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Allele-specific DNA methylation (ASM) and allele-specific gene expression (ASE) have long been studied in
genomic imprinting and X chromosome inactivation. But these types of allelic asymmetries, along with
allele-specific transcription factor binding (ASTF), have turned out to be far more pervasive—affecting
many non-imprinted autosomal genes in normal human tissues. ASM, ASE and ASTF have now been
mapped genome-wide by microarray-based methods and NextGen sequencing. Multiple studies agree that
all three types of allelic asymmetries, as well as the related phenomena of expression and methylation quan-
titative trait loci, are mostly accounted for by cis-acting regulatory polymorphisms. The precise mechanisms
by which this occurs are not yet understood, but there are some testable hypotheses and already a few direct
clues. Future challenges include achieving higher resolution maps to locate the epicenters of cis-regulated
ASM, using this information to test mechanistic models, and applying genome-wide maps of ASE/ASM/ASTF
to pinpoint functional regulatory polymorphisms influencing disease susceptibility.

INTRODUCTION

Genome sequencing, expression profiling and now genome-
wide mapping of epigenetic markings have been huge
advances that have brought us into the so-called post-genomic
era. Equally important, we now have saturating genome-wide
maps of common DNA polymorphisms in humans, and the
concept of haplotypes has been fully developed and widely
applied. Going forward, the fields of genetics and epigenetics
are starting to capitalize on this basic groundwork to explore
allele-specific phenomena at unprecedented levels of detail.
Realizing that this research area will continue to expand
rapidly, I take this opportunity to survey the current landscape,
particularly focusing on the role of cis-acting DNA poly-
morphisms in setting up allele-specific DNA methylation
(ASM) and allele-specific gene expression (ASE).

ALLELIC ASYMMETRIES ARE STRONG AT

IMPRINTED LOCI BUT IMPRINTED GENES

ARE RARE

Genomic or parental imprinting produces strong ASM and ASE in
a parent-of-origin-dependent manner. The imprint, which is an
extremely potent dose-regulating mechanism, is purely epigenetic
and, strikingly, is completely erased and reset each time the allele
passes through the germline. While one can find more optimistic

projections, the number of known imprinted genes appears to be
reaching an asymptote at around 100, or ,1% of the mammalian
gene repertoire (1). Imprinting is a non-Mendelian phenomenon
par excellence, and this relative rarity of imprinted genes is com-
pletely consistent with the overall success of Mendel’s laws in
human and mouse genetics. It is also consistent with classical
experiments using mice carrying Robertsonian chromosomal
translocations, which showed that only some, not all, whole
chromosome uniparental disomies produce abnormal phenotypes.
These elegant genetic studies suggested early on that some
chromosomes may be devoid of imprinted genes (2). Nonetheless,
imprinted genes are crucial for normal mammalian development
(1,3), and mechanistic studies of imprinting have laid an important
and impressive groundwork for understanding allele-specific gene
regulation. Similarly, methods developed to study imprinting are
now the workhorse tools for analyzing the types of non-imprinted
allele-specific phenomena that are the main focus of this review.
Examples include bisulfite conversion of DNA followed by
PCR spanning an SNP and cloning of the products to reveal
ASM, and comparing allelic representation in PCR products
from cDNA versus gDNA to score ASE. Genome-wide scanning
methods like methylation analysis on SNP arrays (MSNP) were
initially developed with the hope of finding additional imprinted
genes, but instead uncovered the novel and more widespread
phenomenon of non-imprinted ASM (4). Other new approaches
that have been published for analyzing imprinted domains, such
as chromatin immunoprecipitation (ChIP)–chip or ChIP–Seq,
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to search for ‘overlapping’ activating (methylated H3K4) and
repressive (methylated H3K9) histone modifications that in fact
represent the two oppositely poised (active/inactive) parental
alleles (5), may also prove useful for finding loci with non-
imprinted allelic asymmetries. As I discuss more in a later
section, prior work on the mechanisms of genomic imprinting
will also likely be relevant for understanding the mechanisms
that produce non-imprinted allelic asymmetries.

