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Abstract
The ability to predict the efficacy of molecularly-targeted therapies for non-small cell lung cancer
(NSCLC) for an individual patient remains problematic. The purpose of this study was to identify
tumor biomarkers, using a refined “coexpression extrapolation (COXEN)” algorithm with a
continuous spectrum of drug activity, that predict drug sensitivity and therapeutic efficacy in NSCLC
to Vorinostat, a histone deacetylase inhibitor, and Velcade, a proteasome inhibitor. Using our refined
COXEN algorithm, biomarker prediction models were discovered and trained for Vorinostat and
Velcade based on in vitro drug activity profiles of 9 NSCLC cell lines (NCI-9). Independently, a
panel of 40 NSCLC cell lines (UVA-40) was treated with Vorinostat or Velcade to obtain 50% growth
inhibition values. Genome-wide expression profiles for both the NCI-9 and UVA-40 cell lines were
determined using HG-U133A Affymetrix platform. Modeling generated multi-gene expression
signatures for Vorinostat (45-gene, p=0.002) and Velcade (15-gene, p=0.0002), with one overlapping
gene (CFLAR). Examination of Vorinostat gene ontogeny revealed a predilection for cellular
replication and death, whereas those of Velcade suggested involvement in cellular development and
carcinogenesis. Multivariate regression modeling of the refined COXEN scores significantly
predicted the activity of combination therapy in NSCLC cells (p=0.007). Through the refinement of
the COXEN algorithm, we provide an in silico method to generate biomarkers that predict tumor
sensitivity to molecularly-targeted therapies. Use of this refined COXEN methodology has
significant implications for the a priori examination of targeted therapies to more effectively
streamline subsequent clinical trial design and cost.
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Introduction
The need for new pharmacogenomic approaches to drug discovery and subsequent clinical
validation in the treatment of non-small cell lung cancer (NSCLC) is based on two important
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observations. First, approximately 70% of patients with NSCLC present with stage III/IV
disease where standard of care guidelines consists of a platinum-based doublet
chemotherapeutic regimen with or without local therapies such as surgery or radiation (1).
Unfortunately, the results of these platinum-based doublet therapies to treat advanced stage
NSCLC patients are poor (2). Second, several recent phase III clinical trials have demonstrated
an 8-10% improvement in 5-year survivals in patients following surgery who receive adjuvant
chemotherapy for node-positive NSCLC (3-6). The converse is that 90% of patients who
receive that same adjuvant chemotherapy receive no benefit, but incur all the risks of
subsequent toxicities and cost of such an all-inclusive approach. Therefore, an unmet need
exists for drug discovery platforms to identify new, clinically effective therapeutic agents.

Research is currently focused on identifying novel molecularly-targeted therapies that exploit
the underlying mechanisms of tumorigenesis and/or tumor cell signal transduction pathways
involved in chemoresistance (7-9). In addition, the inability to predict accurately the efficacy
of these molecularly-targeted agents for an individual patient remains problematic. Advances
in gene expression profiling have begun to dissect the problems outlined above by using a
signature-based therapeutic approach for drug discovery and also for predicting
chemosensitivity profiles for individual patients (10-14).

We have investigated the utility of combination histone deacetylase (HDAC) and proteasome
inhibitors as a molecularly-targeted treatment strategy in NSCLC (8,15,16). Isolated HDAC
therapy has little effect on NSCLC cell viability, in large part secondary to activation of the
anti-apoptotic transcription factor NF-κB through Akt-mediated enhancement of p300
acetyltransferase activity that promotes acetylation of RelA/p65, the transcriptionally active
subunit of NF-κB (16). However, when HDAC inhibitors are combined with a proteasome
inhibitor, there was a robust, dose-dependent increase in NSCLC cell apoptosis (8). While this
increased NSCLC cell death was encouraging, it was apparent there were varying degrees of
combination drug sensitivity in selected NSCLC cell lines, regardless of tumor p53, K-Ras, or
p16 mutational profiles. Thus, while in vitro and in vivo studies (8,15,16) suggest combined
HDAC and proteasome inhibition has promise in the treatment of NSCLC, selection of which
patient could benefit from such therapy is uncertain. Furthermore, traditional “bench to market”
methodologies (i.e. Phase I-III clinical trials) used to assess drug therapy efficacy are lengthy
(17), costly (18,19), and often fail to yield “positive” results (20); these very real concerns all
demand a different approach to the problem of which patient will benefit from which drug(s).

