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The development of massively parallel sequencing technologies, coupled with nhew massively parallel DNA
enrichment technologies (genomic capture), has allowed the sequencing of targeted regions of the human
genome in rapidly increasing numbers of samples. Genomic capture can target specific areas in the
genome, including genes of interest and linkage regions, but this limits the study to what is already
known. Exome capture allows an unbiased investigation of the complete protein-coding regions in the
genome. Researchers can use exome capture to focus on a critical part of the human genome, allowing
larger numbers of samples than are currently practical with whole-genome sequencing. In this review, we
briefly describe some of the methodologies currently used for genomic and exome capture and highlight

recent applications of this technology.

INTRODUCTION

The introduction and widespread use of massively parallel
sequencing has made it possible for individual laboratories to
sequence a whole human genome. However, the cost and
capacity required are still significant, especially considering
that the function of much of the genome is still largely
unknown. Before massively parallel sequencing, specific
regions of the genome were targeted using PCR, followed by
capillary sequencing. This approach was effective at narrowing
the scope of investigation, but required a tightly defined guess
as to which region should be targeted. Larger-scale studies
have used this method [X-chromosome exons (1), human
exome (2)], but this remains a major undertaking that is not feas-
ible for many research groups. Recent studies have described new
methods to target much larger regions of the human genome (up
to ~3 Mb) in a more cost- and time-efficient manner (reviewed
in 3—6). Such methods, described as genome capture, genome
partitioning, genome enrichment etc., are well suited to current
massively parallel sequencing platforms, as they produce a
pool of desired molecules that are separated by the parallel
nature of the sequencing technologies themselves. Although
these methods can cover more of the human genome in a
shorter amount of time at reduced cost compared with PCR,

they also require an educated guess as to which regions or
genes may be interesting. Several of these methods have been
extended to capture the human exome, eliminating the need to
choose a subset of genes for interrogation and focussing on the
best understood 1% of the genome, the protein-coding exons.

CAPTURE METHODS

Solid-phase hybridization

Solid-phase hybridization methods generally utilize probes
complimentary to the sequences of interest affixed to a solid
support, such as microarrays (7—11) (Fig. 1A) or filters (12).
The total DNA is applied to the probes, where the desired frag-
ments hybridize. The non-targeted fragments are subsequently
washed away, and the enriched DNA is eluted for sequencing.
Recently, these methods have been improved using multiple
enrichment cycles (13,14). Agilent, Roche/Nimblegen and
Febit offer commercial kits implementing these methods.

Liquid-phase hybridization

Liquid-phase hybridization is similar to solid phase; the probes
in this method are not attached to a solid matrix, but instead
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Figure 1. Illustration of different capture methods. Light blue bars represent desired genomic sequence, red bars represent unwanted sequence. (A) Solid-phase
hybridization. Bait probes (light blue and black) complementary to the desired sequence are synthesized on a microarray. Fragmented genomic DNA is applied,
and the desired fragments hybridize. The array is washed, and desired fragments are eluted. (B) Liquid-phase hybridization. Bait probes (light blue and black)
complementary to the desired regions are synthesized, often using microarray technology. The probes are generally biotinylated (asterisk). The bait probes are
mixed with fragmented genomic DNA, and the desired fragments hybridize to baits in solution. Streptavidin beads (black circles) are added to allow physical
separation. The bead-bait complexes are washed, and desired DNA is eluted. (C) MIP. Single-stranded probes composed of a universal linker backbone (black
line) and arms complementary to the sequence flanking desired regions (red and white) are synthesized, often using microarray or microfluidics technology. The
probes are added to genomic DNA and hybridize in an inverted manner. A polymerase (yellow oval) fills in the gap between the two arms. A ligase (yellow star)
seals the nick, resulting in a closed single-strand circle. Genomic DNA is digested with exonucleases, and the captured DNA is amplified using sequences in the
universal backbone. (D) PEC. Biotinylated primers (red and white) are added to fragmented genomic DNA, where they hybridize to the desired sequence. A
polymerase (yellow oval) extends the primer, creating a tighter interaction. Streptavidin beads (black circles) are added and are used to physically separate
the desired DNA from the unwanted DNA. The desired DNA is then eluted.
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are biotinylated (Fig. 1B). Following hybridization, the bioti-
nylated probes (with the complementary desired genomic
DNA) are bound to magnetic streptavidin beads and are separ-
ated from the undesired DNA by washing. After elution,
enriched DNA can be sequenced. Initial reports on this
method used biotinylated RNA probes (15) (commercially
available from Agilent), and recent methods use DNA
probes (commercially available from Roche/Nimblegen).