CIS-REGULATED ALLELIC ASYMMETRIES

ARE COMMON

Allelic asymmetries are now recognized as very common at
non-imprinted loci. Here I consider three related classes of
asymmetry affecting non-imprinted genes: allele-specific
expression of mRNAs and non-coding RNAs (ASE), ASM,
allele-specific chromatin modifications and transcription
factor binding (ASTF). A fourth class, random monoallelic
expression and DNA methylation, is also important for gene
regulation (6), but it is not covered here. ASE refers to asym-
metric mRNA or non-coding RNA expression from the two
alleles; alternative abbreviations in the literature include AE

and AI (allelic imbalance). ASE is scored in heterozygous
samples by comparing the representation of the two alleles
of a given SNP in genomic DNA (by definition 50:50) to
their representation in the corresponding mRNA or non-
coding RNA, generally assayed as cDNA. This type of
gDNA/cDNA comparison has now been carried out genome-
wide by many laboratories, first using SNP arrays and more
recently massively parallel NextGen sequencing. A clear con-
clusion from all studies is that ASE is quite frequent across the
human genome, and it usually reflects the presence of a
cis-acting regulatory polymorphism or regulatory haplotypes
near or encompassing the gene (references in Table 1). In con-
trast, these studies, and expression quantitative trait locus
(eQTL) screens discussed below, have shown that ASE due
to trans-acting genetic or epigenetic mechanisms is relatively
rare. ASE due to cis-acting regulatory polymorphisms is typi-
cally a quantitative phenomenon; it does not produce ‘all or
none’ monoallelic expression but instead results in a bias in
the ratio of transcripts from the two alleles. ASE due to
cis-effects at a given locus is therefore a continuous variable,
and thoughtful statistical approaches are essential for setting
cutoffs and making meaningful statements about its frequency

Table 1. Methods and conclusions from screens for ASE at non-imprinted loci

Tissues or cell types (n) Primary screening methods and validations Findings and conclusions References

LCL (81) Illumina ASE Cancer Panel (1380 genes)
with cDNA versus gDNA probes;
validations by Sanger sequencing (cDNA
versus gDNA)

Using criteria of 1.5-fold differential expression, ASE is
widespread, affecting the expression of 20% of genes in
LCLs. There can be discrepancies between lists of
cis-acting polymorphisms from direct ASE
measurements versus eQTL approaches

(53)

LCL (100) Illumina Golden Gate assays for 2117 SNPs;
comparison of gDNA versus cDNA;
validations by Sanger sequencing

Cis-regulated ASE is widespread by lenient criteria, but is
less frequent when criteria are a strong allelic bias and
consistency among individuals. Rare extreme ASE can
be due to mutations causing nonsense-mediated mRNA
decay (e.g. BRCA1).

(7); see also (8)

LCL (53), osteoblasts (2),
fibroblasts (3)

Illumina 1M BeadArrays with cDNA versus
gDNA probes; validations by Sanger
sequencing

SNPs linked to cis-acting variants explain 45% of loci with
ASE in LCLs; imprinted genes account for only 0.1% of
ASE. Significant but imperfect correlations found
between direct ASE measurements and eQTL data.
Several loci associated with autoimmune diseases (e.g.
C8orf13-BLK) show cis-regulated ASE in LCLs.

(16)

LCL (55) and osteoblasts (55);
sample pooling strategy

RNA-Seq (cDNA/gDNA) from pooled
samples; validations by Sanger sequencing
of gDNA versus cDNA in individual
samples

Positive loci from direct analysis of ASE show a
significant, but not complete, overlap with positive loci
from eQTL screens. Multiple genes previously
implicated as disease-associated in GWAS show ASE
in LCLs

(12)

LCL (1), fibroblasts (2),
keratinocytes (1), human
embryonal stem cells (hESC)
(4)

RNA-Seq (cDNA/gDNA) of padlock probe
amplicons (27 000 SNPs in 10 345 genes),
from multiple cell lines derived from
single donors

Much of the observed inter-sample variation in ASE was
accounted for by genetic background, presumably
reflecting cis-effects of regulatory polymorphisms.
Tissue-specific variations in ASE were also found. ASE
was stable across independently cloned hESC lines.

(54)

T-cells (four pairs of samples;
basal and activated by
anti-CD3/CD28)

RNA-Seq (cDNA/gDNA); validations by
quantitative cloning and sequencing and
direct Sanger sequencing

Approximately 5% of HapMap-validated exonic SNPs tag
transcripts with ASE in T-cells. Indel polymorphisms
can be a confounder in ASE assays. Several genes
associated with autoimmune diseases from GWAS data
show ASE in T-cells (e.g. CD6, IL21R).

