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Cellular homeostasis is achieved by the proper balance of regulatory networks that if disrupted can lead to
cellular transformation. These cell circuits are fine-tuned and maintained by the coordinated function of pro-
teins and non-coding RNAs (ncRNAs). In addition to the well-characterized protein coding and microRNAs
constituents, large ncRNAs are also emerging as important regulatory molecules in tumor-suppressor and
oncogenic pathways. Recent studies have revealed mechanistic insight of large ncRNAs regulating key
cancer pathways at a transcriptional, post-transcriptional and epigenetic level. Here we synthesize these
latest advances within the context of their mechanistic roles in regulating and maintaining cellular equili-
brium. We posit that similar to protein-coding genes, large ncRNAs are a newly emerging class of oncogenic
and tumor-suppressor genes. Our growing knowledge of the role of large ncRNAs in cellular transformation
is pointing towards their potential use as biomarkers and targets for novel therapeutic approaches in the
future.

INTRODUCTION

The ultimate cause of cancer is the alteration of the balanced
harmony of cellular networks and gene expression programs
that maintain cellular homeostasis. Even the slightest pertur-
bation of these pathways can result in cellular transformation.
For decades, genetic studies have revealed the mutational
alteration of genes that control these critical pathways such
as DNA damage response, growth arrest, cell survival or the
apoptotic pathway (1).

Genes controlling such balance can be classified into two
major groups: tumor-suppressor genes and oncogenes. Tumor-
suppressor genes protect cells against deleterious mutations
and cellular regulation that could prime transformation. Con-
versely, genes that initiate the cellular transformation
process upon inappropriate activation comprise oncogenes.
Recent research points to the need for an expanded definition
beyond just protein-coding genes to also include ‘tumor-
suppressor non-coding RNAs (ncRNAs)’ and ‘oncogenic
ncRNAs’.

Indeed, numerous profiling and characterization studies of
microRNAs have identified critical roles for ncRNAs in
cancer (2–5). MicroRNA alterations have been involved in
the initiation and progression of human cancer. Furthermore,
microRNA-expression profiling of human tumors has identified
signatures associated with diagnosis, staging, progression,

prognosis and response to treatment (4,6–12). Given that
microRNAs primarily function as post-transcriptional regula-
tors (13), they can act as tumor suppressor or oncogenes
depending on their target genes (14). But in addition to the
relatively well-described microRNAs, the growing knowledge
of the mammalian non-coding transcriptome is revealing that
the genome is also replete with large ncRNAs, which could
have a major role in the development and progression of
cancer, although their mechanisms of function remain less
well understood (15–19).

Besides genetic mutations of tumor suppressor or onco-
genes, a great deal of evidence indicates that epigenetic altera-
tion is also a major factor contributing to tumor transformation
and cancer (20). Intriguingly, a number of studies suggest that
large non-coding RNAs are key components of the epigenetic
regulatory networks.

For example, it is now well established that some large
ncRNAs such as XIST, HOTAIR, AIR and KCNQ1OT1 inter-
act with chromatin-remodeling complexes targeting them to
specific genes to exert their functions (16,21–25). It has
been proposed that different ncRNAs may serve as molecular
scaffolds for those complexes so they can function in an
appropriate spatial and temporal manner (26–28). In support
of this hypothesis, a recent study shows that as many as
20% of large intergenic ncRNAs (lincRNAs) expressed in a
given cell associate with chromatin-repressive complexes
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such as polycomb repressive complex 2 (PRC2) and that many
of these lincRNAs are bound by multiple chromatin factors.
Moreover, depletion of these lincRNAs affects the ability of
PRC2 to regulate a specific subset of genes (27,28). More
recently, HOTAIR was also discovered to bridge several
chromatin-modifying complexes (29). Collectively, these
studies point to an emerging theme of large ncRNAs interfa-
cing with chromatin regulation by serving as molecular scaf-
folds.

