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The application of next-generation sequencing technology has produced a transformation in cancer geno-
mics, generating large data sets that can be analyzed in different ways to answer a multitude of questions
about the genomic alterations associated with the disease. Analytical approaches can discover focused
mutations such as substitutions and small insertion/deletions, large structural alterations and copy
number events. As our capacity to produce such data for multiple cancers of the same type is improving,
so are the demands to analyze multiple tumor genomes simultaneously growing. For example, pathway-
based analyses that provide the full mutational impact on cellular protein networks and correlation analyses
aimed at revealing causal relationships between genomic alterations and clinical presentations are both
enabled. As the repertoire of data grows to include mRNA-seq, non-coding RNA-seq and methylation for mul-
tiple genomes, our challenge will be to intelligently integrate data types and genomes to produce a coherent
picture of the genetic basis of cancer.

INTRODUCTION

Next-generation sequencing (NGS) platforms are revolutioniz-
ing cancer genomics research. Their ever-increasing data gen-
eration capabilities now enable fast, high-depth sequencing of
human cancer genomes. These technologies hold enormous
promise for the study of focused mutations (point mutations
and small indels), copy number alterations (CNAs) and struc-
tural variants, including fusion genes in cancer genomes. At
the same time, data volume and relatively short-read lengths
have also presented difficulties for data analysis. These chal-
lenges have stimulated the development of new computational
tools for every NGS data analysis task from variation detection
and assembly to downstream biological and functional ana-
lyses. In this review, we will discuss some of these tools
and their application in cancer genomics studies.

POST-ALIGNMENT CONSIDERATIONS OF

SHORT-READ, PAIRED-END DATA

NGS platforms generate hundreds of millions of sequence
reads per instrument run. Following each run, standardized
instrument manufacturer-defined pipelines process the signal-
based data into sequence reads. These pipelines include

routine quality control on a per-lane or per-region basis to
provide metrics of success for each data set. One secondary
aspect of quality control that must be addressed prior to down-
stream analysis is that of read duplication, in which the same
DNA fragment begets multiple reads or read pairs. This arti-
fact has been attributed to the initial PCR-based library ampli-
fication steps and can affect as many as 10% of read pairs (1).
Removal of duplicate reads is advantageous to most down-
stream analytical approaches, since these reads may contain
PCR-introduced errors that masquerade as variant nucleotides,
for example. The Picard suite (http://picard.sourceforge.net/)
includes tools for the de-duplication process that operate on
both single-end and paired-end data. In addition to
de-duplication, data sets containing reads with insufficient
read length, base quality, mapping quality or paired-end
reads having an atypical distribution of insert sizes also
should be flagged/soft-trimmed and discarded when necessary.

POINT MUTATION DISCOVERY IN PAIRED TUMOR

AND NORMAL GENOMES

One of the predominant applications of NGS has been the
comparison of tumor genomes with their matched consti-
tutional genomes, for the purpose of identifying tumor-unique
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(somatic) variation in an unbiased, genome-wide fashion.
Numerous single nucleotide variant (SNV) detection algor-
ithms for NGS data have been developed in recent years
(2–5). SAMtools (4) and SOAPsnp (5) utilize Bayesian stat-
istics to compute probabilities of all possible genotypes. In
principle, these tools could be adapted for somatic mutation
calling in cancer studies where both tumor and matched
normal are sequenced. However, both expect a heterozygous
variant allele frequency of 50%. Although valid for germline
sites, this figure does not hold for somatic sites in most
tumors due to normal contamination and/or tumor heterogen-
eity. Development is now focusing on callers designed specifi-
cally for somatic mutations. One example is SNVmix (6),
which utilizes a probabilistic Binomial mixture model and
adjusts to deviation of allelic frequencies using an expectation
maximization algorithm. SNVmix has been applied to
genomic and RNA sequencing data from a lobular breast
tumor, leading to the discovery of a set of novel mutations
in breast cancer (7). However, SNVmix remains limited, in
that it does not attempt the next step of deriving the probability
of a given site as somatic by utilizing tumor and normal data at
the same time (Table 1).