Polymerase-mediated capture

Although all capture methods use polymerases to amplify cap-
tured fragments, these methods use polymerases in a more
integral way. Padlock probe technology has been extended
to develop Molecular Inversion Probes (MIP) and Spacer Mul-
tiplex Amplification ReacTion (SMART), in which a single
probe acts as both a primer to start elongation and a receiver
to end elongation and allow ligation (Fig. 1C). Subsequent
digestion of linear DNA leaves only the closed circular exten-
sion/ligation products with the desired sequence [MIP (16—
19), SMART (20)]. Primer extension capture (PEC) was
developed with small amounts of DNA in mind (Fig. 1D).
This method uses a biotinylated primer with complimentary
sequence to the DNA of interest. After annealing, the primer
is extended, effectively generating a hybridization probe to
capture the sequence of interest like other hybridization
methods (21). Highly parallel PCR has been an effective
method to prepare samples for capillary sequencing, and
recent work has extended this idea using microfluidics.
Instead of using plates with hundreds of wells, aqueous micro-
droplets can segregate thousands of individual reactions in the
same tube, allowing for a much more highly parallel use of
PCR (22) (commercially available from Raindance). Another
commercially available kit uses restriction enzymes to frag-
ment DNA; probes specific to the ends of desired fragments
are used to amplify the desired sequence (Olink Genomics).

Regional capture

Other methods exist to isolate larger sections of the genome.
Chromosome sorting (reviewed in 23) has long been useful
for genomics. Massively parallel sequencing is well suited to
sequence libraries generated by fragmenting flow sorted
chromosomes and offers a way to sequence a single chromo-
some. When odd chromosomal structures are present, or
DNA is only available from a handful of molecules, microdis-
section of metaphase chromosomes followed by sequencing
has been reported (24). Although these methods require
highly specialized instruments, they do offer a powerful
approach for unique cases.

EXOME CAPTURE

Although many different methods for targeted capture have
been described, only few have been extended to target the
human exome. These methods belong to the hybridization
type and include array-based hybridization (9,25,26) and
liquid-based hybridization (27) [products available from
Agilent  Technologies  (SureSelect), RocheNimbleGen
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(SeqCap/SeqCap EZ)]. In the future, other methods may also
be able to scale up as well.

The term ‘whole human exome’ can be defined in many differ-
ent ways. Two companies offer commercial kits for exome
capture and have targeted the human consensus coding sequence
regions (28), which cover ~29 Mb of the genome. This is a more
conservative set of genes and includes only protein-coding
sequence. It covers ~83% of the RefSeq coding exon bases.
Both companies also target selected miRNAs, and extra
regions can sometimes be added (Agilent). Although still a
subset of the genome, exome capture allows the investigation
of a more complete set of human genes with the cost and time
advantages of genome capture.

APPLICATIONS

Following initial method descriptions, current research is
applying genome capture methods to a variety of questions.
From disease causation and diagnosis to evolutionary com-
parison of ancient genomes, genome capture and massively
parallel sequencing is a powerful investigative tool.

Medical sequencing

One of the more common exome capture experiments will be
the search for genetic variation underlying a particular disease.
For some diseases, causative genes have been identified, and
researchers can use custom captures to examine those genes
for known and novel variants in their samples. For other dis-
eases, whole exome capture is suitable, as the causative
gene is unknown, or many different genes may contribute.
Several recent studies have captured and sequenced different
regions of individual genomes with known causative variants
or genes. These proof of principle experiments demonstrate
the utility, as well as some shortcomings, of capture followed
by massively parallel sequencing. Ng et al. (26) have used
array-based hybridization to sequence 12 human exomes
(~28 Mb). The study included four unrelated individuals
with Freeman—Sheldon syndrome, a dominantly inherited
rare Mendelian disorder. The investigators were able to ident-
ify variants in the known causative gene in each sample. Inter-
estingly, the known causative gene was the only candidate
following the application of numerous filters, including requir-
ing a gene to have a novel variant in each sample. In their
study of neurofibromatosis type 1, Chou et al. (29) used
custom array capture and pyrosequencing to target the
280 kb region containing the NF'/ gene, which is known to
harbor causal dominant mutations. The authors captured
DNA from two different samples with known genotypes, but
were initially only able to recover a known single-base del-
etion. The other known variant, an Alu sequence insertion,
was only observed after de novo assembly of unmapped
reads. Additionally, the authors found many positions at
which the captured genotypes did not agree with Sanger
sequencing confirmations. They found that while some discre-
pancies were due to pyrosequencing errors, others were misa-
lignments from the numerous pseudogenes of NF1, illustrating
one of the potential pitfalls of the method. Hoischen et al. (30)
also used array-based capture (~2 Mb) and pyrosequencing to
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re-identify known variants in five individuals with autosomal
recessive ataxia. They were able to initially identify 6/7
known variants investigated; the seventh variant was visible
only after adding three times more sequence, although at a
low number of reads (2/9 reads contained the mutation).
A known variant trinucleotide repeat was not included in the
design, due to the repetitive nature of these variants, and there-
fore not recovered. Raca et al. (31) searched for two known
variants causative for Papillorenal syndrome using array-based
capture targeting the causative gene, PAX2, as well as >100
candidate genes for other ocular disorders (370 kb), followed
by pyrosequencing. They were able to identify a known substi-
tution using the provided sequencing analysis software, but did
not recover the known single-base deletion in a homo-polymer
run, despite seeing reads containing the variant. The authors
concluded the vendor provided software was conservative
when dealing with insertions/deletions in homo-polymer
runs, as pyrosequencing has a higher error rate with this
type of sequence. Other analysis packages were able to ident-
ify the variant.

