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Abstract
We use a new, unsupervised multivariate imaging and analysis strategy to identify related patterns
of reduced white matter integrity, measured with the fractional anisotropy (FA) derived from
diffusion tensor imaging (DTI), and decreases in cortical thickness, measured by high resolution T1-
weighted imaging, in Alzheimer's disease (AD) and frontotemporal dementia (FTD). This process
is based on a novel computational model derived from sparse canonical correlation analysis (SCCA)
that allows us to automatically identify mutually predictive, distributed neuroanatomical regions
from different imaging modalities. We apply the SCCA model to a dataset that includes 23 control
subjects that are demographically-matched to 49 subjects with autopsy or CSF-biomarker-diagnosed
AD (n=24) and FTD (n=25) with both DTI and T1-weighted structural imaging. SCCA shows that
the FTD-related frontal and temporal degeneration pattern is correlated across modalities with
permutation corrected p < 0.0005. In AD, we find significant association between cortical thinning
and reduction in white matter integrity within a distributed parietal and temporal network (p <
0.0005). Furthermore, we show that—within SCCA identified regions—significant differences exist
between FTD and AD cortical-connective degeneration patterns. We validate these distinct,
multimodal imaging patterns by showing unique relationships with cognitive measures in AD and
FTD. We conclude that SCCA is a potentially valuable approach in image analysis that can be applied
productively to distinguishing between neurodegenerative conditions.
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1. Introduction
Neuroimaging studies suggest that frontotemporal dementia (FTD) leads to decreases in
cortical thickness and white matter integrity, and these may reflect degraded cortical and white
matter neural networks underlying language, social and executive functioning. Alzheimer's
disease (AD) also induces large-scale neurodegeneration that, in contrast to FTD, may reflect
episodic memory loss. However, the distinguishing, integrated effects of these diseases on the
cortical and white matter networks underlying these behavioral changes has not been
established.

FTD is an early-onset neurodegenerative condition with an average age of onset in the sixth
decade of life (Hodges et al., 2003; Neary and Snowden, 1996; Grossman, 2006). The disease
is due to a disorder of tau metabolism (Lee et al., 2001) or the accumulation of a ubiquinated
protein known as TDP-43 (Neumann et al., 2006). The condition is almost as common as AD
in individuals less than 65 years of age (Rosso et al., 2003; Knopman et al., 2004; Cairns et
al., 2006). Survival is typically eight years from onset (Hodges et al., 2003; Cairns et al.,
2006; Xie et al., 2008). Developing biomarkers for early detection of disease and assessment
of treatment is of great significance because of the development of therapies specifically for
this condition.

One common, inexpensive, non-invasive tool in diagnosis of FTD is clinical measurement of
cognitive abilities and behavior. Diagnosis of FTD consequently includes observation of
syndromes such as primary progressive aphasia (PPA) and/or a disorder of social comportment
and personality together with limited executive resources (McKhann et al., 2001; Neary et al.,
1998). Recent studies have begun to demonstrate longitudinal decline on language and
cognitive measures in clinical (Blair et al., 2007; Libon et al., 2009b) and pathologically-
defined (Grossman et al., 2008) populations. However, when validated against autopsy defined
series, clinical diagnostic assessment may be inaccurate in up to 30 % of cases (Forman et al.,
2006). Most of the missed diagnoses are uncommon, young-onset presentations of AD. Thus,
comparative studies of patients with neurodegenerative conditions are needed to demonstrate
the specificity of a method for accurate diagnosis.

One potential source of additional diagnostic information involves biofluids such as
cerebrospinal fluid (CSF). In a series of patients with known pathology, the ratio of CSF-tau
to CSF beta-amyloid achieved an overall diagnostic accuracy of 93%, with excellent sensitivity
and specificity (Bian et al., 2008). However, CSF ratio measures require an invasive lumbar
puncture and their levels may not change enough over time to be useful for monitoring
treatment response (Buchhave et al., 2009).

Magnetic resonance imaging is a non-invasive alternative to characterize the disease process
in terms of objective, quantitative measurements of brain function and anatomy. Many studies
have analyzed the spatial pattern of atrophy (Jack et al., 1992; Laakso et al., 2000; Chan et al.,
2001; Galton et al., 2001; Frisoni et al., 2002; Thompson et al., 2003; Ballmaier et al., 2004;
Studholme et al., 2004, 2006) by contrasting control and neurodegenerative populations. These
studies show atrophy in several frontal and temporal regions in FTD. Attempts to validate these
findings include examining cortical atrophy in patients with autopsy-defined disease (Whitwell
and Jack, 2005) and relating cortical atrophy in autopsy-defined cases directly to the clinical
phenotype through regression studies (Grossman et al., 2007a). Cross-sectional studies have
related language deficits to neuroanatomic substrates using MRI in clinical (Grossman et al.,
2004) and pathologically-defined (Josephs et al., 2006a; Grossman et al., 2007b) populations.

However, there have been few comparative studies assessing MRI changes in FTD relative to
AD. MRI assessments of gray matter atrophy in AD show significant changes in the
hippocampus as well as neocortical areas of the posterior temporal, parietal and lateral frontal
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lobes (Bocti et al., 2006; Rabinovici et al., 2007). However, direct contrasts of autopsy-proven
cases of AD and FTD show only subtle differences (Grossman et al., 2007a; Whitwell et al.,
2008a), perhaps because subgroups of patients with FTD can have changes in these same areas.
For example, patients with semantic dementia tend to have relatively more hippocampal and
temporal neocortical disease, and patients with behavioral-variant FTD have disease focused
more in frontal brain regions.

Most studies analyze progressive cortical atrophy during the course of FTD with T1-weighted
MRI (Whitwell and Jack, 2005; Brambati et al., 2007). However, additional insight into the
anatomic consequences of dementia may be provided by diffusion tensor imaging (DTI)
(Larsson et al., 2004; Yoshiura et al., 2006; Borroni et al., 2007). This modality provides a
surrogate measure of white matter integrity. There is considerable evidence that the pathologies
associated with FTD cause significant white matter disease (Forman et al., 2002; Neumann et
al., 2006). DTI studies in FTD are rare. One study (Zhang et al., 2009) suggested that DTI-
derived white matter degeneration is more prominent in FTD compared to AD. However, there
is some concern about these results because the participating patients were diagnosed clinically
and there was no independent validation of the diagnosis with autopsy or CSF biomarker data.
Thus, the first contribution of our study is to use DTI and T1 imaging simultaneously to help
describe large-scale patterns of difference in patients with autopsy or CSF biomarker-
diagnosed diseases.

The second innovation in the current study concerns the manner in which we combine these
two imaging modalities. While T1-weighted and DTI modalities provide complementary
windows into disease, the degree to which the appearance of gray matter and white matter
disease are correlated across modalities is unknown. Multivariate relationships between
cortical and white matter signals such as this have been challenging to address due to their
essentially disjoint nature and the tremendous number of multiple comparisons required to
directly assess such correlations. While research performed on separate modalities in non-
overlapping groups provides compelling evidence that both FTD and AD affect white and gray
matter tissue, no study has yet been performed to assess the reciprocity provided by these
modalities or to quantify the extent to which white matter and cortex change together, as
measured by MRI. To achieve this, new multiple modality techniques must be adopted that
enable us to determine whether neurodegeneration occurs across cortical and white matter
networks.

Few studies have investigated the extent to which cortical atrophy and white matter integrity
are quantitatively related. Most studies perform separate analyses for T1 structural and DTI
modalities, where voxel-based morphometry is used separately for cortical and white matter
analysis (Thivard et al., 2007; Ibrahim et al., 2009) and avoid explicit investigation into
correlated DTI and T1 effects. In contrast, Sydykova et al. (2007) used a single region of interest
(ROI) to show that, in AD, the average fractional anisotropy (FA) in anterior and posterior
corpus callosum correlated with anterior and posterior cortical atrophy, where atrophy was
measured by voxel-based morphometry. Kochunov et al. (2007) also used ROIs in white matter
to show correlations, in normal aging, between average brain and corpus callosum FA and
cortical thickness averaged across the whole brain and across hemispheres. Here, we use recent
advances in a well-established statistical technique to provide a new method for correlating
multiple imaging modalities.

