:10.1371/journal.pone.0013262.g002

Figure 3. Effects of TNF-a on gene expression in C2C12 myoblasts. C2C12 myoblasts incubated in growth medium were treated with 10 ng/
ml TNF-a for 18h followed by isolation of total RNA and performing QRT-PCR assay. A). Data presented here demonstrate that TNF-a significantly
augments the expression of NFKB1, NFKB2, and VCAM-1 in C2C12 myoblasts. B). Data presented here demonstrate TNF-a significantly reduces the
mRNA levels of MyoD and Notch1 in C2C12 myoblasts. *p,0.05, values significantly different from control myoblasts incubated without TNF-a.
doi:10.1371/journal.pone.0013262.g003

TNF-a Networks in Myotubes
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data suggest that TNF-a may be the most potent stimulus whereas

other cytokines may also contribute to muscle wastage to some

extent.

To further confirm our microarray findings, we also performed

Western blots for a few select proteins affected by TNF-a.

Consistent with their mRNA levels, the protein levels of NFKB1,

NFKB2, and MMP-9 were significantly increased in TNF-treated

myotubes compared to untreated myotubes (Figures 5A and
5B). It was interesting to note that while TNF-a increased the

mRNA levels of NFKB1 by ,15 fold, the increase in NFKB1

protein level was only ,1.6 fold (Figures 5A and 5B). Although

the exact reasons remain unknown, it is possible that in addition to

increasing the expression, TNF-a also increases the turnover of

NFKB1 protein. Furthermore, there is also a possibility that

NFKB1 mRNA is subjected to post-transcriptional modifications

(including those involving micro RNAs) which may limit its

translation into protein. In contrast to mRNA levels, the protein

levels of NF-kB inhibitor IkBa was found to be significantly

reduced (Figures 5A and 5B). The reduced levels of IkBa in

TNF -treated myotubes could be attributed to its enhanced

degradation in response to NF-kB activation stimuli [10,12]. In

agreement with microarray data, we found reduced protein levels

of Notch1 and TIMP-2 in TNF-treated myotubes (Figures 5C,
and 5D).

TNF-a causes activation of both canonical and alternative
NF-kB signaling pathways in myotubes

TNF-a is a well-known activator of canonical NF-kB signaling

pathway which involves the upstream activation of IkB kinase-b
(IKKb) and subsequent phosphorylation and degradation of IkBa
protein [7]. Although it has been reported that TNF-a activates

NF-kB in skeletal muscle cells [7,10,17,30], there has been no

report whether TNF-a can augment the activation of alternative

NF-kB signaling pathway which involves the activation of IKKa
and proteolytic processing of p100 subunit into p52. Surprisingly,

our microarray and subsequent QRT-PCR and Western blot

revealed increased expression of both NFKB1 (e.g. p105/p50) and

NFKB2 (e.g. p100/p52) in TNF-treated myotubes (Figures 2, 4,
and 5). These results prompted us to investigate whether TNF-a
activates both canonical and alternative NF-kB pathways and the

time points at which these two pathways are up-regulated after

treatment with TNF-a. C2C12 myotubes were treated with TNF-

a for different time periods ranging from 0–24h and the activation

of NF-kB was measured by electrophoretic mobility shift assays

(EMSA). As shown in Figure 6A, treatment with TNF-a led to

sustained activation of NF-kB in C2C12 myotubes though it

peaked at 1h, 6h and 18h. These results are consistent with a

previously published report also demonstrating biphasic activation

of NF-kB in C2C12 myotubes upon TNF-a-treatment [31]. To

investigate whether TNF-a-induced activation involves canonical,

alternative, or both pathways, we performed Western blot using

TNF-a-treated myotubes. As shown in Figure 6B, treatment with

TNF-a increased the phosphorylation and reduced the levels of

IkBa protein. IkBa protein levels remained lower compared to

untreated cultures indicating that TNF-a stimulates the canonical

NF-kB signaling pathway in myotubes. Interestingly, we found

that TNF-a did not affect the expression or proteolytic processing

of p100 subunit into p52 up to 6h. However, after 6h, a significant

increase was noticed in protein levels of both p100 and p52

suggesting the activation of alternative NF-kB pathway. IKKa is

the kinase which phosphorylates p100 protein leading to its

proteolytic processing into p52 subunit [10]. To further investigate

whether the activation of IKKa is increased in response to TNF-a
treatment, we performed Western blot using antibody which

recognizes the phosphorylated (activated) IKKa protein. As shown

Figure 4. Effects of TNF-a, IL-1b, and IL-6 on gene expression in C2C12 myotubes. C2C12 myotubes were treated with 10 ng/ml TNF-a, IL-
1b, or IL-6 for 18h followed by total RNA isolation and performing QRT-PCR using myosin heavy chain 4 (MYH4) as the normalizing gene. A). The fold
increase in mRNA levels of NFKB1, NFKB2, and VCAM-1 compared to untreated controls is presented here. B). Fold change in mRNA levels of MyoD
compared to untreated controls. *p,0.01, values significantly different from untreated myotubes. #p,0.01, values significantly different from TNF-
treated myotubes for respective gene.
doi:10.1371/journal.pone.0013262.g004