We developed two somatic point mutation discovery algor-
ithms: VarScan (2) and SomaticSniper (D. Larson et al.,
manuscript in preparation). VarScan determines overall
genome coverage, as well as the average base quality and
number of strands observed for each allele. Read counts are
used to infer variant allele frequency and in calculating
somatic status using Fisher’s exact test. VarScan is well
suited for somatic mutation detection in data sets having
varying coverage depths, such as from targeted capture. Soma-
ticSniper uses Bayesian theory to calculate the probability of
differing genotypes in the tumor and normal samples,

assuming independence of both genotypes and data in the
samples. It reports a phred-scaled probability that the tumor
and normal were identical as the ‘somatic’ score. Somatic-
Sniper has been used in several recent studies (8,9), leading
to the discovery of IDH1 R132C mutations in acute myeloid
leukemia (AML), as well as numerous other novel
somatic mutations in genes not previously reported to
harbor genetic mutations (8). These findings are consistent
with earlier large-scale Sanger-based studies, suggesting
that cancer is characterized by a small number of frequently
mutated genes and a long tail of infrequent mutations in a
large number of genes (10,11). VarScan and Somatic-
Sniper have been applied to the analysis of hundreds of
tumor and normal pairs for various projects such as The
Cancer Genome Atlas Project (http://cancergenome.nih.gov/)
and the Pediatric Cancer Genome Project (http://www.
pediatriccancergenomeproject.org/site/).

FOCUSED INSERTION/DELETION DETECTION

Although existing alignment tools are regarded as adequate for
mapping reads that contain SNVs, they generally lack the
necessary accuracy and sensitivity for reads that overlap
indels or structural variants. Most tools by default allow
only two mismatches and no gaps in the ‘seeded’ regions
(e.g. the first 28 bp in a read), which prohibits indel-containing
reads from aligning to the reference. Paired-end mapping is
tremendously helpful in identifying larger indels, when read
pair alignment occurs in flanking regions and allows the infer-
ence of altered intervening sequences.

Pindel (12) takes a pattern growth approach borrowed from
protein data analysis (13), to detect breakpoints of indels from
paired-end reads. Our experience suggests that Pindel achieves

Table 1. Selected analysis tools for NGS of cancer genomes

Software Description URL

SNP detection
SAMtools Bayesian SNP calling http://samtools.sourceforge.net
SOAPsnp Bayesian SNP calling http://soap.genomics.org.cn
SNVmix SNP calling by probabilistic binomial mixture model http://www.bcgsc.ca/platform/bioinfo/software/SNVMix

Somatic mutation detection
VarScan Heuristic germline and somatic variant calling http://varscan.sourceforge.net
SomaticSniper Bayesian somatic variant calling http://genome.wustl.edu/tools/cancer-genomics

Small insertions/deletions (indels)
Pindel Indel prediction with paired-end data http://www.ebi.ac.uk/~kye/pindel
GATK Heuristic germline and somatic indel calling ftp://ftp.broadinstitute.org/pub/gsa/GenomeAnalysisTK

CNV detection
EWT CNV calling with EWT http://genome.cshlp.org/content/19/9/1586
SegSeq CNV calling with local change-point analysis and merging http://www.broad.mit.edu/cancer/pub/solexa_copy_numbers
CMDS RCNA calling in sample populations https://dsgweb.wustl.edu/qunyuan/software/cmds

Structural variation (SV) detection and assembly
Geometric analysis of

structural variants
Geometric method for SV detection http://cs.brown.edu/people/braphael/software.html

BreakDancer Prediction of SVs with paired-end Illumina data http://genome.wustl.edu/tools/cancer-genomics
TIGRA De novo assembly of SV breakpoints http://genome.wustl.edu/tools/cancer-genomics

Data visualization
IGV Integrative genomics viewer for next-gen sequencing data http://www.broadinstitute.org/igv/StartIGV
Pairoscope BAM-driven visualization of predicted SVs http://pairoscope.sourceforge.net