Canonical correlation analysis (CCA) (Hotelling, 1936) is an established method for estimating
the linear relationship between two sets of measurements taken across subjects. Hotelling
proposed CCA in 1936 and it remains a method that is ideally suited to investigating multi-
view problems, that is, datasets with two different real-world measurements of some “hidden”
underlying phenomenon. CCA, a multi-view extension of principal component analysis (PCA),
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finds canonical variates that allow an estimation of the extent to which one view correlates
with the other, via a projection. Its output is the correlation value itself and the projection
vectors, which provide a set of canonical weights on the original data that give the best
projection, when combined across all subjects, of one view onto the other. CCA has been used
in medical imaging to investigate anatomical correlations (Rao et al., 2008) where one may
assess the degree to which, for example, left hemisphere caudate volume predicts right
hemisphere caudate volume. CCA is also used in pre/post-processing for fMRI studies
(Ragnehed et al., 2009; Bruguier et al., 2008). These studies use designs where the number of
subjects is greater than or equal to the number of multi-view measurements, a primary
numerical prerequisite for application of CCA. While extremely powerful, traditional CCA
has been severely limited by this condition, as most imaging datasets contain a number of
measurements (e.g. voxels), p, that is much larger than the number of subjects in the dataset,
n.

Recent advances in sparse statistical methods, spurred by the gene expression analysis
community, have resolved some of these issues. In particular, Sparse CCA (SCCA) was recently
proposed by a number of different researchers (Witten and Tibshirani, 2009; Witten et al.,
2009; Parkhomenko et al., 2009; Cao et al., 2009). SCCA makes CCA computationally feasible
and applicable in the case when only a fraction of the p measurements is likely to be important
for the problem at hand. Sparse CCA can be used to find which subsets of voxels, genes, or
other measurements in each modality best predict the other modality. In our application, SCCA
enabled the computation of the significance of correlations between the most predictive subsets
of fractional anisotropy and cortical thickness voxels. The size of these subsets is a controllable
parameter that corresponds to the “sparseness” of the computation. Sparse CCA has advantages
over other integrative approaches that rely on spatially overlapping signals (Avants et al.,
2007, 2008) as SCCA is ideal for computing spatially disjoint multivariate associations.

Here, we use SCCA to elucidate cortical thickness and fractional anisotropy relationships in
both AD and FTD. Moreover, we hypothesize that the regions identified by SCCA correspond
to tissue regions affected by disease. To test this hypothesis, and ensure the validity of the
resulting analyses, each patient's clinical diagnosis was confirmed at autopsy or was consistent
with CSF analyses of proteins informative for distinguishing between FTD and AD.
Additionally, we use regression with neuropsychological testing to assess patterns of clinical-
anatomical associations that are relevant for these diseases. Lastly, we will show that SCCA
may be used for dimensionality reduction to sensibly restrict regions over which voxel-wise
analyses are performed.

2. Methods
2.1. Subjects

We studied 49 patients diagnosed clinically and without use of imaging, along with 23 matched
controls. Twenty-five patients had FTD spectrum disorder and 24 were diagnosed with AD at
the Department of Neurology at the University of Pennsylvania. Initial clinical diagnosis was
established by an experienced neurologist (M.G.) using published criteria (McKhann et al.,
1984, 2001). Subsequently, at least two trained reviewers of a consensus committee confirmed
the presence of diagnostic criteria based on an independent review of the semi-structured
history, mental status examination and neurological examination. Clinical diagnosis was
confirmed at autopsy (n=13) or aided by CSF biomarker-diagnosis which is based on a
validated CSF analysis derived from a population with known pathology (Bian et al., 2008).
Bian et al explicitly used CSF biomarkers to differentiate AD and FTD in vivo and found an
accuracy of 93 % when comparing with autopsy results. If the error rate is identical in this
cohort, then this would lead to misdiagnosis of three or four subjects. Exclusion criteria
included the presence of other neurological conditions such as stroke or hydrocephalus,
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primary psychiatric disorders such as depression or psychosis, or a systemic illness that can
interfere with cognitive functioning. Some of these patients were taking a fixed dosage of an
acetylcholinesterase inhibitor (e.g. donepezil, rivastigmine or galantamine). Some of these
patients may have been medicated with a low dosage of a non-sedating anti-depressant (e.g.
serotonin-specific reuptake inhibitors such as sertraline) or an atypical neuroleptic agent (e.g
quetiapine), as indicated clinically, but none of the patients demonstrated any evidence of
sedation suggesting over-medication. These patients and their legal representatives participated
in an informed consent procedure approved by the Institutional Review Board at the University
of Pennsylvania.

The age (mean ±S.D. = 61.3 ±9 years) of the FTD patients was typical of the younger age of
onset in FTD. The FTD patients were right-handed, high school-educated (education = 15.3
±2.9 years) native English-speakers with a mean MMSE at the examination of 24.5 (±5.1). In
this study, we group all FTD subjects together as there were insufficient numbers of participants
to assess each phenotype (progressive nonfluent aphasia = 7, semantic dementia = 5, behavioral
variant = 13). Future work will seek to address this concern with larger cohorts. AD subjects
were matched in terms of disease duration, gender, handedness, age (63.9±7.5), MMSE (21.4
±8.2) and education (16.4±3.1), as verified by two-tailed T-tests for statistical difference, all
of which failed to reach significance level of p < 0.05. A healthy control population (n=23)
were also right-handed, high school-educated native English-speakers, gender and age (65.3
±8.9) matched to the full patient population.

2.2. Imaging Methods
Image Acquisition—All images were acquired with a Siemens Trio 3.0 tesla MRI scanner.
Each study began with a rapid sagittal T1-weighted scan to determine patient position. A T1-
weighted structural acquisition was then acquired with TR (repetition time) = 1620ms, TE
(echo time) = 3ms, slice thickness: 1 mm, in-plane resolution: .9766mm × .9766mm and field
of view (FOV) 256 × 256 × 192. The diffusion tensor imaging sequence was acquired last with
a 30 direction single shot, spin-echo EPI sequence, FOV: 22 cm; matrix: 96×112; TR: 6.5 sec;
TE: 99 ms; b-value: 0, 1000 s/mm2; 3 averages with a total scan time of 8 min for 72 2 mm
thickness slices with in-plane resolution: 2mm2.

Multivariate Assessment of Cortical Thickness and White Matter Integrity—The
overall image analysis experimental design is as follows:

1. Spatially normalize DTI and T1-weighted imaging data from healthy controls and
patients with FTD and AD diagnoses.

2. Define a white matter region of interest in the DTI template and a cortical region of
interest in the T1 template. In this study, the whole cortex and all white matter with
FA > 0.2 were used.

3. Apply SCCA within a collection of multivariate data to compute the subset of voxels
within each ROI that are most strongly correlated with the alternate modality. Note
that this step does not use diagnosis or neuropsychological testing.

4. Perform permutation testing of one of the two modalities to assess the significance of
the correlation.

5. Leverage the SCCA projections to summarize DTI and T1 relationships across all
selected voxels and/or to constrain further testing such as computing imaging
relationships with neuropsychological evaluations or group tests.

This design allows us to assess the hypothesis that SCCA helps identify disease relevant regions
of the brain. The outcome is, first, the significance of the multivariate association. Second, via
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step 5, we test whether the associated regions are significant with respect to disease and/or
cognition.

Here, we use diffeomorphic normalization of the T1 and diffusion tensor modalities as a pre-
processing step that will cluster the image-based features before down-stream SCCA. The DTI
and T1 modalities are processed separately due to the presence of inter-modality distortion and
because SCCA does not require the two views of the patient to be spatially aligned. In contrast,
normalization of all subjects within a modality is important to maximize the within-modality
anatomical alignment across the subjects in the population. The processing for each modality
is described below.