It is noteworthy that chromatin-regulatory complexes are
linked with the aberrant proliferation of cancer cells. For
instance, SUZ12, a subunit of PRC2 complex is overexpressed
in colon and breast cancers and EZH2 is upregulated in many
tumors, including Hodgkin lymphoma, prostate and breast
cancer (30). Moreover, EZH2 expression is associated with
poor prognosis and is an indication for the metastatic character
of the disease (30). Besides PcG proteins, misregulation of
other chromatin complexes is associated with cancer. For
example, �10% of leukemias bear chromosomal translocations
of the trithorax group histone methyltransferase mixed lineage
leukemia (31). Collectively, these findings point to an important
interplay between ncRNAs and chromatin regulation, which
might be relevant for the control of gene expression networks
critical for the process of cell transformation. These studies
point to the interface of RNA and chromatin representing a
new dimension in our understanding of cellular transformation.

Here we synthesize recent advances in our understanding of
large ncRNAs in cancer pathways. These include examples
with a wide range of molecular mechanisms involved in
gene regulation. Although there is a rich literature of the
roles of miRNAs and other small RNA pathways in cancer,
here we specifically focus on large ncRNAs with particular
emphasis on their molecular mechanisms in tumorigenesis.

MECHANISMS OF CELL TRANSFORMATION AND

TUMOR SUPPRESSION BY LARGE ncRNAs

One of the first steps to the identification of ncRNAs relevant to
disease is the profiling of their expression across normal and
tumor samples. To this end, different profiling strategies have
been applied to identify ncRNAs in cancer. Some studies
have analyzed the available gene expression data sets in
search for tumor-specific ncRNAs (32–34). Other groups
have designed tiling arrays covering non-coding sequences of
the genome to profile tumor cells (34–36), whereas others
have focussed on the identification of ncRNA genes that are dif-
ferentially methylated in tumors and may thus have a role in cell
transformation (37,38). These approaches have led to the
identification of several long ncRNAs, whose expression and/
or DNA methylation are significantly associated with cancerous
tissues. However, this effort has been greatly limited by the
incomplete representation of non-coding sequences on DNA
microarrays. More recently, this limitation has been overcome
by the advances in massively parallel RNA sequencing com-
bined with new computational methods. This has allowed the
reconstruction of transcripts that originate the sequence reads
(39,40). Application of these methods can result in significant
progress in the study of currently poorly annotated ncRNAs,
such as lincRNAs, and their splicing isoform diversity.

The studies described above have identified numerous large
ncRNAs that exhibit differential expression between normal
and tumor states. Although such alterations could be due in
some cases to secondary effects of the tumor progression, numer-
ous experimental studies (summarized in Tables 1 and 2)
have suggested that ncRNAs play important roles in controlling
cellular pathways involved in cellular transformation, thus
acting as potential onco- or tumor-suppressor RNAs. A challen-
ging task is to determine how these RNA molecules are able to
modulate those pathways. Here, we describe recent studies that
have shed new light on the functional and mechanistic roles of
large ncRNAs in cancer.

Oncogenic ncRNAs

Similar to protein-coding oncogenes, large ncRNAs can also
promote cellular pathways that lead to tumorigenesis. One
example of such an oncogenic lincRNA is HOTAIR.
HOTAIR underscores the importance of understanding the
relationship between epigenetic regulation by ncRNAs and
cancer. HOTAIR is expressed from the HOXC locus and
was initially discovered as a gene repressor of HOXD genes.
This repressive action is conferred by the interaction of
HOTAIR with the PRC2 complex, imparting PRC2 localiz-
ation and repression of the HOXD locus (22) (Fig. 1A). A
new study has found that HOTAIR is significantly overex-
pressed in breast tumors (34). Furthermore, HOTAIR
expression level in primary breast tumors is a powerful predic-
tor of patient outcomes such as metastasis and death (34). This
phenotype seems to be tightly associated with PRC2-
dependent gene repression induced by HOTAIR. Enforced
expression of HOTAIR results in an altered pattern of
H3K27 methylation and increased invasiveness, whereas the
depletion of HOTAIR causes the opposite cellular phenotype
(34). Collectively, these studies demonstrate how oncogenic
lincRNAs can hijack the epigenetic machinery to reshape
the epigenetic landscape leading to cancer.