TNF-a Networks in Myotubes
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in Figure 6B, TNF-a-induced the activation of IKKa in a time-

dependent manner. Consistent with proteolytic degradation of

p100 protein, the activation of IKKa was noticeable at 12h and

later time points (Figure 6B).

To further confirm that TNF-a activates both canonical and

alternative NF-kB signaling pathways, we also performed super-

shift assays using nuclear extracts from TNF-treated myotubes. As

shown in Figure 6C, incubation of nuclear-extracts from 1h and

18h TNF-treated myotubes with anti-p50 and anti-p65 shifted the

NF-kB/DNA complex to higher molecular weight indicating that

activated NF-kB complex contains p50 and p65 (the components

of canonical NF-kB pathway) proteins. Although a slight shift was

observed with antibodies against RelB and p52 at 18h, a

remarkable increase in shifted bands was evident with both the

antibodies at 24h and 36h after treatment with TNF-a. These

results suggest that TNF-a initially activates canonical NF-kB

pathway followed by the activation of alternative pathway.

We have recently reported that TWEAK, a member of TNF

super family, is a potent activator of alternative NF-kB signaling

pathway in skeletal muscle cells [32]. By performing QRT-PCR,

we investigated whether TNF-a augments the expression of

TWEAK or its receptor Fn14 in C2C12 myotubes. Our results

showed that the mRNA levels of TWEAK were comparable

between control and TNF-treated myotubes (Figure 6D). Fur-

thermore, we could not detect TWEAK protein in culture

supernatants of control or TNF-treated myotubes by ELISA.

However, QRT-PCR assays showed a moderate increase (,1.7

fold) in the mRNA levels of Fn14 in TNF-treated myotubes

(Figure 6D).

Although TNF-a was found to stimulate alternative NF-kB

pathway, it was not clear whether TNF-a by itself is sufficient or

other cytokines, chemokines, and growth factors produced in

culture supernatants are responsible for the activation of

alternative NF-kB pathway in TNF-treated myotubes. To address

this issue, C2C12 myotubes were initially incubated with TNF-a

for 9h, the medium of the cells was replaced with fresh

differentiation medium (without TNF-a), and the cultures were

incubated for additional 9h. In a parallel culture, C2C12

myotubes were continuously treated with TNF-a for 18h. At the

end of the incubation period, the cells were collected and Western

blot was performed using p100/p52 antibody. As shown in

Figure 7A, TNF-a increased the levels of p100 and p52 protein in

both the cultures (i.e. those incubated with TNF-a for 9h or 18h).

Furthermore, we found that IL-1b (another inflammatory

cytokine) activated classical NF-kB pathway evident by degrada-

tion of IkBa protein (at 30 min and 1h) but did not affect the

protein levels of p100/p52 in C2C12 cultures (Figure 7B).

Collectively, these results suggest that TNF-a alone may be

sufficient to activate both classical and alternative pathways in

C2C12 myotubes.

Effect of TNF-a on various canonical pathways in C2C12
myotubes

Although TNF-a was found to differentially regulate the

expression of a large number of genes, it was not clear how the

expression of these genes affect the activity of various cellular and

molecular pathways in skeletal muscle cells. To understand the

effects of TNF on various canonical pathways, we used Ingenuity

Pathway Analysis (IPA) software. We first used a set of

differentially regulated genes with fold values $1.5 and p-value

of #0.05 from microarray analyses as an input for IPA software.

However, this set of genes was not sufficient to generate pathways

affected by TNF-a. We then reduced the stringency and used the

set of genes with fold change (both up- and down-regulated genes)

values $1.2 and p-value of #0.05 in the microarray experiment.

We found that TNF-a affected the expression of genes involved in

specific molecular pathways in myotubes (Figure 8). The major

pathways affected by TNF-a in myotubes were those that regulate

hepatic fibrosis, LXR/RXR activity, oxidative stress, mitochon-

drial dysfunction, and TGF-b and NF-kB signaling (Figure 8).