T1 Processing for Estimating Cortical Thickness: Reliable cortical thickness estimation and
group analysis requires state-of-the-art normalization and segmentation. The analysis of T1
imaging is based on the publicly available and open-source Advanced Normalization Tools
(ANTS, http://www.picsl.upenn.edu/ANTS/) and the associated pipelining framework
PipeDream (http://sourceforge.net/projects/neuropipedream/). PipeDream automates and
quality assures ANTS processing via a single parameter file and data organization hierarchy.
Each subject's T1 imaging data are inhomogeneity corrected via the Insight Journal
implementation of N3 (Sled et al., 1998; Tustison and Gee, 2009). PipeDream then performs
diffeomorphic normalization via the top-performing (Klein et al., 2009) symmetric
normalization methodology, available in ANTS, to map each subject to an existing, labeled
elderly/neurodegenerative population template, built from the same scanner and imaging
parameters. The template contains prior labeling and probability maps that are used to guide
both brain extraction and three-tissue segmentation. Three tissue-segmentation is performed
with a Markov Random Field approach (Zhang et al., 2001) implemented in the ANTS
ImageMath tool. The cortical and white matter probability maps, in the individual space, are
then input to Diffeomorphic Registration-Based Cortical Thickness (DiReCT), a robust tool
for image-based thickness estimation that respects sulcal boundaries and prevents over-
estimation of thickness via prior-based restrictions (Das et al., 2009). The resulting thickness
images are then mapped—via diffeomorphism—back to the space of the T1 imaging template
and smoothed with a 2mm standard deviation Gaussian kernel. Finally, the template cortex is
used as a region-of-interest over which we will ultimately extract thickness data for input to
SCCA.

DTI Processing for Estimating White Matter Integrity: Diffusion-weighted images were
pre-processed using the PipeDream interface
(http://sourceforge.net/projects/neuropipedream/) to ANTS and the Camino toolkit (Cook et
al., 2006). Motion and distortion artifacts were removed by affine co-registration of each
diffusion-weighted image to the unweighted (b = 0) image in the diffusion imaging sequence.
Diffusion tensors were computed using a linear least squares algorithm (Salvador et al.,
2005) implemented in Camino. The diffusion-tensor normalization and template was computed
using the DTITK software (http://www.nitrc.org/projects/dtitk/). DTITK uses an iterative
procedure (Zhang et al., 2007) to compute deformable, tensor-based mappings that explicitly
optimize tensor similarity (Zhang et al., 2006) between each image and an unbiased template.
Subject diffusion tensor images were upsampled to 1mm isotropic resolution during the
template construction process. The overview of this procedure is in Figure 1.

2.3. Sparse Canonical Correlation
We use sparse canonical correlation analysis to empirically assess the extent to which white
matter disease and cortical disease are predictive of each other in our multivariate data. SCCA
achieves this by computing a reduced, optimal “weighted average” of the voxels in each
modality's ROI that maximizes the correlation between modalities. This “sparse” selection
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process serves to control the influence of outliers on the computed correlations and
automatically locates the most reliable, but spatially distributed voxels from the ROI. Standard
methods of assessing correlation require a more detailed definition of an ROI by hand wherein
all voxels are weighted equally. In contrast, SCCA increases power over this traditional strategy
by using a regularized energy minimization approach to define the sets of voxels in one
modality that are most informative about the other.

Each of N subjects in this study is represented by a normalized thickness image, Tj(x), and a
normalized FA image FAj(y). The thickness domain is indexed by x and the FA (DTI space)
domain is indexed by y. Within thickness space, we define a cortical mask with nT voxels.
Within FA space, we have a mask with nFA voxels. We may then represent the full, masked
datasets as two matrices, T and FA, of size N × nT and N × nFA respectively. Note that each
entry in the matrix is uniquely associated with one individual and one position in the imaging
domain. SCCA's goal is then to find a pair of nT and nFA entry weight vectors, ωT and ωFA,
such that the Correlation(TωT, FAωFA) is maximized (with additional constraints ‖ωT‖2 ≤ 1,
‖ωFA‖2 ≤ 1). For each subject, then, we have a projection of that subject's data given by the
ω. The thickness projection for subject j is then TjωT and the sum over TjiωTi indexes the spatial
variation through the thickness mask. Similarly, the FA projection is given by FAjωFA. To
make this computation feasible and the solution unique, one of a variety of constraints on the
problem may be used (Witten and Tibshirani, 2009; Witten et al., 2009; Parkhomenko et al.,
2009; Cao et al., 2009). Here, we assume that the within-modality covariance matrices can be
approximated by the identity; we also center our data matrices s.t. each subject's data vector
has zero mean.

For the problem of multivariate association between cortical thickness and FA, we choose
positivity and sparseness constraints as proposed by Witten et al. (2009). These constraints
improve interpretability of our results by enabling only unidirectional associations to be
investigated. Positivity constraints enable us to test, specifically, the linear, positive variation
of FA with cortical thickness. Sparsity constraints are also attractive from an interpretation
standpoint—the method's sparsity excludes the voxels in each modality that are of little
importance in predicting the voxels in the other modality. One thus localizes the relationship
to important brain sub-regions that are correlated across modalities. These constraints are
ωTi ≥ 0, ωFAk ≥ 0 and ‖ωT‖1 ≤ CT, ‖ωFA‖1 ≤ CF where C is a constant related to the desired
sparseness imposed by the L1 penalty, ‖ · ‖1. The positivity constraint guarantees that both ω
will have positive entries and may thus be viewed as a weighted average of the data. The
sparseness constraint influences the fraction of masked voxels that will have non-zero weights
or, equivalently, the number of entries in the ω that will be greater than zero. Under this
formulation, SCCA will optimize the following maximization criterion:

(1)

where ‖ωT‖2 ≤ 1, ‖ωFA‖2 ≤ 1, the λ are inversely related to C and with additional constraints
that ωTi ≥ 0, wFAk ≥ 0. Witten and Tibshirani (2009) provide a solution to this optimization
problem, which may also be thought of as maximizing the Pearson correlation between the
projections under the given constraints. The free parameters λF, λT determine the sparseness
of the calculation where the penalty term ‖ · ‖1 indicates the L1 norm or “lasso” penalty.
Decreasing λ increases the number of non-zero terms in the ω. Note that by masking the FA
and T images in pre-processing we are fixing some of the weights in the domain of the weight
vectors to be zero. For this study, we choose λF, λT such that approximately half of the voxels
within the input mask for each modality are non-zero on output. This choice was made to focus
the study on distributed networks of effects while also reducing non-informative noise in the
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input data. Note also that we take only the first component of the SCCA solution. Importantly,
we note that ongoing work shows that CCA and some implementations of PLS may be
equivalent (e.g. Chen et al. (2009a); Sun et al. (2009)). In particular, the least squares (not
penalty) term in our objective is equivalent to that provided by the Chen et al. (2009a) PLS
implementation. However, Chen, et al. do not use sparsity or positivity constraints.

We may also use permutation testing to quantify the significance of the networks identified by
SCCA. For a given study group, we randomly reassign the pairings of the input images such
that many pairs (FAi, Tj) occur with i ≠ j. Thus, the SCCA will be computed on paired data
where the two views are not taken from the same subject. One then stores the estimated
correlation values for the multi-view solution for all of P permutations of labels. The p-value
of the original correlation is then ρ/P where ρ is the number of times the permuted correlation
equaled or exceeded the original correlation value. If the p-value of the SCCA correlations is
high, the identified network is not significantly related to the distinct pairing of the individual's
cortical and white matter anatomy. We also used Monte-Carlo simulations with randomized
data to show that our permutation-based design indeed produces only 44 instances over 1000
simulations with p-values < 0.05.