In addition to intergenic large ncRNAs such as HOTAIR,
global transcriptome analysis shows that up to 70% of protein-
coding transcripts have antisense partners, and the perturbation
of the antisense RNA can alter the expression of the sense
gene (41). Some of these genes encode tumor-suppressor pro-
teins that can become epigenetically silenced by the
expression of the antisense ncRNA. Thus, misregulation of
these antisense ncRNAs could lead to cellular transformation.

Indeed, the antisense ncRNA ANRIL controls expression in
the INK4A/ARF locus comprising the tumor-suppressor genes
INK4n/ARF/INK4a, p16/CDKN2A and p15/CDKN2B, which
regulate cell cycle progression and senescence. ANRIL is tran-
scribed antisense to the INK4n/ARF/INK4a promoter and
overlaps with two exons of p15/CDKN2B. Independent
studies have shown that overexpression of ANRIL in prostate
cancer results in the silencing of INK4n/ARF/INK4a and p15/
CDKN2B by heterochromatin formation (42,43). ANRIL inter-
acts with CBX7, a component of the polycomb repressive
complex 1 (PRC1), resulting in the targeting of this complex
to the chromatin and the establishment of repressive epigenetic
marks (43) (Fig. 1B). Another example of a tumor-suppressor
gene that is epigenetically silenced by an antisense RNA is
the cell cycle regulator p21/CDKN1A. In this case, the silencing
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Table 1. Examples of large ncRNAs potentially oncogenic

RNA Organism Size Genomic location Expression Functional characteristics Mechanism References

p21 NAT/
Bx332409

Homo sapiens ≥423 bp Antisense cdkn1a/
p21

EST sequenced from
neuroblastoma

Antisense of Cdnk1a/p21.
Negative regulation of
Cdnk1a/p21 by epigenetic.
silencing

Requirement of Ago1 but not Ago2 for
epigenetic silencing of Cdkn1a/p21

(44)

HOTAIR H. sapiens 2.2 kb Intergenic HoxC
locus

Distal fibroblasts/metastatic
breast tumors

Gene silencing in trans.
Metastasis

Interaction with PRC2 and LSD1 complexes
and targeting to repressed genes

(22,34)

MALAT-1 H. sapiens 8.7 kb Intergenic Chr11 Overexpression in lung
adenocarcinoma, breast,
pancreas, colon, prostate and
hepatocellular carcinomas

Metastasis Induction of GAGE6 proto-oncogene
transcription by inhibition of PSF
repressor

(35,49–51)

VL30-1 Mus musculus 4.9 kb Retroelement
ncRNA

Ras-mediated transformation of
mouse fibroblasts

Induction of Rab23 proto-oncogene
transcription by inhibition of PSF
repressor

(47,60–62)

ANRIL H. sapiens 2.2 kb Antisense of
INK4n/ARF/
INK4a and p15/
CDKN2B

Upregulated in prostate cancer Gene silencing of INK4a/ARF/
INK4a and p15/CDKN2B

Interaction with CBX7 component of PRC1
complex

(42,43,63–65)

H19 H. sapiens 2.3 kb Imprinted H19-Igf2
locus in Chr11

Bladder, human lung and breast
carcinoma, choriocarcinoma

Control of imprinting.
Oncogenic or tumor
suppressor. Containing
microRNA miR-675

Unknown (66–70)

CUDR H. sapiens 2.2 kb Intergenic Chr19 Overexpressed in a
doxorubicin-resistant human
squamous carcinoma subline

May regulate drug sensitivity
and promote cellular
transformation through
resistance to apoptosis

Unknown (71)

