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Abstract
The predisposition for scleroderma, defined as fibrosis and hardening of the skin, is poorly
understood. We report that stiff skin syndrome (SSS), an autosomal dominant congenital form of
scleroderma, is caused by mutations in the sole Arg-Gly-Asp (RGD) sequence-encoding domain of
fibrillin-1 that mediates integrin binding. Ordered polymers of fibrillin-1 (termed microfibrils)
initiate elastic fiber assembly and bind to and regulate the activation of the pro-fibrotic cytokine
transforming growth factor β (TGFβ). Altered cell-matrix interactions in SSS accompany excessive
microfibrillar deposition, impaired elastogenesis, and increased TGFβ concentration and signaling
in the dermis. The observation of similar findings in systemic sclerosis (SSc), a more common
acquired form of scleroderma, suggests broad pathogenic relevance.

INTRODUCTION
Scleroderma, defined as hardening of the skin due to pathologic fibrosis, has many clinical
presentations. A common and severe form, termed systemic sclerosis (SSc), typically shows
adult onset that associates with the presence of autoantibodies, progressive visceral fibrosis,
pulmonary hypertension and peripheral vasoconstriction (Raynaud’s phenomenon) (1).
Obstacles in understanding and treating SSc include the absence of a well-defined genetic
contribution or validated animal models. We reasoned that the study of rare but tractable
presentations of scleroderma, with clear evidence for a major single gene effect, might provide
a foothold to elucidate disease pathogenesis of systemic sclerosis, a disease affecting one in
five thousand individuals in the general population. First described by Esterly and McKusick
in 1971, stiff skin syndrome (SSS) is characterized by hard, thick skin, usually over the entire
body, that limits joint mobility and causes flexion contractures (2). Other occasional findings
include focal lipodystrophy and muscle weakness. About forty cases have been reported in the
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literature (2–18). Although families with multiple instances of SSS have been described (2–
18), the lack of large multiplex families has precluded definitive assignment of the inheritance
pattern. Prior work interrogating the pathogenesis of SSS has been largely observational, with
few derived mechanistic insights (2–18). Findings include increased collagen production and
DNA synthesis in the dermis and increased circulating cytokines including TNFα, IL-6 and
TGFβ2(13,19,20).

Multiple lines of evidence have suggested a contribution of the connective tissue protein
fibrillin-1 to the pathogenesis of profibrotic phenotypes. First, cutaneous fibrosis in the Tight
skin (Tsk) mouse is caused by a large in-frame duplication in the fibrillin-1 gene (Fbn1) (21,
22). Tsk mice also show manifestations of Marfan syndrome (MFS), a condition caused by
FBN1 mutations that lead to a deficiency of extracellular fibrillin-1 (23). The mechanism of
disease in Tsk mice remains elusive due to widely disparate findings including a dominant
negative effect on the assembly of fibrillin-1 microfibrils, autoantibodies directed against
fibrillin-1, and even apparent passive transfer of phenotype after bone marrow transplantation
(24–31). Second, a genome-wide microsatellite screen at 10 cM resolution (400 markers)
suggested a link between variation at the FBN1 locus and autoimmune systemic sclerosis (SSc)
in Choctaw Indians (p ~ 0.0032, odds ratio 3.15) (32), however no pathogenic mutation has
been identified (32,33). Third, antibodies against fibrillin-1 have been described in patients
with autoimmune scleroderma (34,35), but whether these antibodies recognize native
fibrillin-1 is controversial (36). Finally, fibrillin-1 contributes to the regulation of TGFβ, a
family of profibrotic cytokines that has been linked to many fibrotic diseases including both
SSS and SSc (37,38).

TGFβ is secreted from the cell in a large latent complex (LLC) that includes the active cytokine,
a dimer of its processed N-terminal propeptide (latency associated peptide or LAP) and one of
three latent transforming growth factor β binding proteins (LTBP-1, -3, or -4). As implied by
mouse models and confirmed biochemically, fibrillin-1 rich microfibrils contribute to targeting
of the LLC to the extracellular matrix by direct interaction with LTBPs (39,40). Failed matrix
sequestration of the LLC in fibrillin-1 deficient patients (MFS) and mice promotes increased
activation of the TGFβ family of cytokines. Indeed many features of MFS can be attenuated
or prevented by systemic administration of TGFβ antagonists in mouse models (40–44).
Despite the indirect evidence suggesting that mutations in FBN1 may underlie SSS, patients
with SSS do not show any of the systemic manifestations of MFS (e.g. ocular lens dislocation,
bone overgrowth, joint laxity, aortic aneurysm), and patients with MFS do not show skin
fibrosis.