3. Results
Syndrome-Specific Patterns of Network Degeneration

Permutation testing of SCCA correlations were performed on the combined FTD and control
dataset and, separately, the combined AD and control dataset. This design assesses disease-
specific variation relative to controls (versus combining all patients with controls or assessing
FTD plus AD variation without controls). Both SCCA runs were performed with 2000
iterations with no single instance of permuted outcome exceeding the unpermuted correlation.
Thus permuted p < 0.0005. Furthermore, the weight vectors (the canonical weights) resulting
from these analyses are shown in Figure 2 and indicate a pattern of effects that are brought out
distinctly between FTD and AD. The non-zero weighted regions determined by SCCA provide
a unique anatomical signature associated with each syndrome. We diffeomorphically mapped
the DT template to the T1 template space to enable display of the multivariate results in the
T1 template space. The mapping technique uses a cross-correlation similarity measure between
the FA of the DTI template and the T1-weighted MRI. However, this was done after all statistics
were computed and was used only for visualization.

Cortico-Connective Network Differences Between Populations
The projected FA and thickness values for each experiment are shown in Figure 5. SCCA
projections provide a separating trend between the groups that is induced naturally from the
variance that exists within the data. One-sided T-tests were performed between the projected
values to evaluate whether significant differences between groups occur in the set of selected
FA and thickness voxels. When testing the hypothesis that AD FA is reduced relative to elderly
controls, we find p < 0.0008; the same test on cortical thickness gives p < 0.0004. For the FTD
versus elderly contrast in FA, we find p < 1.831e − 05; for the FTD versus elderly contrast in
thickness, p < 0.0002. Note that we explicitly test whether the diseased groups have reduced
values relative to controls (one-sided tests). Figure 5 also reveals a trend suggesting that FTD
provides a steeper gradient of association between cortical and white matter atrophy when
compared to AD. Both AD and FTD subjects delineate steeper trends of association when
projection data is fit with regression lines separately from the controls.

We further refine these observations by using SCCA for dimensionality reduction. SCCA pre-
processing is used to select voxels before directly contrasting AD with elderly controls, FTD
with elderly controls and the more subtle AD versus FTD group differences. In each case, we
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apply SCCA to the full groupings (without diagnosis information) and then perform mass
univariate group tests within the SCCA selected voxels. Here, we apply voxel-wise Wilcoxon
rank-test comparisons to test for differences in thickness or FA. These analyses use one-sided
tests. For each diseased group, relative to controls, we test where the diseased group has reduced
FA/thickness within their respective SCCA-defined masks. That is, for the AD < control
comparison, we use the AD-Eld mask and, for the FTD < control comparison, we use the FTD-
Eld mask. For the contrasts FTD < AD and AD < FTD, we used an AD-FTD SCCA mask.
Thus, tests are performed within the relevant SCCA-identified networks. We also restrict the
analysis to the non-zero components of the SCCA weights in order to both increase
interpretability of differences and increase sensitivity by reducing the multiple comparisons
problem. Significance of the voxel-wise, false-discovery rate corrected comparison of AD-
FTD groups along these restricted regions is visualized in Figure 3 and reported—region-wise
—in Table 1 and Table 2. Regions were identified with the aid of labeled templates shown in
figure 4. The tables were produced by analyzing the volume of effect within each labeled region
in both the T1 and DTI template and reporting the minimum p-values within each region.

Specifically, FTD cortical thickness showed the strongest and largest differences from controls
in bilateral insula, left middle frontal gyrus, bilateral inferior frontal gyrus, bilateral
orbitofrontal gyrus and left precentral gyrus, as well as left and right cingulate gyrus, with the
burden focused in the anterior/inferior part of the cingulate. Likewise, in white matter, the
uncinate, inferior-frontal-occipital and anterior corpus callosum projections are densely
involved in FTD. SCCA also revealed that, of the three groups, FTD showed the strongest
associations between large-scale variation in FA and variation in cortical thickness as
evidenced by Figure 5.

Cortical regions where AD induces the strongest differences from controls are the left temporal
pole, right superior/inferior temporal gyrus, left and right parahippocampal/hippocampal
regions, right inferior parietal lobe and left and right precuneus. Correlated white matter tracts
that are significantly compromised in AD include the superior longitudinal fasciculus, inferior
frontal-occipital fasciculus, descending corticospinal fibers and the corpus callosum.

When we compare the FTD-Elderly contrast with the AD-Elderly contrast, we see that AD
shows relatively distinct temporal-parietal, posterior temporal, precuneus and hippocampal
regions and greater involvement of superior longitudinal, inferior frontal-occipital and arcuate
fasciculi and mid-body of the corpus callosum. AD also more strongly affects the temporal
pole, the right parahippocampal gyrus and the precuneus relative to FTD, with respect to
controls, although these effects do not appear in the direct contrast of the diseases. In FTD,
extensive regions of frontal cortex were significantly thinner relative to AD, while reduced FA
in genu contributed to the correlation with frontal-lobe cortex. Anterior cingulate, in particular,
is strongly present in FTD SCCA results relative to AD. In AD, the mid-body of the callosum
was involved along with white matter superior to the mid-body of the cingulate gyrus.

Network Degeneration and Behavioral Correlations
The projected thickness and FA values are determined from the selected, correlated voxels as
determined by both the FTD and AD experiments. Given the unique etiology of these diseases
and their unique cognitive signatures, we further test whether the projections relate to
neuropsychological tests derived from the same subjects. Mini-Mental State Examination
(MMSE) is routinely applied in AD diagnosis, has previously been associated with AD-related
decline (Moon et al., 2008) and correlates with episodic memory loss (Hill and Baeckman,
1995; Small et al., 1997; Carcaillon et al., 2009). MMSE is also shown to correlate with the
presence of neurofibrillary tangles (Sabbagh et al., 2009). While MMSE is a reliable measure
of disease severity in AD, MMSE does not reliably reflect dementia severity in FTD and many
severely impaired FTD patients may have a normal MMSE score (Gregory et al., 1999; Libon
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et al., 2007b,a; Torralva et al., 2009). The verbal fluency test, FAS, has been used to examine
executive function deficits in FTD (Giovagnoli et al., 2008; Huey et al., 2009). In longitudinal
studies of autopsy-confirmed cases, patients with FTD spectrum pathology are significantly
more impaired than AD throughout the entire course of disease (Grossman et al., 2008). We
thus use linear regression to determine the extent which the projected FA and projected
thickness values for each group predict FAS and MMSE scores. The standard regression
representation is S ≈ βFAFAproj + βTHTHproj + ε where S is the vector of cognitive scores, β are
scalars and the thickness and FA projections are vectors. For AD, we find a significant
association of the FA plus thickness model with MMSE score (p < 0.048) while there is no
significant association between the projections and verbal fluency (p < 0.8). In contrast, the
FTD projections reveal a strong relationship between FA plus thickness and verbal fluency
(p < 0.008) and no relationship with MMSE (p < 0.17). These tests suggest the projections
derived by SCCA provide valuable unsupervised selection of regions of interest that have a
relevant relationship to neuropsychological performance. All statistical tests were performed
with R software (www.r-project.org).

4. Discussion
SCCA revealed significantly correlated, disease-specific patterns of white matter degeneration
and cortical atrophy across the brain that differ in FTD and AD. While both diseases cause
significant differences from healthy elderly controls, FTD appears to have a more severe effect
over those white matter and cortical regions which undergo correlated atrophy. The SCCA
projections, when examined by sub-group statistical tests, revealed significant large-scale
differences between elderly controls and patients that derive largely from the regions defined
in Tables 1, 2 and visualized in Figure 2. The AD disease pattern presented a unique relationship
with MMSE, while the FTD pattern related to verbal fluency. Moreover, distinct cortical-white
matter networks that are degraded in AD and FTD correspond to areas of disease observed in
pathologic studies of the anatomic distribution of lesion burden. In sum, SCCA provides an
unsupervised approach to defining disease-relevant, degraded cortical-white matter networks.
At the same time, SCCA greatly reduces the multiple comparisons problem.