Figure 5. Western blot analyses of genes differentially expressed by TNF-a in myotubes. C2C12 myotubes were treated with 10 ng/ml of
TNF for 18h followed by isolation of total protein and Western blotting. Equal amounts of proteins were loaded on 10% SDS-PAGE gel.
A). Representative immunoblots presented here show that TNF-a increases the protein levels of NFKB1, NFKB2, MMP-9, and IkBa in myotubes.
B). Densitometry analyses of bands from NFKB1, NFKB2, MMP-9, and IkBa immunoblots. C). Protein levels of Timp-2 and Notch1 were found to be
reduced upon treatment with TNF-a. D). Densitometry analyses of bands from TIMP-2 and Notch1 immunoblots. *p,0.05, values significantly
different from corresponding control myoblasts incubated without TNF-a (n = 4 in each group).
doi:10.1371/journal.pone.0013262.g005

TNF-a Networks in Myotubes
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Interestingly, this bioinformatics analysis of pathways using

differentially regulated genes is consistent with the experimental

evidence that skeletal muscle-wasting and other muscular disorders

such as muscular dystrophy, involve the activation of many of

these molecular pathways [6,10,11,33,34].

TNF-a regulates distinct gene networks in myotubes
In order to understand the interaction between different genes,

we generated common networks using Ingenuity Pathway Analysis

(IPA) software. The dataset of differentially expressed genes by

TNF in C2C12 myotubes with selected stringency (p value #0.05

and fold $1.2) was uploaded into the IPA software tool. Networks

of these genes were then algorithmically generated based on their

connectivity. The graphical representation of the molecular

relationships between genes developed by IPA is presented in

Figure 9 and Figure 10. Based on the input information, the

genes that are down-regulated are shown in green and the up-

regulated genes are shown in red (Figure 9 and Figure 10).

Cytokines, growth factors and oxidative stress enzymes such as

TWEAK, IL-6, IGF binding protein (IGFBP), and SOD were

found to be involved in the network related to drug metabolism,

neurological disease, organismal injury and abnormalities

(Figure 9). This network also showed that many of these genes

are regulated by each other either directly or indirectly.

Furthermore, the networks related to cell cycle, cancer and

nervous system development and function showed that several

genes such as Nfkb2, NFkBia, BRCA1, Vegf, Jag2, Notch1,

EGR1, FoxS1 and collagen type I were regulated by TNF

(Figure 10).

Discussion

Although there is significant amount of literature suggesting the

role of TNF-a in skeletal muscle wasting [3,35,36,37,38], the

molecular mechanisms by which TNF-a induces muscle loss

remain poorly understood. In this study, we have employed

combination of microarray, bioinformatics tools, and biochemical

techniques to identify potential mechanisms by which TNF-a
might be regulating skeletal muscle mass.

TNF-a induces the expression of several cytokines,
chemokines, protein kinases, and transcriptional factors
in cultured myotubes

The microarray analysis of TNF-treated C2C12 myotubes

revealed that a total of 723 genes were significantly down

regulated and 1,099 genes were significantly up regulated by

TNF treatment with a p-value #0.05 and fold values of $1.2.

Among the significantly up-regulated genes CXCL5 (8-fold),

Figure 6. TNF-a activates canonical and alternative NF-kB pathways in C2C12 myotubes. A) C2C12 myotubes were treated with 10 ng/ml
of TNF for indicated time periods and the activation of NF-kB was measured by EMSA. The representative EMSA gel presented here shows that there
is a significant increase in NF-kB activity in myotubes upon treatment with TNF-a. B) C2C12 myotubes were treated with 10 ng/ml of TNF-a for
indicated time followed by performing Western blots using anti-IkBa, anti-p100/52, and anti-phospho-IKKa. C). Analysis of NF-kB/DNA complex by
super shift assays in myotubes treated with TNF-a for different lengths of time. D). The relative expression of TWEAK and Fn14 in control and TNF-
treated myotubes determined by QRT-PCR. *p,0.05, values significantly different from untreated myotubes.
doi:10.1371/journal.pone.0013262.g006
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NFkB1 (1.6-fold), CCL2 (3.7-fold), CCL5 (3.6-fold), Vcam1 (3-