In this paper, we show that mutations affecting the integrin-binding TB4 domain of fibrillin-1
cause SSS in humans via mechanisms distinct from those seen in MFS. Our observation of
similar events in skin from patients with SSc suggests that the study of SSS has the potential
to derive treatment strategies with broad application.

RESULTS
Phenotypic characterization of SSS families

Assessment of four families with SSS, including one with 10 affected individuals in 5
generations, revealed autosomal dominant inheritance with high penetrance (Fig. 1A). All
affected individuals showed diffusely thick and hard skin from the time of birth and joint
contracture but lacked the typical skeletal, ocular and cardiovascular findings of MFS.
Additional clinical features not previously described for SSS (2–18) include cutaneous nodules
that predominantly affect the distal interphalangeal joints (Fig. 1A), relative short stature (mean
adult male and female height < 15th and < 5th percentile, respectively), and diffuse entrapment
neuropathy (nerve injury and dysfunction due to local compression) (Suppl. Table 1).
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The phenotypic similarities between SSS and Tsk mice suggested that SSS might be caused
by alterations of fibrillin-1. This hypothesis was strengthened upon our recognition of a patient
with a hybrid phenotype including ocular lens dislocation (a cardinal manifestation of MFS),
glaucoma, retinal detachment, and tight skin with diffuse joint contracture. This 14 year old
male, one of fraternal triplets, was considerably shorter than his unaffected brothers and showed
no skeletal or cardiovascular manifestations of MFS (Fig. 1C).

Altered fibrillin-1, elastin and collagen deposition
Pulse-chase analysis of dermal fibroblasts from SSS patients and controls showed equivalent
secretion of fibrillin-1 (Suppl. Fig. 1). Recombinant fibrillin-1 peptides harboring SSS
mutations also showed appropriate secretion into the media of stably-transfected cells (Suppl.
Fig. 1). Confocal immunofluorescence analysis of skin biopsies from patients with SSS
revealed increased deposition of both fibrillin-1 and elastin in the dermis, when compared to
age- and gender-matched control samples (Fig. 2A). Although both patients and controls
showed accumulation of microfibrils at the dermal-epidermal junction, these microfibrillar
bundles had a stubby appearance in SSS, without the deep projections into the underlying
dermis seen in controls (Fig. 2A). Dermal deposition of elastin was seen immediately adjacent
to the epidermis in SSS, a zone that shows relative exclusion of elastin in controls (Fig. 2A).
These data suggest that pathogenic events in SSS alter the amount and architecture of
microfibrillar deposits and are abnormally permissive for the association of fibrillin-1 and
elastin at the dermal-epidermal junction. Trichrome staining of skin biopsies revealed a wide
zone of increased collagen deposition in the papillary dermis of patients with SSS when
compared to control samples (Fig. 2B).

Sequencing of FBN1 in SSS families
Sequencing of all exons of the FBN1 gene from each of the four probands with SSS revealed
a heterozygous mutation in each of the four patients (Fig. 1A). Remarkably, all mutations
occurred in exon 37, encoding the N-terminal portion of the 4th (of 7) transforming growth
factor β-binding protein like-domain (N-TB4) in fibrillin-1 (Fig. 1B). Two patients were
heterozygous for the identical amino acid substitution (p.Trp1570Cys) created by different
nucleotide substitutions (c.4710G>C and c.4710G>T). A third patient was heterozygous for
amino acid substitution p.Cys1564Ser (c.4691G>C), and the fourth was heterozygous for
p.Cys1577Gly (c.4729T>G). Interestingly, the patient with the hybrid SSS-ectopia lentis (SSS
with dislocated eye lenses) phenotype had a mutation (c.4781G>A) in exon 38, encoding the
C-terminal portion of TB4 (C-TB4), leading to amino acid substitution p.Gly1594Asn (Fig.
1C).