4.1. Comparison with the ROI Approach
The most common approach to performing cross-modality analysis in medical imaging is the
ROI technique (Kochunov et al., 2007; Sydykova et al., 2007). Region of interest methodology
requires identifying sub-regions manually, in one modality, for correlation across all voxels in
the second modality. There are several limitations to such an approach. First, this strategy is
asymmetric—one must decide to correlate a white matter region with all gray matter voxels
or vice versa. SCCA, in contrast, offers an unsupervised, yet principled, solution to this
correspondence problem. The second limitation is apparent when one considers performing
this type of analysis over “all pairs”, that is, to correlate N cortical thickness voxels with M
voxels in another modality, such as FA. In this case, one obtains a cross-product matrix of
correlations that would have N × M number of entries—N × M would typically be in the one
million squared range. Computing such a matrix is far more computationally expensive than
an efficiently implemented SCCA. Finally, the multiple comparisons correction for such an
analysis would be highly conservative. Thus, for all of these reasons, traditional ROI analyses
are currently constrained to few regions and do not lend themselves to large-scale evaluation
of associations between imaging modalities.

SCCA provides one way to resolve two additional disadvantages of the ROI strategy. First,
ROIs require one to compress a complex signal pattern into a single statistic such as a regional
average or median value. This may result in loss of detection power. Our alternative, SCCA,
computes a set of weights that prioritize the most informative voxels in the dataset and provide
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a linear combination between the input datasets that is optimal with respect to Pearson
correlation. Second, traditional correlation is sensitive to the vector basis used to represent
multi-dimensional data, a problem resolved by SCCA (Hardoon et al., 2004). That is, SCCA
computes the basis (coordinate system) that maximizes the correlation matrix. A well-known
example may be found in (Borga, 2001). In comparison to ROIs, SCCA optimally leverages
the predictive relationship between sets of features acting together in a complex way. While
SCCA has advantages over the ROI strategy, the regions selected by SCCA are not directly
hypothesis-driven as are a priori defined ROIs. On the other hand, SCCA has the advantage
of minimizing experimenter bias while using the data to drive associations that are relevant to
neuroimaging studies. Below, we discuss our experimental evidence that, in this application,
unsupervised SCCA is “choosing” neuroanatomical areas that are disease-relevant.

4.2. Validity of SCCA Results and Relevance of SCCA Regions
The anatomic networks selected by SCCA correspond to expected areas of disease based on
other T1, DTI and pathology studies. In patients with autopsy- and CSF-confirmed disease,
SCCA revealed that FTD affects frontal cortical-connectivity networks with a spatial
distribution shown in Figure 2. The overwhelming bulk of the disease involves frontal and
temporal cortical regions, as observed in clinical-pathological studies (Forman et al.,
2006;Grossman et al., 2007a,2008;Josephs et al., 2006b). The areas involved in FTD may
provide a neuroanatomical substrate for executive function and mental search, important
cognitive components underlying performance on confrontation tests (Grossman et al.,
2004). In AD, SCCA revealed strong parieto-temporal involvement across both white matter
and cortex. In particular, the AD network involves a large parietal lobe region of cortex and a
large anterior cingulate region of cortex, though focused more superiorly than the anterior
cingulate effect of FTD. The areas localized to AD in this study have been hypothesized as
neuroanatomical substrates for visuospatial and episodic memory (Hodges et al., 1999;Jagust
et al., 2006) and their deficit may underly the association between the SCCA projections and
MMSE. Precuneus and medial temporal lobe have been identified in post-mortem studies of
AD (Rabinovici et al., 2007;Sabbagh et al., 2009), while temporal pole atrophy in AD has been
validated post-mortem (Arnold et al., 1994). Sabbagh et al. (2009) also showed that
neuropsychological testing correlates with neuropathology in AD, while Whitwell et al.
(2008b) showed that MRI atrophy patterns relate to anatomical distribution of neurofibrillary
tangle pathology. Overall, as anticipated in our diseased-group versus healthy control analysis,
AD also showed a stronger medial temporal lobe and posterior temporal/inferior parietal and
posterior cingulate cortical involvement in contrast to FTD.

Our direct comparison of AD and FTD shows significantly greater cortical atrophy and reduced
FA in FTD, relative to AD in inferior frontal, medial frontal and prefrontal cortical regions. In
particular, anterior cingulate gyrus and middle, inferior and orbitofrontal gyrus were thinner
in FTD than in AD, with greater differences on the left. Left superior frontal gyrus was also
reduced. In cortex-associated white matter, the genu of the corpus callosum, the left inferior
fronto-occipital fasciculus and the cingulum showed the primary differences, along with the
left-sided uncinate and bilateral anterior corona radiata. One smaller region of periventricular
splenium also showed reduced FA in FTD relative to AD. AD showed no areas of significant
reduction in cortical thickness or white matter integrity relative to FTD. However, for reference,
we report in Figure 6 an uncorrected, one-sided statistical test for locations where, in FA or
thickness, AD < FTD. A trend towards significant difference appears in the inferior parietal
lobe in FA and in the precuneus and posterior temporal lobe in thickness. However, these do
not survive FDR correction. Though our results do not directly support it, this study design
cannot rule out the possibility of an AD-induced correlation between precuneus atrophy and
posterior parietal FA reduction.
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A series of studies have contrasted image-based cortical atrophy patterns between FTD and
AD (Grossman et al., 2004; Bonte et al., 2004; Bocti et al., 2006; Du et al., 2007; Richards et
al., 2009; Young et al., 2009); some have used machine learning (Kloeppel et al., 2008); few
have used post-mortem or CSF biomarker diagnoses (Whitwell et al., 2008a,b), and few have
contrasted distinguishing white matter patterns (Chen et al., 2009b; Zhang et al., 2009). None
have performed a bivariate analysis like that performed here where we use data from autopsy
or CSF biomarker-diagnosed patients and take advantage of the innate variability in disease
and imaging to identify significantly associated effects in DT and T1-derived measures.

In white matter, (Zhang et al., 2009) also showed reduced FA in FTD relative to AD, with no
effects in the opposite direction. Similarly, (Whitwell et al., 2008a) used T1-weighted MRI
from autopsy proven subjects to show a greater rate of overall atrophy in FTD relative to AD
(ventricular expansion of 23 ml/year compared to 10 ml/year). (Krueger et al., 2009) also
showed that regional atrophy rates were not significantly higher for AD in any brain region
compared with frontotemporal dementia. Barnes et al. (2007) used autopsy or genetically
confirmed patient data—with the AD group age-matched to the FTD group—to show higher
atrophy rates in FTD relative to AD in anterior cingulate. Richards et al. (2009) showed that
precuneus and medial temporal lobe atrophy may be greater in AD than in FTD, but the subjects
recruited in that study were considerably older than typical FTD (average age 75.1), the subjects
lacked pathologically confirmed or CSF biomarker-aided diagnosis and the groups were
unbalanced (38 AD vs. 11 FTD). Du et al. (2007) showed that clinically diagnosed AD had
higher atrophy in precuneus and in left temporal regions, relative to clinically diagnosed FTD
—but the AD group appeared to be more clinically impaired because of their significantly
lower MMSE than the FTD group. However, MMSE is a poor overall measure of severity in
FTD. Thus, one may also consider that our FTD subjects—matched by MMSE to our AD
subjects—may be relatively more impaired than those in (Du et al., 2007). Although our groups
with autopsy or CSF biomarker-diagnosed disease were matched demographically at the time
of imaging and equally sized, we cannot rule out that our power is not enough to detect the
smaller regions where AD atrophy out-paces FTD. Additional comparative studies with larger
group sizes of well-defined patients are needed to address this possibility.

4.3. Cognition and Disease Pathways
Another source of validation comes from cognitive assessments. This study revealed unique
regions of involvement induced by FTD and AD in both cortical and connective tissues and
that in toto, these regions represent thickness and FA values that relate to distinct cognitive
measures that are impaired in these patient groups. The MMSE is much more sensitive to
disease severity in AD than FTD. Correspondingly, the MMSE was significantly related to the
degraded cortical-white matter network in AD as identified by SCCA, but was not correlated
with the FTD profile. Previous work has related MMSE to cortical atrophy (Moon et al.,
2008) and pathology (Sabbagh et al., 2009).