Pathway analysis
PathScan Pathway analysis with convolution and Fisher-Lancaster theory http://genome.wustl.edu/tools/cancer-genomics
HotNet Pathway analysis with diffusion and permutation testing http://cs.brown.edu/people/braphael/software.html
Netbox Pathway analysis with hypergeometric test and edge algorithm http://cbio.mskcc.org/netbox
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high specificity but that it suffers from lower sensitivity, pri-
marily due to not allowing mismatches during the pattern
matching process. SAMtools summarizes short indel infor-
mation by correcting the effect of flanking tandem repeats
and it tends to produce a large number of indel calls. Local
de novo assembly or multiple alignments around the candidate
indel sites reduces the number of false-positive indels. This
process was used in the analysis of whole-genome data from
a basal-like breast cancer (9) and is currently one of the
methods utilized in our pipeline for indel detection.

Like VarScan, the GATK Indel Genotyper (http://www.
broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_
Toolkit) is based on a set of heuristic cutoffs for indel calling.
It collects raw statistics, such as coverage, numbers of indel-
supporting reads, read mapping qualities and mismatch counts,
which are useful for post-filtering of the initial calls. Currently,
somatic indel identification is generally achieved by simple sub-
traction of indels also found present in the normal. A probabil-
istic model for somatic indel detection is urgently needed.

IDENTIFYING CNAS IN TUMOR GENOMES

CNAs, such as large amplifications or deletions of chromosomal
segments, represent an important type of somatic alteration in
cancer. SNP genotyping data have long been utilized for study-
ing CNAs in cancer and the CNA landscape across multiple
cancer types has been recently reported (14,15). However,
whole-genome sequencing of tumor and matched normal
samples enables the identification of CNAs at a scale and pre-
cision unmatched by traditional array-based approaches (16–
20). Accurate inference of the copy number from sequence
data requires normalization procedures to address certain
biases inherent in NGS data. For example, GC content bias
arises from mechanistic differences between NGS platforms
(1,21,22), whereas read mapping bias originates from the compu-
tational difficulties of assigning relatively short sequences (25–
450 bp) to their correct locations in a large, complex reference
genome. Approaches have been developed for both GC-based
coverage normalization (23) and mapping bias (24). Following
these corrections, the unique (non-redundant) read depth can
serve as a quantitative measure of genome copy number
(17,19,20). Several methods have been developed for identifying
significant copy number changes within a single genome or
between a tumor sample and its matched normal. Campbell
et al. (24) adapted the circular binary segmentation algorithm,
originally developed for SNP array data, to identify statistically
significant copy number changes (24). Event-wise testing (EWT)
(23) was developed as a three-step approach to identify copy
number variants (CNVs) from read depth data. One drawback
of all window-based segmentation methods is that structural
variation (SV) breakpoints cannot be localized more finely
than the boundaries of the windows. The SegSeq algorithm
(25) uses an alternative approach that combines local change-
point analysis with a subsequent merging procedure to join adja-
cent chromosomal regions. The merged segments are then tested
for significance between tumor and normal samples.

Identifying regions of recurrent CNA (RCNA) within or
across tumor types offers a powerful system for localizing
cancer-causing genes. In principle, such regions could be

identified with a two-step process: (i) call significant CNAs in
each tumor genome and then (ii) perform cross-sample analysis.
This approach, however, carries a heavy computational burden
and also loses statistical power due to the segmentation and nor-
malization performed at the level of individual samples. To
address this issue, we developed the population-based corre-
lation matrix diagonal segmentation (CMDS) method that
identifies RCNAs based on a between-chromosomal-site corre-
lation analysis (26). CMDS adopts a diagonal transformation
strategy to reduce compute time and is well suited to
high-resolution studies of large sample populations.