Disturbed cell-matrix interactions
In order to test the hypothesis that SSS mutations alter integrin binding, expression constructs
were prepared that encode TB4 and adjacent calcium-binding epidermal growth factor-like
domains (cbEGF22-TB4-cbEGF23). SSS mutations that cause the W1570C and C1564S
substitutions were introduced by site-directed mutagenesis. We found that the RGD loop is
exposed in both mutant recombinant peptides and is therefore available for integrin interactions
(Suppl. Fig. 2). Previous in vitro studies have shown that in human endometrial stromal
fibroblasts (hESF cells), RGD-dependent adhesion to recombinant fibrillin-1 RGD fragments
is mediated mainly through αvβ3 integrins, whereas in VB6 keratinocytes, a keratinocyte cell
line expressing high levels of integrin αvβ6, it is largely dependent on αvβ6 (45) (Suppl. Fig.
3). Human foreskin dermal fibroblasts (FS2 cells) express both α5β1 and αvβ3 integrins, with
only the latter localizing to focal adhesions (Suppl. Fig. 3). Therefore, we assessed integrin-
mediated events when different cell types were plated on dishes coated with either wild-type
or mutant recombinant fibrillin-1 fragments. VB6 keratinocytes showed normal attachment
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and spreading when plated on mutant as well as wild-type substrates, consistent with preserved
αvβ6 integrin-fibrillin-1 interaction in this system (Fig. 3A). In contrast, both SSS mutations
induced a dramatic loss of both attachment and spreading of FS2 cells, suggesting impairment
of interaction with αvβ3 and possibly α5β1 integrins. Informatively, hESF cells also failed to
attach or spread when plated on mutant substrates (Suppl. Fig. 3). Furthermore, cultured dermal
fibroblasts from patients with SSS showed reduced amounts of the activated (phosphorylated)
form of focal adhesion kinase (pFAK), an event mediated by the interaction of RGD ligands
with integrins concentrated at focal adhesions (Fig. 3B). Taken together, these data suggest
that FBN1 mutations that cause SSS can impair integrin binding and signaling.

Microfibrillar accumulation
It is unlikely SSS is caused solely by the loss of integrin signaling due to absence of interactions
with the extracellular matrix, since a deficiency of fibrillin-1 does not cause skin fibrosis in
MFS. Although the difference in phenotype might relate to the integrin subtype-specific deficit
seen in SSS, the contribution of some other mutation-imposed event could not be excluded.
Therefore, we used ultrastructural analysis to further interrogate the consequence of SSS
mutations on microfibrillar deposition and homeostasis. Compared to control skin, immuno-
electron microscopy (EM) of all SSS biopsies showed haphazard labeling of giant and dense
chords of stubby microfibrils that lacked deep dermal projections or apparent basement
membrane associations seen in normal skin (Fig. 4A). Lower magnification revealed that the
dermis in SSS patients is packed tightly with abnormally dense microfibrillar aggregates and
collagen bundles (Fig. 4B). Whereas normal microfibrillar projections from the dermal-
epidermal junction are devoid of elastin, we observed the presence of elastin in microfibrillar
aggregates near this junction in SSS (Fig. 4C). This observation confirms the abnormal
colocalization of elastin and fibrillin-1 just below the dermal-epidermal junction in SSS (Fig.
2A). In the deeper dermis in control skin, elastin assemblies appear as homogeneous dense
cores of elastin surrounded by thin mantles of microfibrils (Fig. 4C). In SSS, microfibrils are
more abundant, and the elastin core appears poorly assembled (Fig. 4C). We also observed
normal-appearing elastic fibers in SSS that were surrounded by microfibrillar assemblies with
normal periodic labelling (Fig. 4D), highlighting the potential for context-specific
consequences of SSS mutations.

Altered TGFβ signaling
TGFβ is a critical profibrotic cytokine that has been linked to the pathogenesis of SSc (46).
We hypothesized that the predominant influence of excessive microfibrillar deposition in SSS
might be excessive concentration of TGFβ in the LLC (Suppl. Fig. 4). Examination of dermal
biopsies revealed accumulation of the LLC component LTBP4 throughout the dermis of
patients with SSS (Fig. 5A). We also observed increased nuclear accumulation of
phosphorylated Smad2 (pSmad2) and expression of connective tissue growth factor (CTGF),
a direct effector and a target of TGFβ signaling, respectively, in the dermis of SSS patients
compared to controls (Fig. 5B, C). Enhanced nuclear accumulation of pSmad2 was seen in
both isolated cells scattered throughout the dermis and in cells clustered around the
microvasculature (Fig. 5B).

Pathological mesenchymal transition
During normal wound healing, TGFβ induces cells of epithelial or endothelial origin to lose
cell contacts and polarity. These cells then migrate, invade surrounding tissues and alter their
synthetic repertoire to adopt a more mesenchymal character through epithelial-or endothelial-
to-mesenchymal transition (collectively EMT) (47). The resultant myofibroblasts express
alpha-smooth muscle actin (αSMA) and contribute to fibrosis through collagen secretion.
These cells typically disappear upon resolution of the healing response, but can be
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pathologically produced and maintained in many fibrotic diseases (48). We observed increased
expression of αSMA in basal keratinocytes of the epidermis in patients with SSS (Fig. 6A, B).
These basal keratinocytes also lacked the columnar organization seen in control skin.