(19)

LCL (63 and 69 individuals
from HapMap; two
ethnicities)

RNA-Seq (cDNA/gDNA); similar
approaches taken in these two studies

Compared with microarray-based approaches in the same
cell type, RNA-Seq at sufficient depth is more sensitive
in detecting ASE. SNPs affecting allele-specific mRNA
splicing can be evaluated

(10,11)

Examples from the recent literature are shown. The table is not comprehensive; additional studies, including earlier work, are cited in other reviews (42,51,52). All
experiments include internal statistical validations of the microarray data; secondary validations refer to downstream assays by independent methods. The listed
cells and tissues are of human origin.
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(7). In contrast, when ASE is produced by other mechanisms,
such as genomic imprinting or, even more rarely, heterozy-
gous germline mutations causing nonsense-mediated mRNA
decay (7,8), the allelic bias can be very strong, with close to
monoallelic expression.

The term eQTL is related to ASE, but not synonymous.
The typical strategy for mapping eQTLs is to correlate SNP
genotypes with separate data from mRNA expression profiling

in large numbers of individuals. Standard microarray-based
methods are easily adapted for this purpose and lend them-
selves to high genomic coverage and high sample throughput
(Table 2). Homozygotes for the minor and major alleles at
each SNP are highly informative for this type of eQTL
mapping, while they are not informative for direct measure-
ments of ASE, in which the allelic expression bias can
only be examined in heterozygotes. There has been some

Table 2. Methods and conclusions from screens for cis-acting eQTLs

Tissues or cell types (n) Primary screening methods and validations Findings and conclusions References

LCL [60; European
Caucasian (CEU)
individuals from HapMap]

RNA profiling on custom Illumina BeadArrays
(630 genes); correlations with HapMap SNP
genotypes

From 374 informative genes interrogated in 60
individuals, genetic variants with significant
cis-effects on transcript levels were found for 10–
40 genes. Trans-acting effects are rare. Groups of
multiple SNPs that are cis-associated with eQTLs
are often clustered in haplotype blocks

(55)

LCL (210; HapMap
individuals)

Illumina Sentrix Human-6 Expression BeadChip
(14 925 transcripts); SNP genotypes from
HapMap and CNVs from bacterial artificial
chromosome (BAC) array CGH

Large-scale (typically .100 kb) CNVs are
associated with about 10–25% as many gene
expression phenotypes as captured by �700 000
SNPs. The cis-effects of large CNVs on eQTLs
seem to extend over greater distances on average
than the cis-effects from SNPs. Influences of
smaller CNVs remain to be studied

(9)

LCL (HapMap samples; 60
CEU, 41 Chinese from
Beijing and 41 Japanese
from Tokyo)

Expression profiling on Affy Genome Focus Array;
genotypes from HapMap

Expression QTLs differ between European- and
Asian-derived populations by t-tests for �25% of
genes. With a more stringent cutoff of 2-fold
differential expression, the frequency is �1% of
genes. Most of the variation is due to frequency
differences at cis-linked regulatory
polymorphisms, or more rarely CNVs.

(56); see also (57)

PBMC (1240) from 30
extended families

Expression profiling (Illumina WG-6);
microsatellite genotyping to test heritability of
eQTLs by cis- versus trans-mechanisms

Proportion of genes that are cis-regulated by nearby
polymorphisms (eQTLs strongly linked to the
closest microsatellite marker) is �7% in PBMC.
Trans-regulation is rare. In an example of a
cis-regulated gene, VNN1, the promoter contains
an SNP that alters GTF (Sp1) binding

(58)

PBL (1002); adipose tissue
(673)

Expression profiling on custom 23K microarrays;
microsatellite genotyping for 1732 markers in
three-generation pedigrees

By tracking inheritance, the authors found cis-acting
eQTLs for 9.4% of loci in blood cells, and 5.8% in
adipose tissue. About half of the eQTLs found in
PBL were shared by adipose tissue

(59)

Three cell types (LCL,
fibroblasts and T-cells)
from each of 75
individuals.