In this report, we use the refined version of the “coexpression extrapolation (COXEN)”
algorithm (21,22) applied to 40 NSCLC cell lines to identify tumor biomarkers that predict
drug sensitivity to Vorinostat (Supp. Fig. 1A, Merck, Inc., Whitehouse Station, NJ), a HDAC
inhibitor, and Velcade (Supp. Fig. 1B, Millennium Pharmaceuticals, Cambridge MA), a
proteasome inhibitor. We demonstrate the high prediction capability of this refined COXEN
methodology through which we develop a formula that predicts the probable efficacy of
combined Vorinostat and Velcade therapy in NSCLC. Based on this, we provide an in silico
method through which in vitro assessment of compounds such as Vorinostat and Velcade, in
isolation or in combination, can be used to generate biomarkers that are highly predictive of
tumor sensitivity.

Materials and Methods
Cell culture, cell lines, reagents, and RNA isolation

Forty human NSCLC cell lines (UVA-40, Supp. Table 1) were obtained from both American
Type Culture Collection (ATCC, Manassas, VA) and the lab of John D. Minna, MD (University
of Texas Southwestern Medical Center, Dallas, TX) from October 2008 until April 2009, and
were grown as previously described (23). All cell lines were used within 6 months of receipt

Nagji et al. Page 2

Mol Cancer Ther. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and have been DNA fingerprinted for provenance using the Promega GenePrint® PowerPlex
1.2 kit (Madison, WI) and confirmed to be the same as the DNA fingerprint library maintained
by either ATCC or the Minna/Gazdar lab. Vorinostat was purchased from Sigma-Aldrich (St.
Louis, MO). Velcade was provided through a materials transfer agreement with Millennium
Pharmaceuticals (Cambridge, MA). Total RNA isolation from these cell lines was performed
as previously described (23).

Drug activity assay for cell-line growth inhibition
Human NSCLC cell lines were plated in 96-well culture plates (Costar, Corning, NY) at a
density of 1,000 cells per well in 50 μL of complete media as previously described (23) with
experimental and control plates, incubated at 37°C. After 6 hours of incubation, the control
plates were treated with Alamar Blue (Invitrogen Corporation, Carlsbad, CA) to assess a
baseline value for each cell line. After 24 hours of incubation, the experimental plates were
treated with Vorinostat, Velcade, or a combination of the two drugs. Each drug dose was plated
in eight repeats. The doses for Vorinostat were (in μM): 0, 0.1, 0.5, 1, 5, 10, and 20. The doses
for Velcade were (in nM): 0, 5, 10, 25, 50, 100, and 200. The doses for combination therapy
were Vorinostat (μM)/Velcade (nM) combination were: 0/0, 0.1/5, 0.5/10, 1/25, 5/50, 10/100,
and 20/200. The experimental plates were then incubated for 72 hours (at 37°C) and
subsequently treated with Alamar Blue to assess growth inhibition. Drug doses were
determined base on previous growth inhibition assays (8).

Microarray expression analysis
The gene profile data of 40 NSCLC cell lines were collected using the Affymetrix HG-U133A
platform and are available at Gene Expression Omnibus (GEO)
http://www.ncbi.nlm.nih.gov/geo/. Four of these 40 NSCLC cell lines (NCI-H125, NCI-H226,
NCI-H292, and NCI-H596) were profiled using Affymetrix HG-U133A GeneChips®
(Affymetrix, Santa Clara, CA, USA) at the University of Virginia. Samples of RNA were first
assessed for quality using the Agilent 2100 Bioanalyzer (Agilent Technologies, Foster City,
CA, USA), performing electrophoretic separations that allowed the inspection for two
ribosomal peaks, suggesting no degradation had occurred. Samples were then prepared for
analysis using the protocol outlined in the Affymetrix GeneChip® Expression Analysis
Technical Manual
(http://www.affymetrix.com/support/downloads/manuals/
expression_analysis_technical_manual.pdf).