Zeb2/Sip1
NAT

H. sapiens 680 bp Antisense of Zeb2/
Sip1

Overexpressed in human tumors
with low E-cadherin
expression

Inhibition of E-cadherin
through induction of Zeb2
protein levels

Inhibition of splicing of Zeb2 first exon
containing IRES sequence

(46)

SRA-1 H. sapiens 875 bp Alternative splicing
of SRA gene,
loss of coding
frame

In breast cancer cells, different
balance of coding/non-coding
splicing isoforms

Co-activator of steroid receptors
and other transcription
factors as MyoD. Increased
levels of non-coding isoform
associated with metastasis

Interaction in ribonucleoprotein complexes
with several positive regulators,
including SRC-1, p68 and p72, Pus1p and
Pus3p, as well as negative regulators,
such Sharp and SLIRP to be recruited to
promoters of regulated genes

(72–79)

PCGEM1 H. sapiens 1.6 kb Intergenic, Chr2 Upregulated in prostate cancer in
African-American patients

Inhibition of apoptosis,
promotion of cell growth

Unknown (80–84)

UCA1 H. sapiens 1.4 kb Intergenic, Chr19 Embryonic development and
bladder cancer associated

Increases proliferation,
migration, invasion and drug
resistance of human bladder
cell line

Unknown (85)
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mechanism requires the component of the RNAi pathway
Ago-1 (44) (Fig. 1C). Thus, perhaps similar to ANRIL,
the p21 antisense ncRNA may also be upregulated in cancer
rendering p21 inert, leading to cellular transformation.

In addition to the regulation of tumor-suppressor pathways
by epigenetic silencing shown by previous examples, some
antisense transcripts can also fine tune gene expression at
the post-transcriptional level. E-cadherin is a gene correlated
with gastric, breast, colorectal, thyroid and ovarian cancers.
Its loss of function is thought to contribute to progression in
cancer by increasing proliferation, invasion and/or metastasis
(45). A strong association has been demonstrated between
the expression of a particular natural antisense transcript
(NAT) and human tumors with low E-cadherin expression
(46). NAT overlaps with an intronic 5’ splice site of the
Zeb2 gene and prevents its splicing. The retained intron con-
tains an internal ribosome entry site (IRES) necessary for
the increased translation of Zeb2 protein, which can sub-
sequently function as a transcriptional repressor of E-cadherin
(46) (Fig. 1D). Collectively, these studies provide strong
impetus for further investigation of antisense ncRNAs in
cancer pathways.

Other ncRNAs can induce the expression of the proto-
oncogene Rab23 resulting in transformation and metastasis
of skin fibroblasts (47). These ncRNAs act as inhibitory mol-
ecules, by complexing with the DNA and RNA-binding PSF
(polypyrimidine tract-binding protein-associated splicing
factor) protein to block its function as a transcriptional repres-
sor, resulting in aberrant Rab23 expression. Interestingly, the
interaction of ncRNAs with PSF is conserved between
mouse and human, although species-specific ncRNAs are
involved. In the mouse VL30-1 RNA, a member of the
VL30 family of mouse retroelement ncRNAs mediates this
mechanism (48), whereas in human five different RNAs can
interact with PSF to induce the expression of the proto-
oncogene GAGE6. These include the retroelements L1PA16
and MER11C, the mitochondrial gene HN encoding the
humanin peptide and the ncRNA MALAT-1 (49) (Fig. 1E).
Interestingly, many studies have identified the large ncRNA
MALAT-1 as a tumor marker that is overexpressed in many
different tumor types (35,50,51). However, it remains to be
determined whether MALAT-1 acts exclusively through inhi-
bition of the tumor-suppressor PSF.

Collectively, these studies point to the possibility of ‘onco-
genic large ncRNAs’ that upon misregulation could either
silence tumor-suppressor genes or induce the expression of
oncogenes priming the cell for transformation.

