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The circular genome sequence of the chemolithoautotrophic euryarchaeon Methanothermobacter marburgen-
sis, with 1,639,135 bp, was determined and compared with that of Methanothermobacter thermautotrophicus. The
genomes of the two model methanogens differ substantially in protein coding sequences, in insertion sequence
(IS)-like elements, and in clustered regularly interspaced short palindromic repeats (CRISPR) loci.

Methanothermobacter marburgensis (DSM 2133) (formerly
Methanobacterium thermoautotrophicum strain Marburg), a
member of the Methanobacteriales (2), was isolated in 1978
from anaerobic sewage sludge in Marburg, Germany (5). The
hydrogenotrophic methanogen grows even faster (2 h versus
3 h doubling time) and to higher cell concentrations (3 g versus
1.5 g dry mass per liter) than Methanothermobacter thermau-
totrophicus (DSM 1053) (formerly Methanobacterium thermo-
autotrophicum strain �H) (20) (for other differences, see ref-
erences 3 and 19). Both methanogens were used in the last 35
years for the elucidation of the enzymes and coenzymes in-
volved in CO2 reduction to methane with H2 (4, 16–18). The
genome sequence of M. thermautotrophicus was reported in
1997 (15); that of M. marburgensis is announced here.

The genome size of M. marburgensis is 1,639,135 bp (that of
M. thermautotrophicus is 1,751,377 bp), the genome G�C con-
tent is 48.64% (49.54% for M. thermautotrophicus), and the
part coding is 90.94% (91.02% for M. thermautotrophicus).
Comparison of the sequences (13) revealed that the two ge-
nomes have 1,607 protein coding sequences (CDS) in common
and 411 CDS not in common (145 CDS are found only in M.
marburgensis and 266 CDS only in M. thermautotrophicus) and
show a high degree of synteny. The CDS not in common could
be traced back to gene splitting (15%), gene deletion (30%),
gene duplication (30%), and lateral gene transfer (24%) events
(percentages given are for M. marburgensis). Of the 1,607 CDS
in common, approximately 40% show BLAST search expecta-
tion values of �10�100 at the protein level, reflecting large
differences in sequence divergence. Almost 470 CDS encode
conserved hypothetical proteins.

The genome of M. marburgensis harbors 15 insertion se-
quence (IS)-like elements, whereas there is no evidence for a
classically organized IS-like element in M. thermautotrophicus.
Consistently, a CDS for a transposase is found only in M.
marburgensis.

In the genome of M. marburgensis there is only one clustered
regularly interspaced short palindromic repeat (CRISPR) lo-
cus with 36 repeats and only one CRISPR-associated (cas)
gene (csa3), indicating that the organism is not protected from
invasion by phage and plasmid DNA (7, 8, 10, 12). By com-
parison, in the genome of M. thermautotrophicus there are
three CRISPR loci with 124, 4, and 47 repeats and 18 cas genes
that encode proteins involved in adaptation and interference
(http://genoweb1.irisa.fr/Serveur-GPO/outils/repeatsAnalysis
/CRISPR/). The spacer sequences from locus 2 match DNA
sequences found in phage �M1 of M. marburgensis (6, 11) and
�M100 of M. wolfei (9), which supports the observation that
M. thermautotrophicus is not lysed by those two phages. Un-
fortunately, there is no DNA sequence available for phage
�F1, which is able to lyse M. thermautotrophicus (14), to com-
pare it with the spacer sequences of the CRISPR regions. In
the plasmid pM2001 (� pMTBMA4) (4,439-bp circular mul-
ticopy plasmid found only in M. marburgensis) (1, 19), no se-
quence identities for CRISPR spacer sequences of M. thermau-
totrophicus were found (14).

Approximately 200 CDS were identified that are required
for the synthesis of the enzymes, coenzymes, and prosthetic
groups involved in CO2 reduction to methane and in the cou-
pling of this process with energy conservation. Some of the
genes have been found only recently; others, such as those for
coenzyme F430 biosynthesis, still remain to be discovered.

Nucleotide sequence accession number. The complete ge-
nome sequence of M. marburgensis was deposited in GenBank
under accession numbers CP001710 (chromosome) and
CP001711 (pMTBMA4).
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