Statistical analysis
Estimation of GI50 Values—A nonparametric spline regression technique with the
constraint that each drug's higher dose concentration provides at least equal or higher drug
efficacy (inhibition) than its lower concentration was applied for estimating the drug activities
across each drug's experimental range of dose concentration. The smoothness parameter of
spline was tuned objectively using the generalized cross validation (GCV) method (24). The
software for generalized additive models in mgcv package (25) for R was used for the dose-
effect curve estimation, and a combination of golden section search and successive parabolic
interpolation for one dimensional optimization (26), implemented with the nlminb routine of
R, was utilized to obtain the final GI50 estimates by inverting the dose-effect curves.

Refined COXEN algorithm—The COXEN algorithm (21) is an in silico method to develop
molecular-based prediction models by identifying and using the biomarkers that are
concordantly expressed between two independent cancer systems or populations (i.e. the NCI-9
and UVA-40 sets in this study). In brief, COXEN is composed of six distinct components or
steps: obtaining relevant drug activity data on the training set (step 1), molecular expression
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data both on the training and test sets (step 2 & 3), initial drug sensitivity biomarker discovery
on the training set (step 4), sub-selection of COXEN biomarkers (step 5), and multivariate
prediction modeling with these COXEN biomarkers on the training set (step 6). Note that drug
activity data on the test set are not needed in these steps and are only prospectively compared
with the molecular-based COXEN prediction scores.

In this study, we developed and applied a refined version of COXEN algorithm. Specifically,
principal component regression in lieu of linear discriminate analysis was employed for
multivariate prediction modeling (step 6). As such, the drug activity data is measured on a
continuous scale and no longer divided into either sensitive or resistant groups at the expense
of potential information loss. The resultant COXEN scores are predicted GI50 values with a
continuous spectrum. Applying the refined COXEN algorithm (Fig 1.), we obtained predictive
COXEN biomarkers on a continuous spectrum of drug activity for both individual and
combination therapy using Vorinostat and Velcade (Supp. Table 2).

COXEN biomarker selection and prediction modeling for single drug activity—
The GI50 values and gene expression profiles of the NCI-9 NSCLC cell lines (NCI-9) among
the National Cancer Institute's public database of 60 cancer cell lines (NCI-60) were utilized
to rank genes according to their association with the drug activities of each compound. Our
application of the refined COXEN algorithm was first rigorously evaluated using a random
cross-validation strictly dividing modeling, training, and test subsets. In brief, the UVA-40
panel of NSCLC cell lines was randomly assigned into two independent subsets. The subset
used to filter biomarkers and to construct a prediction model was comprised of 19 NSCLC cell
lines treated with Vorinostat or Velcade (Construction Subset). The other subset of the UVA-40
panel strictly reserved for validation of the prediction model was comprised of 18 NSCLC cell
lines treated with Vorinostat and 19 NSCLC cell lines treated with Velcade (Validation Subset).
Note that three NSCLC cell lines treated with Vorinostat and two NSCLC cell lines treated
with Velcade were excluded from our prediction modeling due to high experimental variations
of drug activities (Supp. Fig. 2). For a robust statistical inference, we performed this random
split 100 times.