Potential relevance to SSc
In order to investigate whether our findings in SSS have broader relevance for scleroderma,
we examined skin biopsies from five patients with typical SSc (Suppl. Table 2), including
adult-onset and progressive fibrosis of the skin and viscera, circulating autoantibodies, and
peripheral vasoconstriction (Raynaud’s phenomenon). SSc patient biopsies showed giant and
disorganized microfibrillar aggregates throughout the dermis that retained the ability to bind
and concentrate the LLC of TGFβ (Fig. 7A-E). As in SSS, elastin desposition upon abnormal
microfibrillar aggregates is often sparse and patchy (Fig. 7E). Other alterations in elastin
morphology were also present including electron-lucent areas within elastic cores, giving them
a mottled appearance (Fig. 7D).

DISCUSSION
We describe domain-specific mutations in the FBN1 gene as the genetic cause for a congenital
form of scleroderma, SSS. Whereas prior work has demonstrated genetic alterations and
environmental exposures that can contribute to fibrotic phenotypes (49), we report a genetic
alteration that is sufficient to initiate and maintain cutaneous profibrotic programs in people,
culminating in a scleroderma phenotype with early onset and complete penetrance. We propose
that FBN1 mutations and the consequent perturbation of both microfibrillar assembly and
microfibril-integrin interactions contribute to the pathogenesis of SSS, at least in part, through
dysregulation of TGFβ signaling.

Several lines of evidence indicate that the defined FBN1 mutations cause SSS. First, the
mutations segregated with the phenotype in families and were absent in unaffected family
members. The mutation associated with the hybrid phenotype occurred de novo in the context
of sporadic disease. Second, none of the mutations were observed in over 400 ethnically-
matched control chromosomes. Third, all of the mutations causing typical SSS involve the
creation or removal of a cysteine residue within a domain-type known to be highly dependent
upon a defined spacing of eight cysteines for proper folding via intra-domain disulfide linkages
(50–52). Indeed, the presence of eight cysteines is a defining feature of all TB domains (in
fibrillins and LTBPs) throughout evolution (53,54). Finally, the mutated tryptophan residue in
families 1 and 2 is a key structural residue in TB domains and helps to stabilize the hydrophobic
core (52). FBN1 mutations at the extreme N-terminus of TB4 cause classic MFS, as do
substitutions identical to those seen in SSS at orthologous residues in other TB domains (like
TB6; Fig. 1B) (55). TB4 substitutions associated with SSS may cause different effects on
domain folding, stability and protein secretion than those seen with MFS-causing substitutions.
Furthermore, the presence of an RGD motif in TB4 and the high affinity calcium binding site
(Kd~16nM) formed between TB4 and cbEGF23 (48) likely confer unique functional properties
to this TB domain within fibrillin-1 and hence specific phenotypic consequences upon
disruption of domain structure and function.

We also provide evidence that these SSS-specific FBN1 mutations alter cytokine regulation.
The contribution of microfibrils to TGFβ regulation is complicated. Studies of MFS have
demonstrated that microfibrillar sequestration of the TGFβ LLC limits cytokine activation and
signaling (40). Fibrillin-2 deficient mice show fusion of digits (syndactyly) and were found to
have a decreased amount of selected TGFβ superfamily members (e.g. bone morphogenetic
protein 7) in developing autopods. This suggests that microfibrils can also serve to concentrate
TGFβ ligands in order to achieve the signaling threshold needed to mediate critical
morphogenic events (56). While apparently at odds with events in MFS and perhaps context-
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specific, the level of TGFβ signaling might simply integrate the divergent roles of microfibrils
with other determinants of cytokine bioavailability and activation. Several possibilities may
explain why increased TGFβ signaling causes skin fibrosis in SSS but not in MFS. In MFS it
is thought that gradual loss of microfibrils (largely during postnatal life) achieves a critical
threshold that allows loss of negative regulation of TGFβ activation (40). Increased activation
supports excessive signaling, which leads to changes in gene expression that result in many of
the phenotypes in MFS such as pulmonary emphysema, myxomatous changes of the
atrioventricular valves, dural ectasia, aortic aneurysm, and muscle hypoplasia and weakness
(40–42). Consistent with this model, postnatal TGFβ antagonism with systemic delivery of a
neutralizing antibody attenuates or prevents many clinical phenotypes in fibrillin-1 deficient
mice. In our model of this microfibril-deficient state, decreased TGFβ concentration is offset
by increased activation (Fig. 5A) (40–42). An increase in signaling is dependent on ongoing
production of TGFβ.