fold), Taf2 (2.7-fold), Csf1 (2-fold), IL-6 (1.7-fold), Tnfaip3 or A20

(1.6-fold), MMP9 (1.5-fold), NFkB2 (1.4-fold), Traf5 (1.4-fold),

TWEAK (1.4-fold), CXCR3 (1.37-fold), VEGF(1.28-fold), Brca1

(1.27-fold) and Creb5 (1.24-fold) are the genes having either direct

or indirect role in many pathways induced by TNF-a. Infiltration

of leukocytes is a characteristic feature of acute inflammatory

condition which is found in many secondary myopathies. A study

on large selection of alpha/beta-chemokines and their receptors in

normal controls and in the inflammatory myopathies showed a

general increase of specific chemokines and chemokine receptors

[39]. An increase in expression levels of these chemokines and

induction of neutrophil influx have been previously reported upon

injection of TNF-a [40]. A recent study by Vieira et al [41]

showed that intraperitoneal injection of KC/CXCL1 and LIX/

CXCL5 induces dose and time-dependent neutrophil recruitment

and TNF-a production. Consistent with these published reports,

our microarray data show increased expression of many

chemokine ligands and their receptors, especially, Cxcl5 which is

up-regulated by 8-fold. The validation by QRT-PCR further

confirmed the up-regulation of these chemokine networks by

TNF-a (Figure 2A). These observations suggest that TNF-a
induces the expression of chemokines and their receptors, leading

to acute inflammation and myopathy.

Vascular cell adhesion molecule-1 (VCAM1), also known as

CD106, is expressed in a number of tissues including skeletal

muscle and its expression is increased in response to proinflam-

matory cytokines. It is one of the important target genes of NF-kB

transcription factor [12]. The VCAM-1 protein mediates the

adhesion of lymphocytes, monocytes, eosinophils, and basophils to

different tissues. It also functions in leukocyte-endothelial cell

signal transduction, and it may play a role in the development of

atherosclerosis and rheumatoid arthritis. Recent studies of Do et

al. [42] on microarray analysis of TNF treated human SGBS

adipocytes also reveal the up-regulation of this inflammatory gene.

Consistent with these studies, our microarray analysis of TNF-

treated myotubes showed increased expression of VCAM1, which

was further validated by QRT-PCR (Figures 2A and 4A).

Interleukin IL-6 is an important cytokine which acts as both

pro-inflammatory and anti-inflammatory molecule. This cytokine

is also called as ‘myokine’ because it is also expressed by skeletal

muscle and its levels are elevated during muscle contraction [43].

In one study, enhanced gene expression of IL-6 and decreased

levels of insulin signaling pathway and Akt pathway was observed

when enterocytes were treated with TNF-a [44]. Similar findings

were observed in an independent study, where the infusion of

angiotenisn II (AngII) increased circulating IL-6 in mice and

triggered protein degradation via suppression of insulin signaling

[45]. Our experiments demonstrate that TNF-a induces the

expression of IL-6 in myotubes (Figure 2A) suggesting that TNF-

a may also function through augmenting IL-6 expression to

further accelerate inflammation and protein degradation in

skeletal muscle.

TNF suppresses the expression of genes involved in
myogenesis, regeneration and ubiquitin proteasomal
degradation

Our oligonucleotide microarray analyses of TNF-treated

myotubes showed significant down-regulation of many important

genes such as inhibitor of DNA binding 3 (21.63-fold), Notch1

(21.57-fold), FGF21 (21.4-fold), procollagen type IV (21.4-fold),

phosphoglycerate mutase2 (21.4-fold), protein kinase inhibitor,

alpha (21.38-fold), Myod1 (21.3-fold), Smad6 (21.3-fold),

Mapk4 (21.3-fold), Tgfb3 (2.127-fold), FoxD2 (2.127-fold),

adenylate cyclase 9 (21.27-fold), Mef2c (21.27-fold), Insulin-like

5 (21.26-fold), Timp2 (21.26-fold), Jagged 2 (21.22-fold), Sod1

(21.22-fold), Jun (21.21-fold), and Tgfb inducible early growth

response (2.12-fold).

Recent studies have demonstrated that myogenic transcription

factors such as serum response factor (SRF), MEF2c, and MyoD

control the expression of myomiRs in skeletal and cardiac muscles

[46]. Our microarray experiment showed that TNF-a inhibits the

expression of MEF2c and MyoD transcription factors in cultured

myotubes (Table S1). We have previously demonstrated that

TWEAK reduces the levels of MyoD and myogenin in

differentiating C2C12 cultures [47]. We have also shown that

TWEAK down-regulates the expression levels of MEF2C in both

microarray as well as QRT-PCR in C2C12 myotubes [28]. In

correlation with these observations, we have also shown that

TWEAK down-regulates the myomiRs regulated by MEF2c

including miR-1, 133 and 206 [28]. The microarray analysis of

TNF-treated myotubes in the present study showed a significant

reduction in MEF2c and MyoD. The down-regulation of MyoD

was further confirmed by QRT-PCR (Figures 2A and 4B).