With each split, to maintain concordant expression patterns between two independent systems,
i.e., the NCI-9 and UVA-40 sets, we triaged the top-ranked 200 biomarkers by filtering the
ones that showed inconsistent expression patterns between the NCI-9 and the Construction
Subset. After the mild filtration, the top-ranked biomarkers served as input variables for
constructing multivariate prediction models on the NCI-9. Adding one additional input variable
at a time, the candidate prediction models were constructed and the performance of each model
was assessed by a rank-based association between its prediction scores and the experimentally
measured GI50 values of the Construction Subset along with its 95% bootstrap confidence
interval (Supp. Fig. 3). Note that the sequentially enlarged gene space in high dimension was
reduced to a few of major orthogonal directions of the input space with most variations. Among
the candidate prediction models, the COXEN prediction model was chosen to minimize p-
values of the association tests with the narrowest confidence interval, and was independently
evaluated by the Validation Subset.

Upon the statistical validation of the refined COXEN algorithm, we obtained the final
predictive COXEN biomarkers for Vorinostat or Velcade (Supp. Table 2) on the UVA-40
panel. The performance of the NCI-9 trained COXEN prediction model was then assessed
using a rank-based association between its prediction scores and the experimentally measured
GI50 values of the UVA-40.

Multvariate prediction modeling for combination drug therapy—The resultant
COXEN scores of the single drug prediction models for Vorinostat (Vor) and Velcade (Vel)
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were utilized for building a prediction model for combination therapy (Comb). A multiple
regression form of prediction models with or without interaction terms was considered. Each
candidate prediction model for combination therapy was tested using 1000 runs of a “learning-
test split,” where for each run half of the COXEN scores, from the single drug prediction
modeling, for Vorinostat and Velcade were jointly sampled with corresponding observed
GI50 values of combination therapy. This subset analysis was used to fit a prediction model
having an identical functional form of the final prediction model. Using the other half of the
COXEN scores, the performance of the prediction model was measured by an estimate of the
rank-based Spearman's correlation coefficient with its respective p-value.

Results
Biomarker validation for single drug activity in NSCLC cells

Initial application of the COXEN algorithm to the Construction Subsets of the UVA-40 panel
resulted in COXEN prediction models that selected a 100 gene model for Vorinostat (p<0.05,
Supp. Fig. 3A) and a 45 gene model for Velcade (p<0.05, Supp. Fig. 3B). These models were
highly significant, and corresponding 95% bootstrap confidence intervals were simultaneously
minimized. COXEN scores were obtained from the constructed prediction model and applied
to the Validation Subset of the UVA-40 panel. This subset was strictly reserved for independent
prediction where observed GI50 values were plotted against predicted GI50 values for both
Vorinostat and Velcade. The resultant plots demonstrated highly significant statistical models
with rank-based Spearman's correlations of 0.46 (p=0.0247) for Vorinostat and 0.53
(p=0.0093) for Velcade.

Despite these encouraging observations, it is possible that the performance of the developed
COXEN prediction model may depend on the specific random split of the UVA-40 panel. To
test the robustness of this schema, 100 random splits were performed for both Vorinostat (Supp.
Fig. 4A) and Velcade (Supp. Fig. 4B). The resulting prediction models attained statistical
significance (p-value ≤ 0.1) for both Vorinostat (84%) and Velcade (73%). Therefore, the
randomization of the UVA-40 panel cell lines to either the Construction or Validation Subset
does not play a significant role in the resultant prediction model

With such statistically significant models, we are confident that the COXEN algorithm is
capable of developing a prediction model that can be used to predict single drug sensitivity to
Vorinostat and Velcade.

COXEN multi-gene predictors are predictive of tumor sensitivity to Vorinostat and Velcade
in NSCLC cells

With validation of our COXEN approach to prediction modeling, the multi-gene expression
signatures for both Vorinostat and Velcade were developed on the NCI-9 and UVA-40 NSCLC
cell lines, resulting in a 45-gene model for Vorinostat (Supp. Fig. 5A) and a 15-gene model
for Velcade (Supp. Fig. 5B). Plotting of observed versus evaluated GI50 values for both
Vorinostat (Fig. 2A) and Velcade (Fig. 2B) on UVA-40 NSCLC cell lines demonstrated rank-
based Spearman's correlations of 0.46 (p=0.002) for Vorinostat and 0.55 (p=0.0002) for
Velcade.