SOMATIC STRUCTURAL VARIANT DISCOVERY

Beyond CNAs, structural changes in chromosomes such as inver-
sions and translocations represent a major source of somatic vari-
ation in cancer genomes. The majority of known cancer genes are
altered by rearrangement, resulting either in a fusion transcript
(e.g. BCR-ABL in leukemia) or in transcriptional dysregulation
(27). Yet, the discovery and characterization of somatic SV in
cancer genomes, using NGS reads, remains challenging. Cytoge-
netics, spectral karyotyping and fluorescent in situ hybridization
have previously identified large chromosomal events. SNP and
comparative genome hybridization microarrays provide limited
resolution and also miss copy-number-neutral events as well as
most translocations. End-sequencing profiling (28) of BAC
libraries has revealed the complex architectures of several
human cancers (29–32), but remains costly and laborious.

Conversely, tumor genome sequencing by NGS platforms
offers the power to detect somatic rearrangements and to
characterize their breakpoints with unprecedented resolution.
The identification and analysis of read pairs that do not
align as anticipated to the genome point to a wide range of
SV events—deletions, tandem or inverted duplications, inver-
sions, insertions and translocations—and this approach already
has been applied to studies of glioblastoma (33), breast cancer
(9), melanoma (34) and lung cancer (24,35,36) genomes.
While sensitive, the paired-end strategy does tend to yield
many false positives due either to sequencing errors or to
read mis-alignments, especially to repetitive sequences.

Several programs are now available for SV analyses. For
example, geometric analysis of structural variants attempts to
precisely define breakpoints using a geometric bounding algor-
ithm (37). We have developed a comprehensive pipeline for Illu-
mina paired-end data centered around three components. The
BreakDancer program (38) identifies candidate SVs, after
which de novo assembly of both tumor- and normal-supporting
reads is performed with the TIGRA package (K. Chen et al., sub-
mitted for publication) to remove false positives, precisely define
breakpoints and determine the somatic status of each prediction.
Finally, we review the evidence supporting each putative SV
with the Pairoscope visualizer (http://pairoscope.sourceforge.
net/) and the Integrative Genomic Viewer (http://www.
broadinstitute.org/igv/).

VALIDATION OF GENETIC CHANGES IDENTIFIED

IN CANCER GENOME STUDIES

A variety of factors affect the actual distribution of read depth
in whole-genome sequencing which can often diverge
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significantly from the idealized Poisson distribution (39). The
issue is further exacerbated in targeted exome capture due to
the differential efficiencies of capture oligos (40). Non-
uniform coverage coupled with both systematic and non-
systematic errors in NGS data present a challenge for mutation
detection in regions with extremely high or low coverage.
Many existing tools trade sensitivity for specificity and vice
versa, rendering experimental validation, a necessary second
step for maximizing both of these metrics. Two main vali-
dation/confirmation approaches have been used. One approach
uses PCR-based amplification of suspect variant sites, fol-
lowed by either Sanger sequencing or NGS. This approach
has been used in many large-scale cancer studies (10,11,41–
43), but is giving way to custom-targeted capture-based vali-
dation due to its reduced cost and increased throughput. Tar-
geted capture can validate the majority of genetic changes
identified through whole-genome sequencing (including
SNVs, indels and SVs), as well as the focused mutations ident-
ified in exome sequencing data. For regions of CNA identified
via NGS data analysis, the coincident analysis of SNP array
data to identify regions of CNA typically is considered an
appropriate means of orthogonal validation.

MUTATION RATE AND SPECTRUM

Somatic mutations and mutation signatures vary according to
tumor type, as well as across individual tumors of the same
tumor type (7,8,11,34–36,44–46) (Table 2). Even though
the biological basis of these differences remains largely
unknown, some studies suggest that they may be due to
defects in DNA repair or to specific mutagenic exposures
(34,35,43). Recent whole-genome sequencing and analysis
of tumors from adult patients with AML, breast cancer and
lung cancer suggest that mutation rates could range from 0.1
to over 10 mutations per megabase. These studies also
revealed tumor type-specific signatures (7–9,34–36,41). Our
recent analyses of pediatric cancer genomes have indicated a
significantly lower mutation rate than that observed in adult
cancers (data not shown). The accurate assessment of back-
ground mutation rate and mutation signature in different
tumor types is critical and is a prerequisite for the analysis
of significantly mutated genes and pathways. Mutation rate
and spectrum have been estimated either using mutations
identified in a selected genomic region or in a set of selected
genes (e.g. a few hundred) in large-scale studies of colorectal