From these observations, we can speculate that similar to

Figure 7. Role of TNF-a and IL-1b in the activation of alternative
NF-kB signaling pathway. A). C2C12 myotubes were incubated with
or without TNF-a (10 ng/ml) continuously for 18h or for only 9h
followed by changing the medium with fresh differentiation medium
without TNF-a and incubation for additional 9h. The cell lysate made
were analyzed by Western blotting for p100/p52 protein. A represen-
tative immunoblot presented here demonstrate that removal of TNF-a
after 9h did not affect the TNF-induced expression/processing of p100/
p52 proteins. B). C2C12 myoblasts were treated with IL-1b (10 ng/ml)
for indicated time periods and the levels of p100/p52 and IkBa protein
were measured by Western blot. Data presented here show that IL-1b
induced the degradation of IkBa protein (after 30 min and 1h) but did
not affect the levels of either p100 or p52 proteins. TNF-a or IL-1b did
not affect the levels of an unrelated protein tubulin in C2C12 cultures.
doi:10.1371/journal.pone.0013262.g007
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TWEAK, TNF-a might also block myogenic differentiation by

down-regulation of specific myogenic regulatory factors and

thereby inhibiting the expression of various MyomiRs (miR-1,

133 and 206). These possibilities will be investigated in future

studies.

We also observed down-regulation of an antioxidant enzyme,

superoxide dismutase 1 (SOD1). SOD1 is a well-known player of

the anti-oxidative defense. The direct evidence of SOD1 in

muscular atrophy was recently reported by Muller et al. [48],

where they showed a dramatic increase in mitochondrial reactive

oxygen species (ROS) in three conditions of muscular atrophy in

animals lacking Sod1. In another study, mutations in Sod1gene

(SOD1G93A) selectively in skeletal muscle showed progressive

muscle atrophy with concomitant reduction in muscle strength,

alterations in contractile apparatus, and mitochondrial dysfunction

[49]. In this study they also analyzed the molecular pathways

associated with muscle atrophy by Sod1 mutation and found that

accumulation of oxidative stress initiated autophagy and thereby

degradation of muscles. This suggests that skeletal muscle is the

primary target of Sod1 mutation-mediated toxicity whereby

oxidative stress triggers muscle atrophy. The down-regulation of

this important antioxidant in response to TNF-a treatment in our

microarray data suggests a possible link between the regulation of

Sod1 and TNF-induced muscular atrophy.

Another important gene that was significantly down-regulated

by TNF and is worth mentioning is Notch1. Notch-1 receptors are

transmembrane proteins which are expressed in a broad range of

tissues and function in diverse developmental and cell maturation

processes [50,51]. The intracellular regions of Notch receptors

contain several functional motifs: ankyrin/CDC10 repeats, RAM,

nuclear localization signals (NLS), PEST sequences, and a

glutamine-rich domain [50]. Ligands such as Delta or Jagged/

Serrate induce a second cleavage that requires presenilins at a site

within the transmembrane region of Notch [52,53] leading to

release of the intracellular fragment of Notch, which binds to

numerous nuclear and cytoplasmic proteins. Besides its role in

regulation of the activity of other transcription factors, recent

studies have shown that constitutively expressed Notch-1 functions

as a novel IkB-like molecule and regulates NF-kB-mediated gene

expression through a direct interaction with the NFkB1 (i.e. p50)

subunit [54,55]. This interaction prevents NF-kB from binding to

NF-kB recognition sites in DNA to regulate NF-kB-dependent

Figure 8. Differentially expressed genes associated with canonical pathway in the Ingenuity Pathway Analysis (IPA). Top canonical
pathways affected by TNF-a treatment were identified by using IPA analysis. Here the differentially regulated genes with p-value #0.05 and fold
change $1.2 were considered for IPA analysis. Bars represent 2log p-value and percentage of genes present in the data set compared to the total
number of genes present in each selected pathway in IPA data base. The yellow line represents 2log p-value of affected genes to the total number of
genes in a pathway. Each bar was represented in two different colors in which red correspond to the up-regulated genes and green corresponds to
down-regulated genes. The percentage of up-regulated and down-regulated genes in each selected canonical pathway can be measured in
percentage scale given on y-axis (left side).
doi:10.1371/journal.pone.0013262.g008
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Figure 9. Network of genes involved in neurological disease and organismal injury in TNF-treated myotubes. The gene network
presented here was adopted from Ingenuity pathway analysis tool with differentially regulated genes by TNF-a with p-values #0.05 and $1.2-fold.
The solid lines connecting molecules here represent a direct relation and dotted lines an indirect relation. The genes shown in red are up-regulated
whereas down-regulated genes are shown in green color.
doi:10.1371/journal.pone.0013262.g009