To examine the overall expression patterns of the COXEN biomarkers for Vorinostat (Supp.
Table 2A) and Velcade (Supp. Table 2B), we performed a clustering analysis on the UVA-40
(Fig. 3). As shown in Figure 3A for Vorinostat and 3B for Velcade, the UVA-40 cell lines were
largely separated based on their drug sensitivity in this unsupervised clustering analysis. In
order to demonstrate each gene's relative expression pattern between sensitive and resistant
cell lines, the clustering heatmaps were refined from their original output, where there existed
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a small number of large intensity values which dominated the heatmap landscape, based on
their relative ranks of expression intensities. Though simply compared, these clustering
heatmaps could show predictive potential of these biomarkers.

To determine which, if any, specific biomarkers were essential to the highly predictive nature
of the models, each set of biomarkers was tested using random samplings. In testing the
robustness of the gene signatures, 1000 random samplings of two-thirds of the genes from each
drug compound (Vorinostat – 30 genes and Velcade – 10 genes) demonstrated an overall
consistent predictability of the models (p<0.0005, Supp. Fig. 6). This implies that, within the
respective gene models, there were no biomarkers that critically affected the performance of
the prediction models.

Examination of specific tumor biomarkers for Vorinostat and Velcade
When evaluating the resultant 45 tumor biomarker signature for Vorinostat (Fig. 3A), we find
that 4 genes appear multiple times: met proto-oncogene (MET), CD44 molecule (CD44),
microtubule associated monoxygenase, calponin and LIM domain containing 2 (MICAL2), and
calmodulin 1 (CALM1). The multiple appearances of these genes are a function of how the
COXEN algorithm probes for significant biomarkers. In using different probes to scan the
genome, genes that span large segments of the genome may be picked up by multiple probes,
thereby appearing multiple times. Importantly, the presence of a gene multiple times (i.e.
CD44) does not affect the prediction performance of our model (Supp. Fig. 7), since their
contributions were mathematically optimized when multiple probes were included in our
multivariate model. Thus, our prediction models were quite robust. Additionally, the gene
model output renders one biomarker as having only a gene accession number (AK027225),
indicating that this is a novel gene yet to be identified. As such, evaluation of the tumor
biomarker set for Vorinostat reveals 34 distinct genes that determine the sensitivity of the tumor
to single drug therapy with Vorinostat.

Evaluating the resultant 15 tumor biomarker signature for Velcade (Fig. 3B), we find that no
genes appear multiple times and all genes are identifiable. Therefore, the COXEN algorithm
indicates 15 distinct genes as being critical in determining the sensitivity to single drug therapy
with Velcade.

Examination of the gene ontogeny revealed several gene networks involved in tumor cell
replication and death: cellular assembly/organization, cell cycle, and RNA damage/repair gene
networks for Vorinostat and cellular development and carcinogenic gene networks for Velcade
(Table 1). A review of the selected biomarkers for both drugs revealed no significant overlap
with only one shared biomarker, CASP8 and FADD-like apoptosis regulator (CFLAR), for
both Vorinostat and Velcade. Though this suggests independent mechanisms of action for the
two drugs, CFLAR is a regulator of apoptosis found in both gene signatures. This finding
correlates with in vitro studies on NSCLC performed by our group (8,27,28) and also by Grant
and colleagues on multiple myeloma cells (29,30), which demonstrated that treatment with
combined Vorinostat and Velcade resulted in caspase-mediated apoptosis.

Multivariate regression modeling of COXEN scores predicts the activity of doublet therapy
in NSCLC cell lines

We hypothesized that the efficacy of doublet Vorinostat and Velcade therapy efficacy could
be predicted using our refined COXEN algorithm (Fig. 1). Though single drug modeling
indicates only one shared tumor biomarker between Vorinostat and Velcade, prior studies on
NSCLC (8), multiple myeloma (29,30), hematologic T-cell leukemia/lymphoma (31), and
cutaneous T-cell lymphoma cells (32) confirm that combination therapy results in decreased
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cell survival compared to single drug therapy, suggesting that some degree of enhanced activity
exists when both drugs are used.