By comparison, FTD are much more sensitive to the FAS measure of category naming fluency
than AD patients. We found that FAS performance correlated with the degraded network
identified by SCCA in FTD but not AD. Previous work has related FAS category naming
fluency to imaging (Libon et al., 2009a) and pathology in FTD (Grossman et al., 2007a,
2008). This double dissociation underlines from an entirely different perspective the unique
patterns of degraded cortical-white matter networks found in FTD and AD. Complex cognitive
measures such as these are thought to be supported by large-scale neural networks that involve
cortical regions integrated by white matter projections and whose disruption may underly
functional network deficits (Seeley et al., 2009). SCCA represents an important and novel
method for examining the network basis for cognitive deficits in neurodegenerative diseases.
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4.4. Limitations of the Approach
Several caveats should be kept in mind when considering our results. One limitation of this
study is the lack of statistical power. As SCCA is sensitive to variability in a population, a
small group will reduce detection power for a given SCCA study. So, in many cases, group
sizes of less than a few dozen may prove too small to lead to significance under permutation.
Similarly, because SCCA requires a degree of variability across modalities to detect effects,
SCCA will fail to produce significant associations when either floor or ceiling effects are
present in the data. That is, when a variable reaches a minimum in one modality and not another,
SCCA will not produce unique correlations under permutation due to the lack of variance in
the modality that has the floor/ceiling effect. Additionally, we examined only a limited range
of clinical-imaging correlations and more work is needed to fully assess other cognitive
measures in these patient groups.

SCCA may be used to automatically locate regions across modalities that are significantly
associated. In contrast, SCCA will not identify disease-effects that occur in only one of the two
modalities. A separate univariate design and follow-up comparison with SCCA results through
conjunction methods would be required to locate regions that are affected in only one of the
two modalities. Similarly, to localize cognition-anatomy correlations to specific voxels (as
opposed to the aggregate effects we sought there), one would require a univariate, voxel-wise
design that would cause severe multiple comparisons correction that SCCA allowed us to avoid
here. Parameter selection is also important. Our model is insensitive to inverse relationships
between modalities because we sought only positive correlations. Depending on how the
sparseness parameter is selected, one will either gain large, distributed regions or a much
smaller, isolated set of regions. Large regions have the advantage of revealing wide-spread
effects, but also the disadvantage of reducing the resolution of the findings. As in this work, a
large set of SCCA-defined regions must be investigated further to localize differences in more
detail within the regions. Also, here, we have investigated only the first canonical variate.
Similar disadvantages in interpretation arise when one considers more than just the first
canonical variate, an enterprise we leave to future work.

Double-dipping (Kriegeskorte et al., 2009) is another possible concern with this analysis.
Double-dipping is characterized by reusing training data as testing data with the same outcome
measures or predicted variables in both stages. A typical example would proceed as follows:
(1) correlate all imaging data with a neurocognitive score; (2) use outcome of (1) to select
regions of interest; (3) relate ROI values with the neurocognitive score in the same subjects.
In this toy example, the problem is that the neurocognitive score is used in both (1) and (3) and
with the same imaging dataset. Our study avoids this because the SCCA analyses are
unsupervised and do not directly reference neurocognitive scores or diagnoses. SCCA instead
uses mutual variance in the data to drive the voxel selection process. Thus, testing for
differences in measures between groups is an independent question, as is whether the SCCA
projections are related to neurocognitive scores within diagnosis groups as these variables do
not enter the voxel selection criteria. Thus, we recommend future work to use the following
recipe when using SCCA for dimensionality reduction and/or assessing cross-modality
association: (1) Apply SCCA to select voxels independent of diagnosis within a global region
of interest (e.g. the cerebrum); (2) Use permutation testing to assess the significance of the
cross-modality association. (3) Use the SCCA results to select subsets of the original data
spaces to restrict the group analyses (dimensionality reduction) through contrast-specific
masking. For instance, in our contrast of AD versus FTD we applied SCCA on the combined
FTD-AD groups to select relevant sub-regions of the brain within which we test for group
differences. The same is done for FTD-Elderly and AD-Elderly comparisons. As the first and
second step ignore diagnosis, the third step is free of double dipping. These steps are precisely
what we did in analyzing FTD-Elderly, AD-Elderly and AD-FTD differences.
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5. Conclusion
To our knowledge, this is the first demonstration of a consistent and integrated analysis of DTI
and cortical thickness in an autopsy and CSF biomarker-diagnosed imaging population. We
established the validity of this new approach by associating its findings with both
neuropsychological testing and known patterns of anatomical effects in well-studied disorders.
Our findings suggest that FTD and AD induce correlated white matter and cortex degeneration
and that these diseases act through unique pathways. This multivariate imaging analysis and
integration with SCCA demonstrates a powerful new paradigm of investigation that may be
extended to other populations and experimental designs and may be adapted to both a priori
and exploratory studies. While explicitly reducing the size of the ROIs or increasing the
sparseness penalty is one way to restrict the findings to smaller regions/networks, more work
is needed to directly assess the statistical significance of the weights defining the canonical
variates or projections. A boostrap method such as that used by Chen et al. (2009a) provides
one possible solution. Future work will focus not only on assessment of the weights—and
potential inclusion of more variates in the analysis—but also on extending these analyses to
tri-variate studies. We also will extend these analyses to help discriminate disease patterns
between FTD phenotypes.
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Figure 1.
The multivariate image analysis strategy used in this study analyzes DTI and T1 separately
until the last step. The individual's DT and T1 space, in column (a), is mapped to the DT and
T1 components of the template, in column (b), by modality-specific registration strategies. The
Fractional anisotropy in template space is then derived from the deformed DTI data, bottom
column (c). The cortical thickness is separately derived from the individual T1 data by
performing prior-based image segmentation and DiReCT (Das et al., 2009) thickness
estimation. The derived voxel-wise thickness image is then mapped to the template space. In
(d), SCCA is used to analyze positive correlations between thickness and FA, without respect
to group labelings. Finally, in (e), downstream statistics may be assessed within the
significantly correlated regions identified by SCCA. For instance, group statistical tests may
be restricted to those voxels in T1 and DTI that are mutually informative thus reducing the
multiple comparisons problem while increasing interpretability in bi-modality studies.
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Figure 2.
This figure shows FA regions in blue that SCCA-correlate with the cortical atrophy in the red
areas for both the AD-Eld and FTD-Eld analysis. Results are aggregated in a population-
specific template across 23 elderly subjects, 25 FTD and 24 AD subjects and which integrates
modalities into a common reference frame. Thickness and FA values derived from T1 and DTI
are then related across elderly, AD and FTD through our multivariate SCCA imaging strategy.
In this figure, the DTI component of the analysis has been mapped diffeomorphically to the
T1 template in order to show both cortical (red) and white matter effects (blue) within the same
space. For both images, brighter red/blue voxels indicate greater importance for the correlation.
Most of the variation in brightness is along the edges of the regions. Both axial views and
sagittal views of our imaging results are shown. The AD-Eld SCCA analysis shows the SCCA
weights derived from grouping the elderly and AD data. The FTD-Eld SCCA analysis shows
the SCCA weights derived from grouping the elderly and FTD data. The significance of the
SCCA associations for each group was p < 0.005, assessed by permutation.
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Figure 3.
SCCA is valuable for dimensionality reduction. Thus, we use the regions found in AD-FTD
SCCA to test for AD < FTD effects. No results were found where the FDR corrected p-value
< 0.05. We also test for FTD < AD effects. Results are shown here which survive FDR corrected
p-value < 0.05. FTD < AD effects are present in both white matter and cortex in many of the
original areas selected by SCCA. Note that when the same FTD-AD analyses are performed
within a mask including all voxels in the brain, the results do not survive FDR correction for
either FA or cortical thickness. Thus, the SCCA restricted comparison has, in this study,
enhanced detection power.
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Figure 4.
The DTI template's FA image and the T1 template are shown together after diffeomorphically
mapping to the same space in the top row. The middle row shows the labels that aided the
annotation in the results tables and to help guide interpretation. The bottom rows reproduce
the sagittal slices of the AD and FTD SCCA results. The figure also connects some of the
prominent labeled anatomical regions with the SCCA results. Label (a) indicates the
corticospinal tract (cst) in both the labeled DTI space (middle left) and in the AD-Eld SCCA
results. We also highlight the inferior longitudinal fasiculus (b), anterior corpus callosum (c)
and the inferior fronto-occipital fasciculus (d). Cortical labeling points to the inferior parietal
lobe/posterior cingulate (e), the inferior temporal lobe (f), the middle frontal gyrus (g) and the
orbitofrontal cortex (h). These regions were selected to bring attention to some areas of
difference between FTD and AD SCCA results.
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Figure 5.
FA and thickness projections for elderly and AD groups (left) and elderly and FTD groups
(right). Each subject is projected to a point on this graph where we have an aggregate summary
of the FA and thickness relationships over the network of voxels selected from each modality
by SCCA. In each plot, red open circle points indicate the diseased group and blue closed
squares indicate the control group. The black regression line fits all data points while red fits
the diseased group and blue the control group. The regression lines are each fitted between the
FA projection and the thickness projection, for each group.
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Figure 6.
This figure shows slices from a whole brain, uncorrected map (p < 0.05) of the regions where
AD < FTD in either cortical thickness (red) or FA (blue). This contrast indicates that some
regions of the brain show a trend towards being more affected by AD than FTD, although these
effects did not survive FDR correction, were not selected by CCA and may not show cross-
modality association.