Although these studies were not designed to identify novel
variants causative for disease, much can be learned from them.
Importantly, not every known variant was recovered. This was
due to low sequence depth at the variant position, as well as
issues relating to repeat regions and alignment. One study esti-
mated that the probability of detecting a causative variant in
any given gene is ~86%, although this ignores non-coding
and structural variants (26). In order to ensure sufficient
allele sampling, as well as to prevent sequencing errors from
appearing to be actual variants, all four studies use or rec-
ommend a minimum sequence depth threshold, ranging from
8- to 30-fold depth of coverage. These recommendations
will affect the amount of sequencing required for a given
capture size and will therefore affect the cost of the exper-
iment.

Targeted capture has also been used to identify novel genes
that cause hereditary disorders. Novel, putative causative var-
iants have recently been discovered for a variety of disorders
[sensory/motor neuropathy with ataxia (32), Clericuzio-type
poikiloderma with neutropenia (33), familial exudative
vitreoretinopathy (34), recessive non-syndromic hearing loss
(35), talipes equinovarus, atrial septal defect, robin sequence,
persistent left superior vena cava (36)] using genome capture
to target linkage regions from the affected families. The ident-
ified variants were almost all non-synonymous substitutions,
but follow-up studies on additional unrelated samples using
Sanger sequencing also identified insertions/deletions in the
same genes (33,35). Volpi et al. (33) identified a substitution
that disrupted a splice site, resulting in an exon skip and a fra-
meshift. Interestingly, Johnston ez al. (36) were able to ident-
ify variants in two different families (one non-sense, one
frameshifting insertion) without sequencing the probands, for
which DNA was not available. These studies demonstrate
the ability of genomic capture to discover different types of
novel variants important for human disease.

In addition to custom capture studies, two whole exome
studies have been recently reported. In the first, Choi et al.
identified a novel coding variant in a consanguineous region
of an affected individual. The variant was a homozygous mis-
sense substitution in SLC2643, a gene in which mutations are
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known to cause congenital chloride-losing diarrhea (25). This
genetic finding allowed the researchers to correct an earlier
diagnosis of the patient’s disorder. Variants in the same
gene were present in other individuals, allowing the corrected
diagnosis for them as well. In the second study, Ng ez al. used
exome capture to search for variants causing Miller syndrome
in three unrelated families. They identify variants in DHODH
in all three families, using filters for novel variants that fit
inheritance models. These studies both showed that exome
capture is an effective way to discover causative variants
and genes and to correctly diagnose heritable disorders
caused by variants in known genes.

Human evolution

Recent advances in the sequencing of ancient DNA have also
benefited from targeted capture. Researchers used PEC to specifi-
cally target mitochondrial DNA from five Neandertal samples
(21). The PEC method allowed complete coverage of the Nean-
dertal mtDNA, using only 5—50 ng of amplified pyrosequencing
library template. More recently, researchers used array-based
capture to target, in Neandertal DNA, non-synonymous substi-
tutions that have been fixed in humans since the divergence
from the human/chimpanzee ancestor (37). Although the array-
based capture did not have the low DNA requirements of PEC,
the method allowed sequencing of a Neandertal sample contain-
ing 99.8% contaminating microbial DNA. Owing to the high
contamination, this sample was unsuitable for shotgun sequen-
cing, but targeted capture allowed recovery for almost all of
the Neandertal sequence at the desired positions. The authors
were able to then identify 88 substitutions that have become
fixed in humans since the split from Neandertal, giving insight
into what distinguishes us at the genetic, and perhaps molecular
level.

Exome capture has been used to investigate more recent
variation as well. Researchers used whole exome capture to
identify changes in allele frequency between high-altitude
populations (Tibetans) and low altitude populations (Han
Chinese and Danes) (38). They were able to identify a
number of genes likely to have been selected for as a part of
adaptation to a high-altitude environment. Several of these
genes were identified in other studies using microarray geno-
typing (39,40). This suggests that exome capture techniques
are accurate and useful for these types of allelic frequency
studies and would be especially useful for rarer SNPs that
may not be included on the microarray platforms. Both
recent and ancient genetic differences have been investigated
using exome capture, allowing us to see a more complete
view of our evolutionary history.