Tumor-suppressor ncRNAs

Tumor-suppressor ncRNAs could phenotypically affect cells
by promoting tumor-suppressor pathways, and when their
function is compromised, cells are prone to develop cancer.
In support of this notion, a few new studies have elucidated
several examples (Table 2) of ‘tumor-suppressor large
ncRNAs’.

For example, recent studies identified numerous lincRNAs
that are induced by the p53 tumor-suppressor pathway
(17,36). When cells are subjected to stress, the transcription
factor p53 initiates a tumor-suppressor program that involvesT
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the expression and repression of many genes. Surprisingly,
among the genes specifically induced by p53, there are
many lincRNAs. In particular, one of these lincRNAs,
named lincRNA-p21 is directly induced by p53 to play a criti-
cal role in the p53 transcriptional response. LincRNA-p21 is
required for the global repression of genes that interfere with
p53 function regulating cellular apoptosis. Interestingly,
lincRNA-p21 can mediate gene repression by physically inter-
acting with the protein hnRNP-K, allowing its localization to
promoters of genes to be repressed in a p53-dependent
manner (36) (Fig. 2A). This study underlines the importance
of well-tuned regulation of lincRNAs to orchestrate transcrip-
tional programs that maintain cellular homeostasis.

GAS5 (growth arrest-specific 5) represents another example
of a large ncRNA that regulates the expression of a critical
subset of genes with tumor suppressive consequences. GAS5
is induced under starvation conditions being highly expressed
in cells whose growth is arrested (52,53). GAS5 functions by
outcompeting the DNA-binding sites of the glucocorticoid
receptor (GR), thus reducing cell metabolism (54). Specifi-
cally, the GAS5 RNA conformation mimics that of the gluti-
corticoid responsive element (GRE) DNA, blocking the
ability of GR to bind gene promoters to induce their transcrip-
tion (54) (Fig. 2B). Interestingly, GAS5 has also been
observed to be downregulated in breast cancer, perhaps to
keep cancer cells active even under low nutrient conditions
(52,53).

Another tumor-suppressor ncRNA is involved in the regu-
lation of cyclin D1/CCND1 gene expression. Cyclin D1 is a
cell cycle regulator frequently mutated, amplified and overex-
pressed in a variety of tumors (55). When cells are subjected to
DNA damage, ncRNAs are expressed from the 5’ regulatory
regions of cyclin D1 gene, thereby mediating its transcrip-
tional repression. Indeed, these ncRNAs interact with the
TLS protein, inducing its allosteric modification. This confor-
mational change allows the association of TLS to the cyclin
D1 promoter, which inhibits transcriptional induction by
histone acetyltransferases such as CBP and p300 (56)
(Fig. 2C).

These studies show that tumor-suppressor ncRNAs can be
rapidly induced by cellular stress to regulate gene expression.
Possibly, RNA molecules, due to their quick turn over rate, are
ideal effectors when a rapid response is required to protect
cells from external insults.

FUTURE PERSPECTIVES

The studies reviewed herein contribute to the growing evi-
dence of the important roles of large ncRNAs in cancer,
both by regulating tumor-suppressor and oncogenetic path-
ways. Thus, some ncRNAs play a critical role in maintaining
cellular homeostasis and, when we have a deeper understand-
ing of their roles in cancer, they can be used as diagnostic tools
in conjunction with protein-coding genes.

An intriguing common theme is emerging of large ncRNAs
forming ribonucleic–protein complexes that impart key regu-
latory functions in cellular circuits. We have discussed
HOTAIR, lincRNA-p21 ANRIL or MALAT-1 among others
that share a common functionality of forming RNA–protein
complexes with chromatin regulatory factors. However, a
higher-resolution understanding of cancer will require a com-
prehensive identification of large ncRNAs misregulated across
a spectrum of cancer types and their associated protein com-
plexes. Both biochemical approaches combined with in vivo
studies will be required to fully understand the mechanistic
and phenotypic roles of large ncRNAs in cancer.