Avants et al. Page 25

Neuroimage. Author manuscript; available in PMC 2011 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Avants et al. Page 26

Ta
bl

e 
1

Th
e 

ta
bl

e 
su

m
m

ar
iz

es
 c

or
tic

al
 g

ro
up

 st
at

is
tic

s w
ith

in
 c

or
tic

al
 re

gi
on

s t
ha

t s
ig

ni
fic

an
tly

 S
C

C
A

-c
or

re
la

te
 in

 to
to

 w
ith

 w
hi

te
 m

at
te

r i
nt

eg
rit

y.
 T

he
 si

gn
ifi

ca
nt

ly
af

fe
ct

ed
 v

ol
um

e 
w

ith
in

 e
ac

h 
an

at
om

ic
al

 a
re

a 
is

 re
po

rte
d 

as
 V

ol
 a

lo
ng

 w
ith

 th
e 

m
in

im
um

 p
-v

al
ue

 in
 th

at
 re

gi
on

. V
ox

el
-w

is
e 

W
ilc

ox
on

 ra
nk

-s
um

 st
at

is
tic

s
w

er
e 

us
ed

. T
he

 ra
w

 p
-v

al
ue

s w
er

e 
th

en
 F

D
R

 c
or

re
ct

ed
 w

ith
 si

gn
ifi

ca
nc

e 
se

le
ct

ed
 a

t c
or

re
ct

ed
 p

-v
al

ue
 <

 0
.0

5 
w

ith
 a

 m
in

im
um

 c
lu

st
er

 si
ze

 o
f 2

0 
m

m
3 . 

Th
e

A
D

-E
ld

er
ly

 te
st

 w
er

e 
pe

rf
or

m
ed

 u
si

ng
 th

e 
A

D
-S

C
C

A
 re

gi
on

s a
s a

 m
as

k.
 T

he
 F

TD
-E

ld
er

ly
 a

nd
 F

TD
-A

D
 te

st
s u

se
d 

th
e 

FT
D

-S
C

C
A

 re
gi

on
s a

s a
 m

as
k.

 N
o

hi
gh

lig
ht

in
g 

in
di

ca
te

s a
ll 

co
nt

ra
st

s a
re

 si
gn

ifi
ca

nt
; b

lu
e 

hi
gh

lig
ht

in
g 

in
di

ca
te

s o
nl

y 
th

e 
FT

D
 c

on
tra

st
s;

 y
el

lo
w

 h
ig

hl
ig

ht
in

g 
in

di
ca

te
s t

ha
t b

ot
h 

th
e 

co
nt

ra
st

s
w

ith
 e

ld
er

ly
 a

re
 si

gn
ifi

ca
nt

; g
ra

y 
hi

gh
lig

ht
in

g 
in

di
ca

te
s o

nl
y 

th
e 

FT
D

-E
ld

er
ly

 c
on

tra
st

s r
ea

ch
 si

gn
ifi

ca
nc

e;
 p

in
k 

in
di

ca
te

s A
D

-E
ld

er
ly

 a
lo

ne
 is

 si
gn

ifi
ca

nt
.

C
or

tic
al

 a
na

to
m

y
A

D
 <

 E
L

D
FT

D
 <

 E
L

D
FT

D
 <

 A
D

V
ol

. (
m

m
3 )

M
in

 p
V

ol
.

M
in

 p
V

ol
.

M
in

 p

L.
 C

in
gu

la
te

 G
yr

us
61

6
0.

00
00

1
19

28
0.

00
00

2
10

24
0.

00
18

7

R
. C

in
gu

la
te

 G
yr

us
29

60
0.

00
00

1
26

00
0.

00
00

4
10

96
0.

01
88

2

R
. I

ns
ul

a
16

16
0.

00
03

1
48

8
0.

00
00

1
41

6
0.

00
59

3

L.
 S

up
. F

ro
nt

al
 G

yr
us

13
6

0.
01

30
9

34
48

0.
00

00
2

22
08

0.
00

89
0

R
. S

up
. F

ro
nt

al
 G

yr
us

18
80

0.
00

02
6

27
76

0.
00

01
4

91
2

0.
01

88
2

R
. M

id
. F

ro
nt

al
 G

yr
us

12
96

0.
00

05
8

13
28

0.
00

01
2

38
4

0.
01

53
3

R
. I

nf
. F

ro
nt

al
 G

yr
us

14
80

0.
00

02
2

18
64

0.
00

00
0

17
36

0.
00

07
3

R
. O

rb
ita

l F
ro

nt
al

 G
yr

us
56

0
0.

00
21

4
18

40
0.

00
00

1
10

08
0.

00
31

8

R
. P

re
ce

nt
ra

l G
yr

us
91

2
0.

00
04

6
26

4
0.

00
00

9
15

2
0.

01
70

0

L.
 T

em
po

ra
l P

ol
e

29
6

0.
00

01
4

—
—

—
—

R
. T

em
po

ra
l P

ol
e

18
4

0.
00

99
6

—
—

—
—

R
. P

ar
ah

ip
po

ca
m

pa
l G

yr
us

12
88

0.
00

00
1

—
—

—
—

L.
 S

up
. P

ar
ie

ta
l/P

re
cu

ne
us

96
0.

00
00

0
—

—
—

—

R
. S

up
. P

ar
ie

ta
l/P

re
cu

ne
us

72
0

0.
00

00
1

—
—

—
—

R
. P

os
tc

en
tra

l G
yr

us
85

6
0.

00
10

6
—

—
—

—

R
. S

up
. T

em
p.

 G
yr

us
13

76
0.

00
00

2
40

0.
00

80
3

—
—

L.
 In

fe
ro

. T
em

p.
 G

yr
us

72
0.

00
12

2
19

2
0.

00
08

7
—

—

R
. I

nf
er

o.
 T

em
p.

 G
yr

us
47

20
0.

00
00

4
50

4
0.

00
00

8
—

—

L.
 P

ar
ah

ip
po

ca
m

pa
l G

yr
us

68
0

0.
00

00
0

88
0

0.
00

00
5

—
—

R
. I

nf
. P

ar
ie

ta
l L

ob
e

62
16

0.
00

00
2

20
0

0.
00

06
0

—
—

L.
 S

up
. T

em
p.

 G
yr

us
—

—
76

0
0.

00
04

4
—

—

L.
 In

f. 
Pa

rie
ta

l L
ob

e
—

—
44

0
0.

00
21

2
—

—

L.
 P

os
tc

en
tra

l G
yr

us
—

—
26

4
0.