In contrast, given the accumulation of aberrant microfibrillar assemblies in SSS, increased
concentration of latent TGFβ may sustain a chronic increased level of TGFβ signaling whether
or not the abnormal character of microfibrils promotes increased TGFβ activation. This model
is also compatible with the restricted location and small repertoire of mutations in SSS, which
is more typical of gain (rather than loss) of function. This same line of reasoning could explain
the hybrid phenotype (SSS-MFS) of Tsk mice where the large internal fibrillin-1 duplication
(encompassing exon 37) both impairs the context and function of the integrin-interacting RGD
sequence and the overall structure and stability of fibrillin-1.

What is the nature of the proposed gain of function in SSS? The unique feature of TB4 is that
it encodes the only RGD sequence in fibrillin-1, a motif that mediates cell-matrix interactions
via integrin binding. Indeed, the RGD in TB4 of fibrillin-1 is known to interact with α5β1,
αvβ3 and αvβ6 integrins (57,58). Our in vitro data suggest that SSS mutations impair integrin-
mediated cellular events such as the promotion of cellular adhesion and spreading. This does
not seem sufficient to initiate fibrosis as such events would also be lost in a microfibrillar
deficiency state (i.e. MFS). It is notable that both SSS and SSc associate with excessive
accumulation of dermal microfibrillar deposits that concentrate TGFβ in the skin (59,60).
Increased matrix deposition of abnormal microfibrils may be a consequence of perturbed
integrin interactions in SSS. There is precedence for this hypothesis. Takahashi and colleagues
showed that upon replacement of the RGD sequence in fibronectin with RGE, cells deposit
abnormally short and thickened fibronectin fibrils, reminiscent of the abnormal microfibrillar
deposits in SSS (61). The presumed gain of microfibrillar function in SSS (i.e. concentration
of TGFβ LLC) would be imposed early in development and could explain the congenital onset
of fibrosis.

It remains unknown whether physiologic or pathologic levels of TGFβ activation accompany
the increased concentration of latent TGFβ in the dermis of patients with SSS. The fact that all
three integrins that interact with fibrillin-1 (αvβ3, αvβ6 and α5β1) are also known to activate
TGFβ (45,62–64) suggests a potential mechanism for enhanced TGFβ activation. Integrins
activate TGFβ by two processes, which may act independently or in concert, depending on the
tissue context as well as the cell-type involved (37). First, integrins can simultaneously interact
with the latent TGFβ complex (via an RGD sequence in LAP) and other proteins such as matrix
metalloproteases and TGFβ receptors to promote TGFβ activation (63–67). In a second more
mechanical event, integrin binding to the RGD domain of LAPβ1 within the LLC transmits
traction forces that conformationally change the LLC and liberate active TGFβ (68). A mouse
with a knock-in mutation of the RGD sequence in LAPβ1 (preventing integrin-mediated
activation of TGFβ1) bears striking phenotypic similarity to the TGFβ1 knockout mouse,
demonstrating the importance of integrin binding to the LLC in overall TGFβ activation (69).
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Several studies have implicated aberrant integrin expression or function in SSc and other
fibrotic phenotypes. In culture, integrin αvβ3 is upregulated in SSc dermal fibroblasts.
Furthermore, its inhibition prevents collagen expression and reverses the myofibroblastic
phenotype of SSc fibroblasts in a TGFβ1 – dependent manner (70). In this light, it is possible
(but unproven) that impairment of integrin interaction with fibrillin-1 in SSS induces increased
integrin expression and/or bioavailabllity to participate in TGFβ activation, and that this
contributes to downstream events including tissue fibrosis.

A number of our observations suggest involvement of basal keratinocytes in the pathogenesis
of SSS. These basal keratinocytes showed increased expression of α-SMA and lacked the
columnar organization seen in control skin, suggesting the loss of attachments and polarity
characteristic of cells undergoing EMT. There was also increased representation of αSMA-
positive cells, distinct from the microvasculature, within the peripheral dermis of patients with
SSS (Fig. 6A). SSS samples also showed αSMA-positive cells occluding small vessels and
migrating around their periphery (Fig. 6B). These data suggest a contribution of pathologic
EMT in SSS, an event plausibly initiated and/or sustained by excessive TGFβ signaling. A
specific perturbation of the assembly of microfibrils elaborated by keratinocytes in SSS would
explain the normal microfibrillar assemblies found in the deeper dermis of these patients and
their lack of manifestations of MFS or fibrosis in other tissues. Human keratinocytes
physiologically express integrin α5β1, while they express αvβ6 during wound healing (71).
Although our in vitro experiments using recombinant SSS fibrillin-1 peptides did not reveal
altered interaction with VB6 keratinocytes, this does not exclude such perturbations in the
context of full-length mutant fibrillin-1 and normal keratinocytes during tissue development
or homeostasis in vivo. Informatively, basal keratinocytes have been shown to contribute to
pathologic EMT in hypertrophic scar development (72).