Biological

Basic biology questions are also being investigated on a much
greater scale than previously possible using genome capture.
Although the genetic information in DNA is frequently the
initial focus of genome studies, epigenetic modification of
the DNA also plays an important role in the biological func-
tion of an organism. Two groups used genome capture with
padlock probes (19) or array-based capture (41) to investigate
DNA methylation using bisulfite sequencing. Both studies
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found this to be very accurate when compared with the stan-
dard capillary methods. The latter study also showed that sen-
sitivity using array-based capture was high: 86—91% of
targeted bases were covered by 10 or more reads. An
additional study focussed not on methylation status, but on
genetic variation at CpG sites, which are subject to a higher
mutation rate via 5-methylcytosine deamination (17). Using
padlock probes, the researchers were able to determine geno-
types for ~65% of targeted bases. The accuracy was very high
when compared with an independent genotype assessment.
These CpG region studies show that capture is useful to
focus on the desired regions and is effective, even on difficult
(high GC content) regions.

Copy number variation (CNV) is another source of genetic
variation implicated in disease. The detection of copy number
changes is often performed using low-resolution methods,
such as array-comparative genomic hybridization and single
nucleotide polymorphism (SNP) microarrays. Conrad et al.
(42) have used targeted sequencing to capture breakpoint
regions and identify the actual breaks with a high resolution.
They were able to identify breakpoints for a number of
known CNVs and were then able to classify the breaks into
likely repair mechanisms used. The authors point out that
this method is useful for CNVs in simpler regions, as repeat
elements and complex genomic regions present challenges
both for capture and post-sequence alignment.

Capture is not only limited to genomic DNA. Several
studies have used targeted sequencing to investigate RNA as
well. One group used padlock probes to target regions contain-
ing known RNA-editing sites (43). They were able to identify
sites in 10 of 13 known edited genes, by comparing captures of
genomic DNA and cDNA from various tissues. The authors
chose 18 editing sites at random and confirmed 15 with capil-
lary sequencing. This research showed that padlock capture
techniques work with ¢cDNA and can be used to identify
sites of RNA editing. Hybridization capture was also shown
to capture cDNA (44,45). In (44), the authors capture both
cDNA and genomic DNA with an array-based method. They
then determine allele-specific expression using both data
sets. In (45), the authors use solution hybridization to focus
on enriching cDNA from a set of genes of interest. They
were able to effectively enrich these genes, suggesting that
genes of low abundance could be detected without huge
increases in total sequencing. Interestingly, they were also
able to identify gene fusions, including fusions in which one
gene was not targeted. Applying targeted sequencing to
cDNA is another way to focus on specific questions, even
without whole-genome sequence.

FUTURE

One of the main reasons for performing a capture experiment
is the significantly increased cost and time required for whole-
genome sequencing. However, the constant improvements to
massively parallel sequencing technologies and the impending
massively parallel single-molecule sequencing technologies
will certainly reduce these cost and time barriers. One may
wonder what role capture will play as whole-genome sequen-
cing is no longer impractical. Although capture has inherent
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costs independent of sequencing, capture experiments focus
on subsets of the whole genome and will therefore always
require less sequencing. Thus, more capture experiments can
be performed given a set amount of sequencing capacity.
Higher sample numbers result in higher power to detect vari-
ation, a key metric for discovering causative variants,
especially for more common disorders. An argument in
favor of whole-genome sequencing is that it is unwise to
limit the data by doing capture experiments; it may be worth
the additional cost to sequence ‘everything’. While this may
be true, if researchers are confident that the desired genome
subset (linkage regions, CpG islands, genes of interest etc.)
is all they need to look at, more samples can be examined,
and the data are limited to what is of interest. Data fatigue
from attempting to interpret whole-genome sequence is not
insignificant. Will an investigator be able to pick out the
important variants out of a list of millions of positions?
Although capture data can also contain large numbers of var-
iants, the number is nearly two orders of magnitude lower than
that from whole-genome sequence, making secondary ana-
lyses much less onerous. This is particularly important when
bioinformatics personnel and resources are limiting (annotat-
ing lists of hundreds of variants is possible to accomplish by
hand; doing so for tens of thousands variants is not). There-
fore, it seems likely that targeted sequencing will be useful
along side of whole-genome sequencing. Researchers will
need to consider all aspects of a given project before deciding
on whether to proceed with whole genome or targeted sequen-
cing. Fortunately, ever decreasing sequencing costs may allow
mixed approaches. Targeted sequencing has been shown to be
a robust, effective technique that leverages the unique aspects
of massively parallel sequencing and has already yielded many
exciting new discoveries.
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