00
47

8
—

—

L.
 In

su
la

—
—

88
8

0.
00

00
1

28
8

0.
02

65
2

Neuroimage. Author manuscript; available in PMC 2011 April 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Avants et al. Page 27

C
or

tic
al

 a
na

to
m

y
A

D
 <

 E
L

D
FT

D
 <

 E
L

D
FT

D
 <

 A
D

V
ol

. (
m

m
3 )

M
in

 p
V

ol
.

M
in

 p
V

ol
.

M
in

 p

L.
 F

ro
nt

al
 P

ol
e

—
—

13
92

0.
00

01
1

10
40

0.
01

61
5

R
. F

ro
nt

al
 P

ol
e

—
—

20
32

0.
00

01
6

59
2

0.
01

78
9

L.
 M

id
. F

ro
nt

al
 G

yr
us

—
—

39
84

0.
00

00
0

23
36

0.
00

09
8

L.
 In

f. 
Fr

on
ta

l G
yr

us
—

—
25

92
0.

00
00

0
15

76
0.

00
07

9

L.
 O

rb
ita

l F
ro

nt
al

 G
yr

us
—

—
50

00
0.

00
00

1
34

64
0.

00
03

1

L.
 P

re
ce

nt
ra

l G
yr

us
—

—
83

2
0.

00
00

0
33

6
0.

01
61

5

Neuroimage. Author manuscript; available in PMC 2011 April 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Avants et al. Page 28

Ta
bl

e 
2

Th
e 

ta
bl

e 
su

m
m

ar
iz

es
 w

hi
te

 m
at

te
r g

ro
up

 st
at

is
tic

s w
ith

in
 w

hi
te

 m
at

te
r r

eg
io

ns
 th

at
 si

gn
ifi

ca
nt

ly
 S

C
C

A
-c

or
re

la
te

 in
 to

to
 w

ith
 c

or
tic

al
 th

ic
kn

es
s. 

V
ox

el
-w

is
e

W
ilc

ox
on

 ra
nk

-s
um

 st
at

is
tic

s w
er

e 
us

ed
. T

he
 ra

w
 p

-v
al

ue
s w

er
e 

th
en

 F
D

R
 c

or
re

ct
ed

 w
ith

 si
gn

ifi
ca

nc
e 

se
le

ct
ed

 a
t c

or
re

ct
ed

 p
-v

al
ue

 <
 0

.0
5 

w
ith

 a
 m

in
im

um
cl

us
te

r s
iz

e 
of

 2
0 

m
m

3 . 
Th

e 
A

D
-E

ld
er

ly
 te

st
 w

er
e 

pe
rf

or
m

ed
 u

si
ng

 th
e 

A
D

-S
C

C
A

 re
gi

on
s a

s a
 m

as
k.

 T
he

 F
TD

-E
ld

er
ly

 a
nd

 F
TD

-A
D

 te
st

s u
se

d 
th

e 
FT

D
-

SC
C

A
 re

gi
on

s a
s a

 m
as

k.
 W

hi
te

 m
at

te
r r

eg
io

ns
 in

 F
TD

 fo
cu

s i
n 

th
e l

ef
t a

nt
er

io
r c

or
on

a r
ad

ia
ta

, t
he

 sp
le

ni
um

, t
he

 g
en

u,
 th

e b
ila

te
ra

l u
nc

in
at

e (
le

ft 
in

 p
ar

tic
ul

ar
)

an
d 

th
e 

in
fe

rio
r l

on
gi

tu
di

na
l f

as
ci

cu
lu

s. 
In

 c
on

tra
st

, A
D

 m
or

e 
st

ro
ng

ly
 in

vo
lv

es
 ri

gh
t s

up
er

io
r l

on
gi

tu
di

na
l f

as
ci

cu
lu

s a
nd

 th
e 

m
id

-b
od

y 
of

 th
e 

ca
llo

su
m

,
al

on
g 

w
ith

 a
nt

er
io

r, 
rig

ht
 te

m
po

ra
l l

ob
e 

w
hi

te
 m

at
te

r t
ra

ct
s a

nd
 su

pp
le

m
en

ta
l m

ot
or

 a
re

a.
 N

o 
hi

gh
lig

ht
in

g 
in

di
ca

te
s a

ll 
co

nt
ra

st
s a

re
 si

gn
ifi

ca
nt

; b
lu

e
hi

gh
lig

ht
in

g 
in

di
ca

te
s o

nl
y 

th
e 

FT
D

 c
on

tra
st

s;
 y

el
lo

w
 h

ig
hl

ig
ht

in
g 

in
di

ca
te

s t
ha

t b
ot

h 
th

e 
co

nt
ra

st
s w

ith
 e

ld
er

ly
 a

re
 si

gn
ifi

ca
nt

; g
ra

y 
hi

gh
lig

ht
in

g 
in

di
ca

te
s

on
ly

 th
e 

FT
D

-E
ld

er
ly

 c
on

tra
st

s r
ea

ch
 si

gn
ifi

ca
nc

e;
 p

in
k 

in
di

ca
te

s A
D

-E
ld

er
ly

 a
lo

ne
 is

 si
gn

ifi
ca

nt
.

W
hi

te
 m

at
te

r 
an

at
om

y
A

D
 <

 E
L

D
FT

D
 <

 E
L

D
FT

D
 <

 A
D

V
ol

. (
m

m
3 )

M
in

 p
V

ol
.

M
in

 p
V

ol
.

M
in

 p

L.
 c

or
tic

os
pi

na
l T

ra
ct

16
96

0.
00

02
09

63
60

8
1.

01
E-

06
28

0
0.

00
06

49
81

R
. c

or
tic

os
pi

na
l T

ra
ct

20
00

0.
00

01
58

96
6

34
4

0.
00

01
41

56
1

48
0.

01
57

92
3

L.
 in

fe
rio

r l
on

gi
tu

di
na

l f
as

ci
cu

lu
s

24
0.

02
06

66
1

42
4

7.
34

E-
05

24
0.

01
08

83
6

R
. i

nf
er

io
r l

on
gi

tu
di

na
l f

as
ci

cu
lu

s
19

52
0.

00
03

57
44

9
72

0
1.

42
E-

05
28

0
0.

01
56

09

L.
 in

fe
rio

r f
ro

nt
o-

oc
ci

pi
ta

l f
as

ci
cu

lu
s

96
8

0.
00

01
74

46
3

37
28

1.
13

E-
06

14
08

3.
39

E-
05

R
. i

nf
er

io
r f

ro
nt

o-
oc

ci
pi

ta
l f

as
ci

cu
lu

s
22

24
9.

87
E-

05
24

32
2.

80
E-

06
15

12
0.

00
29

31
12

L.
 u

nc
in

at
e 

fa
sc

ic
ul

us
16

0
0.

00
02

29
53

7
53

6
8.

94
E-

07
42

4
0.

00
01

37
15

R
. u

nc
in

at
e 

fa
sc

ic
ul

us
25

6
0.

00
22

08
11

21
6

0.
00

03
12

62
6

21
6

0.
00

38
52

25

A
nt

er
io

r c
or

pu
s c

al
lo

su
m

53
68

4.
90

E-
05

80
88

2.
38

E-
07

59
76

0.
00

09
45

15
1

Po
st

er
io

r c
or

pu
s c

al
lo

su
m

38
24

2.
44

E-
06

17
44

1.
67

E-
06

37
6

0.
00

13
58

99

M
id

-b
od

y 
co

rp
us

 c
al

lo
su

m
48

0
8.

12
E-

05
52

08
0.

00
02

02
65

6
23

2
0.

01
73

2

L.
 su

pe
rio

r l
on

gi
tu

di
na

l f
as

ci
cu

lu
s

99
2

0.
00

02
29

53
7

—
—

—
—

R
. s

up
er

io
r l

on
gi

tu
di

na
l f

as
ci

cu
lu

s
40

8
0.

00
08

22
66

3
48

0
0.

00
61

57
22

—
—

Neuroimage. Author manuscript; available in PMC 2011 April 15.