cancers, breast cancers, lung cancers and glioblastomas
(10,11,42,47). Clearly, these estimates are limited by both
the breadth and depth of sequencing and mutation data,
meaning that various statistical and computational corrections
have to be applied to overcome sampling zeros and data spar-
seness. With the recent switch to NGS instruments, mutation
data are now being obtained from sequencing whole
genomes, exomes and transcriptomes. The whole-genome
approach provides the most uniform coverage, making it the
most suitable for estimating background mutation rate and
revealing the mutation spectrum in individual tumors. Deep
sequencing of tumor and matched normal genomes (e.g.
30×) usually captures .99% of SNVs, allowing the identifi-
cation of nearly all somatic changes in the genome. Somatic
mutations that likely are not under selection (e.g. mutations
in non-exonic and non-conserved regions) provide the most
accurate estimation of background rate.

Since the first report of whole-genome sequencing and
analysis of a tumor/normal pair in 2008 (45), the rapidity
with which primary data sets can be produced for whole-
genome analysis has grown exponentially. This poses the
interesting dilemma of being able to pace through primary
sequencing of a cohort in relatively short order, only to be
challenged by the lack of tools that enable a higher level
look across multiple genomes. Ideally, this rich data resource
will be mined to address key questions such as more rapidly
identifying frequently mutated genes and common SV
events, and then more comprehensively identifying the cellu-
lar pathways most commonly impacted by somatic variation.

SIGNIFICANTLY MUTATED GENE ANALYSIS

Three statistical methods have been described for identifying
genes that are mutated above background levels (11,41,42).
The first approach uses a standard one-tailed binomial test
and treats all mutations equally with a uniform probability
for each position in a gene. The second approach is a gene-
specific variation of the binomial test, the advantage being
that it uses gene-specific background rates instead of a
single, global rate. The third approach is inspired by the analy-
sis of mutation patterns in a variety of cancer types (44,48),
demonstrating that (i) transitions generally occur at a higher
rate than transversions, (ii) substitution rates are influenced
by flanking sequences, a clear example being that cytosines
in CpG dinucleotides have a significantly higher mutation

Table 2. Published tumor or tumor cell line genomes sequenced on next-generation platforms

Study Tumor type Tumor Normal SNVs Indels SVs Notable altered genes

Ley et al. Acute myeloid leukemia 32.7× 13.9× 8 2 — NPM1, FLT3
Mardis et al. Acute myeloid leukemia 23.3× 21.3× 10 2 — NRAS, NPM1, IDH1
Shah et al. Lobular breast cancer 43.1× — 32 0 — ERBB2, HAUS3
Ding et al. Basal-like breast cancer 29.0× 38.8× 43 7 41 MYCBP2, TGFBI, CTNNA1
Pleasance et al. Small-cell lung cancer cell line 39× 31× 134 2 58 TP53, RB1, CHD7
Pleasance et al. Malignant melanoma cell line 40× 32× 292 0 37 BRAF, PTEN, SPDEF
Lee et al. Non-small-cell lung cancer 60× 46× 392 — 43 KRAS, LRP1B, NF1, NEK9
Clark et al. Glioblastoma cell line 29.5× — 23 7 4 CDKN2A/B, PTEN, MLLT3

Summary of somatic SNVs, insertion/deletion variants (indels) and structural variants (SVs) identified from sequencing tumor genomes.
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rate than cytosines in other sequence contexts and (iii) the rate
of indel events is roughly an order of magnitude lower than the
rate of substitutions. These observations suggest scoring
mutations according to their prevalence. In this approach,
independent tests are performed for different sequence
mutation categories (e.g. A/T transitions, A/T transversions,
C/G transitions, C/G transversions, CpG transitions, CpG
transversions and indels). Then, methods like convolution,
Fisher’s test and likelihood test, can be used on the category-
specific binomials to obtain an overall P-value. In all three
approaches, the false discovery rate (FDR) for multiple-gene
testing can be controlled using the standard Benjamini and
Hochberg FDR procedure.