In searching for multivariate prediction models for the combination therapy, models with and
without a drug interaction term were considered for Vorinostat and Velcade. To examine what
type of function (i.e., linear, parabolic, etc.) that would best represent the combined effect of
Vorinostat and Velcade therapy, we plotted the GI50 values of combination therapy on the
UVA-40 panel against the predicted COXEN scores (GI50 values) for Vorinostat and Velcade
(Supp. Fig. 8), which implied a high linear association with single drug effects for Velcade.

Furthermore, with a significant interaction term in the regression modeling, the final fitted
multivariate regression model (R2 = 0.9986) included both single drug Vorinostat (Vor) and
Velcade (Vel, p=0.06) terms and an interaction term (VorVel, p<0.001). Below is the final
regression model for predicting the activity of doublet Vorinostat and Velcade therapy for
tumors where gene signatures have been identified:

Using the fitted model, observed and predicted GI50 values for combination therapy were
significantly correlated (p=0.007, correlation coefficient=0.41, Fig. 4). The underlying
assumptions (i.e. constant variance and Gaussian distributional specification) of the fitted
model were verified using studentized residual and normal quantile-quantile plots.

Having created a prediction model for combination therapy, we further statistically validated
the performance of the model. Validation of the combination model involved 1000 runs of
“learning-test splits,” where 46.1% of the predictions attained statistical significance (p-value
≤ 0.1, Supp. Fig. 9).

Discussion
One of the primary obstacles to the successful treatment of NSCLC has been the dismal
performance of platinum-based doublet chemotherapeutic regimens (2,33). More recently,
strategies to overcome this impediment have involved the utilization of genomic signatures to
direct use of primary chemotherapy (12). Multiple studies have focused on in vitro modeling
using the NCI-60 panel of cancer cell lines coupled with baseline gene expression profiling to
develop signatures to predict sensitivity to various chemotherapeutic regimens (22,34). The
methodology commonly used is binary in that cell lines are classified as either either sensitive
or resistant to a given agent. Based on that assessment, the respective gene expression data is
then used to generate a biomarker profile for drug sensitivity (22,35). The inherent problem
with this approach is that drug sensitivity is really a continuous spectrum, and as such, should
not be considered a dichotomous variable. Despite the extensive study of genomic signatures,
no other studies prior to this report have developed profiles based on a more natural continuous
spectrum of drug activity on novel molecularly-targeted therapies.

In this study, we introduce the application of a refined COXEN algorithm to ascertain the
efficacy of two novel molecularly-targeted agents, Vorinostat, a HDAC inhibitor, and Velcade,
a proteasome inhibitor, in the treatment of NSCLC. The rationale for using these novel agents
stems from preliminary data that has shown in vitro utility of combination histone deacetylase
and proteasome inhibitors as a molecularly-targeted treatment strategy in NSCLC (8,15,16),
multiple myeloma (29,30), hematologic T-cell leukemia/lymphoma (31), and cutaneous T-cell
lymphoma cells (32). Use of Vorinostat is further justified by preclinical and clinical studies
that support its use in combination with other cancer therapies for the treatment of NSCLC
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(36,37). Finally, it is known that a putative target for HDAC inhibitors lies in the cellular
mechanisms for handling misfolded proteins that are degraded by the proteasome (38).

We have previously used the COXEN algorithm to extrapolate in vitro drug sensitivity results
to well-established, conventional chemotherapeutic compounds to predict tumor behavior in
patients with bladder, breast, and ovarian cancers, with results being validated against
independent clinical trial data (21,39). Previous application of the COXEN algorithm involved
developing gene expression profiles based on the inherent sensitivity or resistance of a cell line
to a chemical compound (21,22,39). Though the COXEN method has been extensively
validated, we propose a refined version of the COXEN algorithm (Fig. 1), whereby the gene
expression profile is developed based on a continuous spectrum of drug activity. This refined
COXEN algorithm eliminates arbitrarily assigned sensitivity/resistance valuations and permits
the study of novel molecularly-targeted compounds, where response levels for the drug have
not been clinically established. With the aforementioned reports having studied tumor behavior
in bladder, breast, and ovarian cancers, we are introducing the first application of COXEN
using novel molecularly-targeted agents, Vorinostat and Velcade, in NSCLC. In using the
refined COXEN, we were able to identify tumor biomarkers that highly predict single drug
sensitivity to Vorinostat and Velcade (Fig. 3, Supp. Table 2).