Our finding of altered microfibrillar assembly in SSc is in keeping with a prior report (73), but
requires further validation in scleroderma-spectrum disorders. The mechanistic basis for this
observation remains to be elucidated. Multiple prior reports have described the presence of
auto-antibodies to fibrillin-1 in patients with typical presentations of SSc (34,35,74,75).
Although the presence of antibodies that recognize native fibrillin-1 remains controversial
(36), it will be interesting to determine if autoantibodies or another circulating factor in SSc
alters the interaction between integrins and fibrillin-1, mimicking the effect of fibrillin-1
mutations in SSS. Modeling of SSS in mice will provide an ideal platform to further interrogate
pathogenesis and to test potential therapeutic strategies including TGFβ or EMT antagonists.

MATERIALS and METHODS
Subjects and clinical evaluation

This study was approved by the Institutional Review Board of the Johns Hopkins University
School of Medicine and the Belfast City Hospital. We obtained informed consent from all
subjects involved in the study and specific consent for the publication of photographs that show
identity.

Mutation analysis
We amplified genomic DNA by PCR using primers complementary to the flanking introns of
all FBN1 exons, as previously described (76). We carried out sequence analysis using an
Applied Biosystems automated DNA sequencer and protocols provided by the manufacturer.
If family members were available, segregation of the mutation was shown. None of the SSS
mutations were found in a panel of at least 400 control chromosomes.
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Immunohistochemistry
Punch skin biopsies were performed on the forearm of SSS patients and age/sex matched
controls. The tissue was paraffin-embedded and immunohistochemical staining was performed
using antibodies directed against phosphorylated Smad2 (Cell Signaling Technology), CTGF
(Abcam) and LTBP-4 (Santa Cruz) using previously described methods (40).

Electron Microscopy
Fresh biopsies were either fixed immediately in 1.5% glutaraldehyde/1.5% paraformaldehyde
with 0.05% tannic acid in 0.1M cacodylate, pH 7.4 for 2 hours, then rinsed in cacodylate buffer
overnight, then fixed in 1% OsO4, dehydrated, and embedded in Spurrs epoxy. For en-bloc
immuno-electron microscopy, samples were rinsed overnight in DMEM, then soaked
overnight in mAb 69 (specific to fibrillin-1) or pAb 2101 (specific to LTBP4) (77), rinsed,
then soaked overnight in the appropriate secondary antibody conjugate (5nM). Samples were
then fixed and embedded as above. Tissue sections labeled using mAb 10B8 (specific for
elastin) were fixed in 0.1% glutaraldehyde, dehydrated at low temperature, and embedded in
LRWhite media, then immunolabeled as described previously(78).

Confocal Microscopy
Fresh biopsies stored in DMEM overnight were snap frozen in liquid nitrogen cooled hexanes
and embedded in OCT. 30μm cryostat sections were fixed in 100% acetone at −20° C, rinsed
in PBS and then simultaneously labeled with pAb 9543 (specific for fibrillin-1) and a mAb
specific for cytokeratin to label the dermis, followed by GAM Alexa 546 combined with GAR
Alexa 633, and viewed with laser light at 543 nm and 633 nm. Within the images, fibrillin-1
labeling was assigned a “green” color and cytokeratin “red”. Elastin labeling was similarly
accomplished with mAb 10B8 and GAM Alexa 546 and viewed with laser light at 543 nm.

Cell culture
We derived fibroblast cultures from skin biopsies taken from the forearm. Cells were cultured
in minimal essential media with 10% fetal bovine serum in the presence of antibiotics and
passaged at 80% confluence. The cells were grown in 2% fetal bovine serum for two weeks at
confluency to allow for extracellular matrix elaboration.

Western blot analysis
Protein was extracted from whole cell lysates of dermal fibroblasts using M-Per (Pierce).
Protein concentration was determined using a BCA assay kit (Pierce) and 10 μg protein were
separated under reducing conditions by standard gel electrophoresis on 10% Bis-Tris gels
(Biorad). The separated proteins were then transferred onto nitrocellulose membranes (Biorad).
The membranes were blocked for 1 h in LiCor blocking buffer and washes were performed
with phosphate-buffered saline. Antibodies used were directed against phospho-FAK
(Millipore) and alpha-tubulin (Sigma) with appropriate secondary antibodies (Licor).
Membranes were scanned and signals were quantified with the Licor Odyssey System using
instructions provided by the manufacturer.