A key goal for future progress is to identify large ncRNAs
that could potentially serve as biomarkers for specific disease
states. A clear advantage in the diagnostic use of ncRNA
detection versus that of protein-coding RNAs is that in the
former the RNA itself is the effector molecule, thus its
expression levels may be a better indicator of the intrinsic
characteristics of the tumor. Indeed, microRNA expression
profiling has been successfully used for cancer classification,
reflecting the developmental lineage and differentiation state
of the tumors (10–12). In the near future, the great technologi-
cal advance and decrease in cost of parallel massive sequen-
cing will allow the profiling of the entire transcriptome of
every type of tumor, including small and large ncRNA mol-
ecules, allowing the most powerful and informative diagnosis.
In fact, the application of the new genomic technologies to the
profiling of multiple cancers is already a reality. The tremen-
dous amount of data generated by these projects present great
possibilities for prognosis and therapeutic application. This
has called for the creation of the International Cancer
Genome Consortium (ICGC) that will coordinate the inter-
national effort to systematically study more than 25 000
cancer genomes at the genomic, epigenomic and transcrip-
tomic levels (57). We can easily predict that in the next few
years a complete catalogue of the large ncRNA expression
as well as the genetic mutations, amplifications and deletions
in non-coding regions associated with different types of
tumors will be available.

Besides the imminent use of our knowledge of cancer-
associated large ncRNAs for diagnosis, therapeutic appli-
cations may be possible in a more distant future. The progress
in the use of RNAi-mediated gene silencing for the treatment
of different diseases is encouraging and could be applied
to selectively silence oncogenic ncRNAs. Gene therapy
could also be applied for the delivery to specific cells of
tumor-suppressor large ncRNAs for the treatment of cancer.
However, many technical challenges have to be overcome
for a wider use of therapeutic RNAi and gene therapy, includ-
ing the development of reliable delivery systems, dosage
regimes and techniques to ameliorate RNAi off target effects

Figure 1. Mechanisms of gene regulation by oncogenic large ncRNAs.
(A) lincRNA HOTAIR recruits PRC2 to specific gene promoters for methyl-
ation of lysine 27 of histone 3 (H3K27me), inducing gene repression that leads
to breast tumor metastasis. (B) Large ncRNA ANRIL is transcribed antisense
of the p14/ARF and p15/CDKN2B genes. ANRIL mediates gene silencing of
the locus by interaction and recruitment of CBX7, a component of PRC1
histone 3 lysine 27-methyltransferase complex. (C) p21 NAT ncRNA is tran-
scribed antisense of the p21/CDKN1A gene. This RNA requires Ago1 protein
to mediate epigenetic silencing of p21/CDKN1A promoter involving
H3K27me. (D) The ncRNA expressed antisense of the Zeb2 gene (Zeb2
NAT) overlaps with the 5′ splice site of one of Zeb2 introns. Zeb2 NAT inhi-
bits the splicing of the intron, which contains an IRES sequence. In this way,
Zeb2 protein translation is upregulated. (E) Rab23 proto-oncogene (mouse)
and GAGE6 proto-oncogene (human) are repressed by PSF protein. This
repression is relieved when VL30-1 ncRNA (mouse) or MALAT-1 and
others (human) interact with PSF, displacing it from the promoter.
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(58,59). When the technical limitations are overcome,
ncRNAs may be ideal targets for therapy due to their high
turnover rate as well as their direct and specific regulatory
functions. Predictably, therapeutic targeting of ncRNAs will
carry fewer negative effects than those of protein-coding
genes, given that they function regulating specific facets of
their protein interacting partners.

In summary, overwhelming evidence reveals that large
ncRNAs are molecules that keep in perfect tune the balance
of gene expression networks, and discordance in their function
results in homeostatic imbalance, ultimately causing cellular
transformation. Large ncRNAs are shedding new light on

our understanding of these cancer pathways and may represent
a ‘missing link’ in cancer.
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