Another feature of our refined COXEN algorithm is an extension of the methodology to
produce a functional form derived from our single drug COXEN output scores for combined
Vorinostat and Velcade (Fig. 2), which permits the prediction and internal validation of the
probable efficacy of combination therapy for these novel agents on individual tumors. Using
this methodology, we developed a model (Fig. 4) that highly predicts the probable efficacy of
doublet therapy with Vorinostat and Velcade (Supp. Fig. 8). With the current reported
correlation levels of the predicted scores, we can achieve both a >75% positive predictive value
and negative predictive value for the top 20% most sensitive and 20% most resistant cell lines.
That is, with this degree of correlation, a patient guided by our COXEN prediction will have
a >75% certainty either for having a clinical benefit or for avoiding unnecessary toxicity. Given
that current results of platinum-based doublet therapies for advanced stage NSCLC yield 5-
year survival rates of less than 10% (4-6), the ability to use molecular predictors to guide
combined chemotherapeutic therapy, particularly with novel agents, could result in improved
survival rates.

While results from previous applications of the COXEN algorithm were validated against
independent clinical trial data (22,39), this methodology will be nearly impossible to replicate
as efforts are made to introduce new, more “personalized” drug therapies clinically. With the
costs of clinical trials for novel agents steadily rising (40) and the significant number of phase
III trials yielding “negative” results after years of patient accrual (41,42), the current clinical
trial methodology is rapidly becoming obsolete. The refined COXEN algorithm provides a
framework whereby an in silico method can be applied to screen novel molecularly-targeted
therapies in vitro in isolation or in combination to generate biomarkers that predict tumor
sensitivity. The resulting biomarkers can be used to prospectively evaluate which tumor types
would be responsive to the tested agent. This knowledge would then be used to stratify potential
responders into a clinical trial and exclude those non-responders, thereby effectively
streamlining clinical trial design and cost (17). Another potential benefit to a priori knowledge
of biomarkers that predict tumor sensitivity is the ability for drug salvage and/or repositioning
strategy in another tumor system in the case of an ongoing clinical trial that fails to yield a
“positive” result. These secondary clinical trials would be particularly efficient as the
pharmacology and toxicity of the compound(s) would have been already well documented
(13).
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Potential limitations of our analysis include the use of an in-vitro analysis of tumorigenic cell
lines to determine biomarkers that predict sensitivity to anti-cancer agents. Cancer cell lines
derived from human tissue can exhibit heterogeneity (i.e., stemness) (43-45), have differential
doubling times, and grow in non-physiologic conditions – all of which that can affect how
these cells respond to anti-cancer agents (46). To mitigate these concerns as much as possible,
we performed our experiments using a 72-hour assay that has been shown by previous studies
(22,47) to be an effective strategy to minimize these issues. An additional concern is that in
vitro gene expression profiling of cancer cell lines may not reflect the genomic status of the
primary tumor. A recent study performed by Sos and colleagues, genomically validated 84
NSCLC cell lines, 37 of which make up the UVA-40, where they demonstrated through
comparative analysis of orthogonal genomic data sets of these cell lines and primary tumors,
that NSCLC cell lines reflect the genetic and transcriptional landscape of primary NSCLC
specimens (48). The validation of both the assay methodology and the genetic composition of
the UVA-40 NSCLC cells strengthen the experimental foundation of the refined COXEN
algorithm as described in our study. Notably, our study focuses on the drug sensitivity
prediction of lung cancer cell lines to Vorinostat and Velcade. We believe that this strategy
may be applicable to other tumor types and/or novel agents, but we by no means claim that our
strategy would work for a wide range of applications in cancer therapeutics.