Cell adhesion and spreading assays
The cell attachment data are derived from the intensity of the crystal violet stain taken up
specifically by attached cells. The signal intensity at OD 620 is directly proportional to the
number of adherent cells, as described previously (45). The spreading assay is performed by
counting 200 cells from each well of a 96-well plate, and grading them as spreading or non-
spreading cells based upon morphology, as described previously (45). We represent the data
as the % of cells showing a spreading morphology indexed to the total number of attached
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cells. VB6 is a keratinocyte cell line and FS2 cells are primary dermal fibroblasts established
from foreskin.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of SSS and hybrid patients
(A) Phenotypic characteristics, FBN1 mutation and pedigree for families 1–4. Pedigrees of
families 1–3 document an autosomal dominant pattern of inheritance. Individual 1-III:2 shows
decreased facial expression due to tightness of the skin and limited shoulder elevation. Note
nodules at the distal interphalangeal joints (arrow). Individual 2-V:2 demonstrates limited
extension of the elbows. Individual 3-I:1 shows a tight facial expression and limited extension
of fingers and elbows. Individual 4-II:1 shows tightness of facial skin and limited flexion/
extension of the fingers along with the presence of multiple interphalangeal nodules. The
position of the nucleotide substitutions is indicated by arrows. Impact of mutations at the
protein level are indicated using the three letter amino acid code. Circle, female; square, male;
open symbol, unaffected; shaded symbol, affected; diagonal line, deceased; arrows below
symbols indicate probands. (B) Diagram representing the domain structure of the fibrillin-1
protein. Yellow rectangles, calcium binding epidermal growth factor domain; red rectangles,
transforming growth factor beta binding protein-like domain (TB domain); light blue
rectangles, non-calcium binding epidermal growth factor-like module, dark blue rectangles,
hybrid domains. Arrows indicate the fourth and sixth TB domains (TB4 and TB6, respectively),
encoded by exons 37-38 and exons 50–51 of the FBN1 gene. The location of the RGD motif
(arginine-glycine-aspartic acid) is indicated within a partial peptide sequence (positions of the
first and last amino acid residues indicated) encoded by exon 37. In exon 37, encoding the N-
terminal portion of TB4 (N-TB4), the substituted amino acid residues in the four SSS families
are indicated. Mutations affecting the corresponding amino acid residues in exon 50 (encoding
TB6) result in typical MFS syndrome (55). A mutation N-terminal to the RGD sequence in
TB4 (p.Arg1530Cys) also causes MFS. (C) Position of FBN1 mutation (p.Gly1594Asn) in
exon 38 in the patient with the hybrid (stiff skin and ectopia lentis) phenotype (inset). Exon 38
encodes the C-terminal portion of the fourth TB domain (C-TB4). The single letter amino acid
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code is utilized (R-arginine, C-cysteine, G-glycine, D-aspartic acid, S-serine, W-tryptophan,
N-asparagine).
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Figure 2. Elastin, fibrillin-1 and collagen composition of skin biopsies
(A) Confocal microscopy of skin biopsies (with keratin in the epithelium delineated in red)
from a patient with SSS and a control, seen at low magnification (upper panel) and high
magnification (lower panel). The control sample shows long microfibrillar projections from
the dermal-epidermal junction (DEJ, arrow) into the superficial (papillary) dermis with
relatively sparse fibrillin-1 deposition in the deeper dermis. There is relative exclusion of elastin
in the superficial dermis immediately adjacent to the DEJ. The SSS sample shows stubby
microfibrillar deposits immediately adjacent to the DEJ that co-localize with elastin. There is
also increased deposition of elastin in the deeper dermis. Scale bars = upper row of low
magnification images, 50 microns; lower row of high magnification images, 20 microns. (B)
Trichrome staining of skin biopsies from two controls and two SSS patients. Note the widened
zone of increased deposition of collagen (blue) in the papillary dermis of SSS patients, as
delineated by white arrows. Scale bars, 20 microns
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Figure 3. Cell spreading and attachment
(A) Cell attachment (upper panel) and spreading (lower panel) of FS2 dermal fibroblasts (left
panel) and VB6 keratinocytes (right panel) adherent on recombinant wild-type and mutant
cbEGF22-TB4-cbEGF23 W1570C and C1564S protein constructs. Wild-type cbEGF22-TB4-
cbEGF23 was used as a positive control and BSA as negative control. In contrast to FS2 cells,
similar attachment and spreading profiles were observed for VB6 cells plated onto wild-type
and mutant fragments. Data are expressed as mean ±S.D. (attachment, n=9; spreading, n=5),