Figure 10. TNF-a regulates gene networks involved in nervous system development, cell cycle and cancer. Schematic representation of
gene network obtained from Ingenuity pathway analysis tool with differentially regulated genes by TNF-a with p-values #0.05 and $1.2-fold. The
solid lines connecting molecules here represent a direct relation and dotted lines are representation of an indirect relation. The genes shown in red
color boxes are those which are up-regulated whereas down-regulated genes are shown in green color boxes.
doi:10.1371/journal.pone.0013262.g010
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gene expression [54,55]. Therefore, the reduced levels of Notch1

(Figures 2B and 5C) may be responsible, at least in part, for

sustained activation of NF-kB in skeletal muscle cells in response to

TNF-a.

TNF-a induces the activation of both canonical and
alternative NF-kB signaling pathways in myotubes

Accumulating evidence strongly suggests that NF-kB is one the

most important signaling pathways, the activation of which leads

to skeletal muscle wastage [10]. NF-kB activation can occur

through two parallel pathways. The canonical NF-kB signaling

pathway involves the upstream activation of IkB kinase-b (IKKb)

and subsequent phosphorylation and degradation of IkB proteins

[56,57,58]. In contrast, the activation of the alternative NF-kB

pathway requires the upstream activation of NF-kB-inducing

kinase (NIK or MAP3K14) and IKKa and the proteolytic

processing of NFkB2 (p100 subunit) into p52 protein [57,58].

Previous studies from our group and other laboratories have

demonstrated that TWEAK increases the activation of both

canonical and alternative NF-kB pathways [32,59]. However,

there has been no report on the activation of alternative NF-kB

pathway by TNF-a in skeletal muscle. The microarray analysis in

the present study showed that TNF-a increases the expression

levels of both NFkB1 and NFkB2 in skeletal muscle cells

(Figures 2A, 3A, 4A, 5A, and 6B). We also performed Western

blots and EMSA and super-shift assays with radio-labeled NF-kB

at different time points after the addition of TNF-a in cultured

myotubes. These experiments demonstrated that TNF-a induces

NF-kB activity via canonical pathway initially (Figure 6B).

However a time-dependent increase in the components of

alternative pathway was observed at later time points. These

include the phosphorylation of IKKa, proteolytic degradation of

p100 into p52 (Figure 6B), and presence of p52 and RelB

subunits in NF-kB/DNA complex in super shift assays

(Figure 6C). Since the activation of alternative pathway persisted

even upon removal of TNF-a from culture medium after 9h

(Figure 7A), these observations suggest that TNF-a alone might

provide sufficient signal to activate alternative NF-kB pathway in

skeletal muscle. It is also noteworthy that the activation of

alternative NF-kB pathway in myotubes may be specific to TNF-a
and TWEAK. This inference is supported by our findings that

while IL-1b augmented the degradation of IkBa protein (an

important event in the activation of classical pathway), it did not

affect the levels of p100 and p52 proteins (Figure 7B). In future

studies, it will be interesting to investigate which pathway mediates

the loss of skeletal muscle mass in response to TNF-a.

TNF-a affects multiple molecular pathways and gene
networks in C2C12 myotubes

The Ingenuity pathway analysis (IPA) of the selected genes that

are differentially regulated by TNF treatment in C2C12 myotubes

showed that it affects the activation of multiple canonical pathways

in skeletal muscle cells. The major pathways affected by TNF-a
are those involved in initiation and manifestation of fibrosis,

oxidative stress, and mitochondrial dysfunction (Figure 8).

Interestingly, it has now become increasingly clear that skeletal

muscle wasting in both chronic diseases and disuse conditions

leads to the up-regulation of these pathways in skeletal muscle

[10,23,60,61] suggesting that TNF-a may be one of the important

stimuli for their activation in catabolic conditions. Our analysis

also showed that TNF-a affects the pathway involved in

neurological disease and organismal injury (Figure 9) and nervous

system development, cell cycle and cancer (Figure 10). Though

TNF and TWEAK are two cytokines that share similar functions,

it is of considerable importance that they affect distinct gene

networks. Our previous studies showed the up-regulation of

proteasomal pathway by TWEAK [28] but not by TNF-a. These

studies further indicate that different inflammatory cytokines may

regulate different set of molecular pathways in skeletal muscle and

coordinated activation of these pathways may be responsible for

the loss of skeletal muscle mass and myopathy in a particular

disease state.