In conclusion, through the application of a refined COXEN algorithm employing a
continuous spectrum of drug activity on 40 NSCLC cell lines, we are the first to identify tumor
biomarkers that highly predict drug sensitivity to Vorinostat, a HDAC inhibitor, and Velcade,
a proteasome inhibitor. Additionally, by extension of the refined COXEN algorithm to
combination therapy, we demonstrate an ability to predict the probable efficacy of this doublet
therapy on NSCLC. In silico COXEN models such as these may significantly enhance our
ability to predict a priori the efficacy of novel targeted therapeutics such as Vorinostat and
Velcade for NSCLC patients and offer important additional data for subsequent clinical trial
designs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic plot of the COXEN algorithm and associated data sets
The COXEN algorithm consists of three main steps: identification of profile signature,
construction of prediction model, and validation of prediction model. Identification of the
profile signature entails using the 9 NSCLC cell line subset (NCI-9) of the NCI-60 cancer cell
line panel and training them for Vorinostat and Velcade using Affymetrix HG-U133A
GeneChips® and estimated GI50 values. The UVA-40 panel of NSCLC cell lines was split into
Construction and Validation subsets. Generated COXEN scores were used for biomarker
selection. The resultant COXEN scores from the single drug prediction modeling for Vorinostat
and Velcade served as the input data to create a prediction model for combination Vorinostat
and Velcade therapy.
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Figure 2. Evaluation of COXEN models for UVA-40 NSCLC cell lines
A) Scatter plot of COXEN prediction scores versus experimentally measured GI50 values for
Vorinostat resulted in a rank-based Spearman's correlation of 0.46 (p=0.002). B) Scatter plot
of COXEN prediction scores versus experimentally measured GI50 values for Velcade resulted
in a rank-based Spearman's correlation of 0.55 (p=0.0002).
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Figure 3. Heatmaps of biomarkers highly associated with drug sensitivity to Vorinostat and Velcade
A) Clustered image map with two-way unsupervised clustering of expression profile data of
the 45 most highly ranked genes for Vorinostat using 37 NSCLC cell lines from the UVA-40
panel of NSCLC cell lines. B) Clustered image map with two-way unsupervised clustering of
expression profile data of the 15 most highly ranked genes for Velcade using 38 NSCLC cell
lines from the UVA-40 panel of NSCLC cell lines.
Red, black, and green indicate high, intermediate, and low expression level, respectively.
Orange and blue in the upper bar indicate sensitive and resistant cell types based on mean
GI50 values, respectively. Pink and burnt orange in the left bar indicate gene networks. (Top
biological functions for each network are summarized in Table 1.)

Nagji et al. Page 14

Mol Cancer Ther. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Evaluation of a prediction model for combination therapy
Bar plot of direct comparison between COXEN prediction scores and experimentally measured
GI50 values for combination therapy. The cell lines are ordered based on GI50 values. COXEN
scores and GI50 values were standardized by subtracting the overall mean and dividing by the
standard error across the UVA-40 panel. The statistical significance was assessed by a rank-
based Spearman's correlation test (p=0.007, correlation coefficient=0.41). The cell lines were
indicated by blue as the signs of COXEN scores and GI50 values were matched.
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Table 1

Biologic function of tumor biomarkers selected by modified COXEN algorithm.

A. Vorinostat

Network ID Number of Genes Top Biological Functions

1 14 Tissue Development, Cellular Assembly and Organization, Cellular Function and Maintenance

2 12 Cell Cycle, Cellular Growth and Proliferation, Endocrine System Development and Function

3 7 RNA Damage and Repair, Nucleic Acid Metabolism, DNA Replication, Recombination, and Repair

B. Velcade

Network ID Number of Genes Top Biological Functions

1 12 Cellular Development, Organ Morphology, Reproductive

System Development and Function

2 1 Cancer, Neurological Disease, Infection Mechanism
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