from three independent experiments. (B) Assessment of phosphorylated focal adhesion kinase
protein (phosphorylation at Y397) at steady state comparing six controls and four SSS patients.
Quantification shows decreased pFAK in SSS.
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Figure 4. Electron microscopy (EM) and immuno-EM of skin biopsies
(A) Immuno-gold labeling of fibrillin-1 at the dermal-epidermal junction (DEJ) in control skin
reveals periodic labeling of lacey microfibrillar bundles which make contact with the basement
membrane at zones adjacent to hemidesmosomes (open arrowheads) and extend deeply into
the papillary dermis (black arrow). In the SSS, microfibrils with periodic labeling (black
arrows) are seen at the periphery of giant microfibrillar aggregates but do not make contact
with the basement membrane, instead we did see an increased number and wider distribution
of anchoring fibrils (white arrows), that are largely composed of type VII collagen. Scale bars,
500 nm. (B) The skin in SSS is densely packed with microfibrillar chords (white arrows). Dense
microfibrillar accumulation is also shown at higher magnification in the inset. Chords are
embedded in dense collagen bundles (black arrows) in SSS patients compared to the control.
Scale bars, 2 μm. (C) Immuno-gold labeling reveals the atypical presence of elastin
(arrowheads) within fibrillin-1 deposits immediately adjacent to the DEJ (black arrow) within
SSS skin (left panel). Homogeneously-dense deposits of elastin (black material) are surrounded
by a thin mantle of microfibrils (arrows) in the papillary and reticular dermis of control skin
(middle panel). Within SSS skin, patchy accumulations of elastin are often sparsely distributed
within dense microfibrillar aggregates (right panel). Scale bars, 500 nm. (D) Immuno-EM
reveals that SSS patients retain the capacity to form some normal elastic fibers, particularly in
the reticular dermis, as demonstrated by homogeneous elastin cores with a sheath of
microfibrils (arrows) that label with normal periodicity using an antibody specific for fibrillin-1
(mAb 69). Scale bar, 500 nm.
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Figure 5. Immunohistochemical assessment of TGFβ concentration and signaling
(A, C) Increased immunostaining for latent transforming growth factor binding protein 4
(LTBP4) and connective tissue growth factor (CTGF) throughout the dermis of two SSS
patients compared to control. Scale bars in panel A, C 30 micron and 80 micron, respectively
(B) Immunostaining for phosphorylated Smad2 (pSmad2) in the dermis of two control
individuals and two SSS patients. Note the increased number nuclei intensely stained for
pSmad2 (black arrowheads) in samples from the SSS patients compared to controls, indicative
of increased TGFβ signaling. Quantification was performed by counting the number of nuclei
(not associated with blood vessels, arrows) with intense pSmad2 signal in at least ten high
power fields in two SSS patients by three independent observers blinded to phenotype. Data
with SEM expressed after normalization to a randomly selected control sample. Scale bar, 100
micron
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Figure 6. Immunohistochemistry for α smooth muscle actin
(A) Increased alpha-smooth muscle actin (αSMA) in basal keratinocytes within the epidermis
(arrows) and in cells in the superficial dermis (open arrowheads) of two SSS patients compared
to two controls. Note that the intensity of the signal around small blood vessels (closed
arrowheads) is comparable in both patients and controls, confirming specificity of the
abnormally intense staining of basal keratinocytes and isolated dermal cells in SSS. Scale bars
top panel, 50 micron, bottom panel, 20 micron (B) In addition, SSS samples also occasionally
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show αSMA-positve cells occluding small vessels (arrow) and migrating around their
periphery (open arrowheads).
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Figure 7. Electron microscopy of skin biopsies from patients with systemic sclerosis
(A,B) Electron microscopy reveals abnormally organized and dense macroaggregates of
microfibrils (arrows) in the papillary and reticular dermis of patients with systemic sclerosis
(SSc) that are reminiscent of those seen in SSS. (B) These abnormal aggregates of microfibrils
in SSc are often embedded within dense deposits of collagen. (C) Immuno-EM demonstrates
labeling of microfibrillar aggregates with an antibody directed against LTBP4 in SSc. (D, E)
Abnormal appearance of elastic fibers in SSc, including a mottled appearance (D) or an overt
paucity of elastin (E) compared to the homogeneously-dense elastin core in an age- and gender-
matched control. Images are representative of those seen in five SSc patients. Scale bar, 500
nm except in (C), 200 nm.
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