Comparative mutational analysis of significant genes can
illustrate the common and unique players in different tumor
types. For example, the analysis across five tumor types (glio-
blastoma, pancreatic cancer, breast cancer, lung adenocarci-
noma and colon cancer) using Sanger-based data from
large-scale cancer studies (10,11,41–43,49) revealed a high
frequency of KRAS mutation in lung, pancreatic and colon
cancers, but low frequency in breast cancer and glioblastoma.
These results suggest that the latter two types might not be
strongly related to smoking. Furthermore, low frequencies of
EGFR mutations were found in colon, pancreatic and breast
cancers. This may be due to high KRAS mutation rates in
colon and pancreatic cancers and high rate of ERBB2 altera-
tions in breast cancer, releasing the selection pressure on
EGFR alterations in these three cancer types. Notably,
STK11 is highly mutated in lung cancer from smokers, but
not in other cancer types. Moreover, high frequencies of
PTEN, PIK3CA and PIK3R1 mutations have been found in
glioblastoma, but not in lung and pancreatic cancers. TP53
is the only uniformly mutated gene with high frequency in
all five cancer types analyzed. Undoubtedly, novel significant
genes in various cancer types will be discovered at a rapid
pace using NGS methods, allowing more comprehensive
cross-cancer type comparisons.

PATHWAY AND NETWORK ANALYSIS

Sequencing of many tumors allows an evaluation beyond indi-
vidual genes to the consideration of pathways. Whole-genome
sequencing of AML, breast, melanoma and lung tumors ident-
ified a large number of affected genes from diverse functional
categories and biological processes (7–9,34–36,41) (Fig. 1).
Two cancer samples often have little in common beyond a
few mutated genes (41), but such heterogeneity may collapse
at the pathway level when considering multiple tumor
genomes. The presumptive mechanism here is mutation or
other somatic alterations in a key subset of genes that alter a
pathway such that it then results in tumor initiation or pro-
gression. Pathway analysis methods can be divided broadly
into two groups: annotation-based approaches that use prede-
fined pathway architectures and de novo procedures that do
not presume such information.

Annotation-based methods are the somewhat simpler cat-
egory in that they obtain pathway structures directly from a
database like KEGG (50) and focus exclusively on the statisti-
cal testing problem. Various implementations simply pool

mutation counts, for instance Fisher’s test, on 2 × 2 tables
of mutated and total bases within the pathway versus
without, or binomial tests of the number of mutations per
megabase versus an estimated background mutation rate, e.g.
Group-CaMP (51). Unfortunately, the pooling procedure dis-
cards much important information, tending generally to
make results appear more significant than what they actually
are. Recent work concentrates on re-incorporating relevant
information. For example, variation in gene lengths and
even in background mutation rates means that genes have
different Bernoulli’s probabilities of mutation under the null
hypothesis of random mutation. Moreover, properly combin-
ing sample-specific P-values into a study-wide composite
value is equally critical. We recently proposed the PathScan
algorithm (M. Wendl et al., submitted for publication) based
precisely on these two improvements. The former aspect is
managed using mathematical convolution, whereas the latter
relies on the Fisher–Lancaster theory. PathScan has repro-
duced the significantly mutated pathway list reported by the
Tumor Sequencing Project (TSP) for lung adenocarcinoma
data (11), but also has determined that several pathways ident-
ified as ‘inconclusive’ in the original study actually are not
significantly mutated.

De novo methods by contrast begin with some catalog of
interaction data, e.g. the Human Protein Reference Database
(HPRD), to supply candidate edges and nodes to an initial
‘seed node’ upon which a network ‘graph’ will be built. For
example, the NetBox algorithm (52) was used to study glio-
blastoma by first selecting known altered genes as seeds,
then applying the hypergeometric test to check the likelihood
that higher-degree nodes called ‘linker genes’ would connect
to the observed number of altered genes solely by chance. Rel-
evant subnetworks were then identified using a well-known
edge relationship algorithm (53). In this study, NetBox was
able to identify modules centered around RB, PI3K and
TP53. A slightly different approach is taken by the
HotNet algorithm (54), which uses the physical model of dif-
fusion to identify neighborhoods of influence based on node
distances and numbers of connections, with permutation
testing for judging significance. This algorithm also identified
a TP53-based pathway from glioblastoma data (42), as well as
Notch and cell signaling pathways.