Conclusions: The data presented in this study suggest that

TNF-a affects the expression of specific set of genes which are

involved in the regulation of various molecular pathways/

processes including extracellular matrix degradation, NF-kB

signaling, Notch1 signaling, chemokine network, apoptosis, and

muscle cell proliferation and differentiation. The study has also

identified the activation of alternative NF-kB signaling pathway in

C2C12 myotubes in response to TNF-a. The present study will

provide strong basis for further delineating the molecular

mechanisms of TNF-induced muscle wasting in different disease

states.

Materials and Methods

Reagents
Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine

serum (FBS), Horse serum was purchased from Sigma Chemical

Company (St. Louis, MO). Recombinant mouse TNF-a protein

and antibodies against MMP-9 and TIMP2 were purchased from

R&D Systems (Minneapolis, MN). Antibodies against IkBa, p50,

p65, c-Jun, phospho-p52, phospho-IkB, phospho-IKKa and

Notch1 were purchased from Santa Cruz Biotechnology (San

Diego, CA). Tubulin, p52/100, RelB, IKKa, IKKb and NFkB2

antibodies were obtained from Cell Signaling Technology

(Beverly, MA). NF-kB consensus oligonucleotides and Dual-

Luciferase assay kits were purchased from Promega (Madison,

WI). Primers for PCR were synthesized by Integrated DNA

Technologies (Coralville, IA) or Sigma-Genosys (Woodlands, TX).
32P-c-ATP was obtained from MP Biomedicals (Solon, OH).

Cell Culture
C2C12 myoblastic cell line was obtained from American Type

Culture Collection (Rockville, MD). These cells were grown in

Dulbecco’s modified Eagle’s Medium (DMEM) containing 20%

fetal bovine serum. C2C12 myoblasts were differentiated into

myotubes by incubation in differentiation medium (DM, 2% horse

serum in DMEM) for 96h as described [47,62]. Myotubes were

maintained in DM and medium was changed every 48h.

cDNA Microarray
Total RNA was isolated from control and TNF-treated C2C12

myotubes using the Agilent total RNA isolation kit (Agilent

Technologies, Palo Alto, CA). Any contaminating DNA was

removed using DNA-freeTM kit from Ambion (Ambion, Austin,

TX). The total RNA concentration was determined by NanoDrop

spectrophotometer, and RNA quality was determined by 18S/28S

ribosomal peak intensity on an Agilent Bioanalyzer. RNA samples

from five wells per condition were separately subjected to

microarray analyses.. Custom cDNA slides were spotted with

Oligator ‘‘MEEBO’’ mouse genome set with 38,467 cDNA probes

(Illumina, Inc., San Diego, CA), which allows interrogation of

25,000 genes. A Q-Array2 robot (Genetix) was used for spotting.

The array includes positive controls, doped sequences, and random

sequences to insure correct gene expression values were obtained

from each array. A total of 250 ng RNA was used to synthesize
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double stranded cDNA using the Low RNA Input Fluorescent

Linear Application Kit (Agilent). The microarray slides were

scanned using a GSI Lumonics ScanArray 4200A Genepix scanner

(Axon). The image intensities were analyzed using the ImaGene 5.6

software (Biodiscovery, Inc., El Segundo, CA). Expression analysis

of microarray experiments was performed with GeneSpring 7.1

(Silicon Genetics, Palo Alto, CA) using the raw intensity data

generated by the ImaGene software. Local background was

subtracted from total signal intensities and was used as intensity

measures. The data were normalized using per spot and per chip

LOWESS normalization. Data analysis was performed using SAS

(SAS Institute, Cary, NC), R and Q value software. The probe sets

with absent calls across all samples were removed to reduce the

multiple-testing problem. The expression levels were normalized to

the chip median and log transformed. Two–way ANOVA tests were

carried out to identify differentially expressed genes. For each probe

set, the model yijk~mzaizbjzcijzeijk was fit, where yijk is the

log-transformed expression level of the kth chip in the ith treatment

and the jth replicate. The variable m represents the grand mean

expression, ai is the effect due to the treatment, bj is the effect due to

the replicate, cij is the interaction effect between treatment and

replicate, and eijk is an error term, which is assumed to be normally

distributed with mean 0 and variance s2. Q values computed using

Q value software indicates the false detection rate for each probe set.