Both types of pathway analysis approaches will continue
integrating broader genetic and epigenetic information as it
is discovered. The whole pathway analysis enterprise
depends on having sufficient data and consequent power of
discovery. This type of analysis also will increase our ability
to discern how tumor subtypes differ from one another,
suggesting different clinical aspects of testing, classification
and treatment. Even more importantly, it will help reveal
existing commonalities across different cancers at the
pathway level. These common denominators will have incred-
ible clinical implications.

CONCLUSIONS AND CHALLENGES

Various tools for analyzing genetic changes in cancer based
on heuristic and probabilistic models have been developed
and applied in recent NGS-based studies. Although some
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significant findings have been made, most of these tools are
still under active development. Detection and evaluation of
genetic events, including somatic mutations, CNAs and SVs,
still is not a solved problem. Consequently, the use of
several algorithms followed by validation often represents

the best combination of sensitivity and specificity for mutation
discovery in cancer studies.

We feel that the advancement of NGS-based cancer geno-
mics will develop along two dimensions. In the first, NGS
data will grow rapidly from whole genomes of a few tumors

Figure 1. Analysis of 430 genes mutated across seven cancer genomes with DAVID (http://david.abcc.ncifcrf.gov/). (A) Number of mutated genes by GO terms
of gene function. (B) Enriched biological processes and/or pathways among mutated genes according to DAVID clustering.
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to hundreds of tumors and from a few tumor types to almost
all major types. This development will address the
all-important issue of statistical power needed to detect the
full range of somatic variations important in the disease devel-
opment and progression. In the second dimension, NGS tech-
nologies will be broadly used for mRNA and non-coding RNA
sequencing, as well as DNA methylation sequencing to help
elucidate all the relevant biological contributions from these
entities toward genomic dysregulation (Fig. 2). Although this
explosion provides an unprecedented opportunity to systema-
tically explore the entire spectrum of DNA and RNA
changes in all major human cancers, it also represents a
great challenge for cross-cancer type and cross-data type
integration analysis. In our view, successful integration
requires at least two key elements. First, the development of
robust statistical models to integrate diverse data types and
to produce summary statistics that reflect the level and direc-
tion of genetic alterations for genes and samples will be
needed. This summary information then will be utilized to
prioritize genes both for further studies and for analyses target-
ing clinical correlations, downstream pathways and interactive
networks. Second, the establishment of a data framework that
can be readily incorporated into any automated computational

pipeline should be developed. This framework will be
sufficiently flexible to allow the bidirectional flow of infor-
mation. Under such a framework, clinicians and cancer
biologists will be able to conveniently obtain relevant data
from the system and to direct further analyses based on their
knowledge and hypotheses. This latter element is particularly
important because we expect that a key strategy for integrating
gene information across data types will be both unbiased
and hypothesis-driven and that no single score or statistic
will capture all relevant information about a gene for all
applications.

In addition to the identification of significant molecular
changes in cancer, integration efforts will reveal the intrinsic
interactions of such molecular changes, as well as their associ-
ations with specific clinical features and subtypes (Fig. 2).
These data will contribute to the formulation of a reference
platform for the development of prominent drug candidates
as well as diagnostic and prognostic markers. We fully antici-
pate that large-scale functional validation of the identified can-
didates using high-throughput RNAi and cell culture-based
screening, transgenic and xenograft animal models, and
other high-throughput systems will then be positioned at the
forefront of cancer research.

Figure 2. Landscape of cancer genomics analyses. NGS data will be generated for hundreds of tumors from all major cancer types in the near future. The inte-
grated analysis of DNA, RNA and methylation sequencing data will help elucidate all relevant genetic changes in cancers.
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