Ratio comparison was performed by dividing expression levels in

TNF-treated myotubes with the expression levels in untreated

myotubes. Functional classification of select probe sets was

performed at NIH DAVID server (http://apps1.niaid.nih.gov/

david/upload.asp). Volcano plots were prepared using the R

program. The complete raw and normalized microarray data have

been submitted in MIAME compliant ArrayExpress (http://www.

ebi.ac.uk/microarray-as/ae/) database with accession number

E-MEXP-2592.

Quantitative Real-Time-PCR (QRT-PCR)
The expression of the differentially regulated genes from the

microarray data set was validated using QRT-PCR as previously

described [47,62]. Briefly, purified RNA (1 mg) from myotubes

was used to synthesize first strand cDNA by reverse transcription

system using Ambion’s oligo-dT primer and Qiagen’s Omnis-

cript reverse transcriptase according to the manufacturer’s

instructions. The first strand cDNA reaction (0.5 ml) was

subjected to real time PCR amplification using gene specific

primers. The primers were designed using Vector NTI Xi

software (Invitrogen).

Quantification of mRNA was done using the SYBR Green

method on ABI Prism 7300 Sequence Detection System (Applied

Biosystems, Foster City, CA). Approximately 25ml of reaction

volume was used for the real time PCR assay that consisted of 26
(12.5ml) Brilliant SYBR Green QPCR Master Mix (Applied

Biosystems), 400nM of primers (0.5 ml each from the stock), 11ml

of water, and 0.5 ml of template. The thermal conditions consisted

of an initial denaturation at 95uC for 10 minutes followed by 40

cycles of denaturation at 95uC for 15 sec, annealing and extension

at 60uC for 1 minute, and a final step melting curve of 95uC for

15 sec, 60uC for 15 sec, and 95uC for 15 sec. All reactions were

carried out in triplicate to reduce variation. The data was analyzed

using SDS software version 2.0, and the results were exported to

Microsoft Excel for further analysis. Data normalization was

accomplished using the endogenous control b-actin and the

normalized values were subjected to a 22DDCt formula to calculate

the fold change between the control and experimental groups. The

formula and its derivations were obtained from the ABI Prism

7900 Sequence Detection System user guide.

Pathways and Networks Analyses
Relative levels of gene expression were first computed with

GeneSpring 7.1 to obtain data sets of differentially regulated genes

based on cut-off values of 5% error rate (p,0.05, determined by t-

test with Benjamini and Hochberg Multiple Testing Correction).

These data sets included up and down regulated genes when

C2C12 myotubes were treated with TNF. The second step of

analysis consisted of identifying canonical pathways. Tab separat-

ed (txt) files containing Accession IDs and symbols derived from

MEEBO genome set and the normalized expression ratios were

then uploaded to Ingenuity Pathways Analysis. Ingenuity Path-

ways Analysis is a web-delivered bioinformatics tool (IPA 5.0,

http://www.ingenuity.com) to identify pathways and functional

networks. IPA knowledge database is generated from the peer-

reviewed scientific publications that enables discovery. The

Accession IDs and symbols in each data set were queried against

all genes stored in the IPA knowledge database for pathway

analysis. Canonical pathways analysis identified the pathways from

IPA library of canonical pathways that were most significant to the

data set. The significance of the association between the data set

and the canonical pathways was measured in 2 ways: 1) A ratio of

the number of genes from the data set that map to the pathway

divided by the total number of genes that map to the canonical

pathway is displayed. 2) Fisher’s exact test was used to calculate a

p-value determining the probability that the association between

the genes in the data set and the canonical pathway is explained by

chance alone.

Western Blot
Western blotting was performed to measure the levels of

different proteins using a standard protocol in our laboratory as

described [32,47,62].The dilution of primary antibody was as

follows: anti-IkB (1:1000), anti-NFkB2 (1:500), anti-MMP-9

(1:2000), anti-p52/100 (1:1000), anti-p50 (1:1000), anti-RelB

(1:1000), anti-phospho IKKa (1:500) anti-Notch1 (1:1000), anti-

TIMP2 (1:500), and anti-tubulin (1:3000). Immunoblots were

quantified using ImageQuant TL software (GE Healthcare).

Electrophoretic mobility shift assay (EMSA)
The activation of NF-kB transcription factors was measured by

EMSA. A detailed procedure for the preparation of nuclear and

cytoplasmic extracts and EMSA has been described previously

[47].

Statistical Analysis
Methods used for statistical analysis of the cDNA microarray

has been described above. For all other studies, results were

expressed as mean 6 SD. The Student’s t test was used to

compare quantitative data populations with normal distributions

and equal variance. A value of P,0.05 was considered statistically

significant unless otherwise specified.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0013262.s001 (0.28 MB

DOC)
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