RNA expression profiled on WG-6 v3 BeadChips
(Illumina); SNP genotyping on Illumina 550K
SNP arrays; validations of ASE by
allele-specific MS (Sequenom)

From 69 to 80% of regulatory variants were found to
act in a cell-type-specific manner; cell-type-specific
eQTLs were found at larger distances from genes
and at lower effect size, compared with universal
eQTLs, suggesting that distant regulatory elements
such as enhancers or insulators might be involved

(17)

Liver (427) RNA profiling on Agilent array (34 266 genes
including non-coding RNAs). Genotyping on
Affy 500K and Illumina 650Y SNP arrays

Many eQTLs (�10% of genes surveyed) identified
as linked to cis-acting polymorphisms in the liver.
The results support RPS26 and not ERBB3 as a
susceptibility gene for type 1 diabetes on Hsa12
and identify SORT1 and CELSR2 as cis-regulated
susceptibility genes for coronary artery disease
and plasma LDL cholesterol levels

(20)

Monocytes (1490) mRNA profiled on Illumina HT-12 BeadChips;
genotyping on Affy 6.0 SNP arrays

This study had a very large sample size. Among
12 808 genes expressed in monocytes, 2745
eQTLs were detected (21%), the large majority
(90%) being cis-modulated. For several loci, there
was evidence for an gene–environment
interaction of smoking history with eQTL strength

(21)

LCL (109; CEU individuals
from HapMap)

Statistical approach to extract causal relationships
in overlays of GWAS signals with eQTLs

Regulatory trait concordance (RTC) accounts for
local LD structure and integrates eQTLs and
GWAS results to reveal disease associations that
are due to cis-acting variants

(14)

Examples from the recent literature are shown. This is a very active research area and the table is not comprehensive. All experiments include internal statistical
validations of the microarray data; secondary validations refer to downstream assays by independent methods. Cells and tissues are of human origin.
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discussion of the relative sensitivity and accuracy of these two
approaches. As a tool for finding and validating regulatory
SNPs measuring ASE has the major advantage of being intern-
ally controlled. It directly compares expression of the two
alleles within one individual, rather than measuring associ-
ations of SNP genotypes with net expression of the gene
across subjects, which can suffer from the limited precision
of microarray assays and unpredictable effects of environ-
mental influences in each individual. But both approaches
are valid and assessing correlations of SNPs and haplotypes
with net transcript levels gets more directly at the biologically
relevant outcome—namely net gene expression. Further, for
technical reasons, mapping eQTLs has allowed certain types
of questions to be answered faster than mapping ASE directly.
For example, Stranger and colleagues used transcriptome pro-
filing in lymphoblastoid cell lines (LCLs) from individuals
included in HapMap to sort out the relative contributions of
SNPs versus DNA copy number variants (CNVs) to inter-
individual differences in gene expression. They found that,
while SNPs and CNVs both contributed, the majority of
genotype-dependent expression variation (84%) in these cells
was attributable to SNPs, which were not acting as surrogates
for the CNVs (9). With available methods, the lists of
cis-regulated genes obtained by ASE mapping versus eQTL
analyses are significantly but not perfectly overlapping
(references in Tables 1 and 2). One assumes that the overlap
will improve as the methods are further refined, and a recent
study using NextGen sequencing provided some support for
this notion (10). NextGen sequencing is already increasing
the information content of genome-wide studies dealing
with ASE. In addition to possibly giving more linear estimates
of the abundance of major transcripts, mapping ASE by
RNA-Seq has revealed cis-acting SNPs in splice donor
and acceptor sequences that affect exon usage in alternatively
spliced transcripts (10,11), and it can facilitate the analysis
of intronic SNPs in primary RNA transcripts, which
substantially increases the number of informative biological
samples (12).

CIS-REGULATED ASE IS TISSUE-SPECIFIC AND

INDIVIDUAL-SPECIFIC

All of the allele-specific phenomena discussed here are tissue-
specific, so choosing the appropriate tissues and cell types is
crucial for getting useful information. Among more than 16
recent large-scale studies of ASE, either by direct measure-
ments or by eQTL analyses, about half utilized exclusively
LCLs (Tables 1 and 2). This reliance on a renewable source
of DNA and RNA is understandable in the methods develop-
ment phase, and it allowed several groups to rapidly take
advantage of available dense SNP genotyping data for these
immortalized cell lines from CEPH and the HapMap (now
1000 Genomes) project. Efficient methodology developed
using LCLs as the source of RNA included not just
microarray-based and NextGen sequencing protocols, but
also the essential statistical methods for dealing with the
data, including methods for overlaying eQTL and ASE maps
with GWAS data to extract functional conclusions (13,14).
However, there are well-documented problems with clonal

selection in established LCLs (15). Methods to monitor and
correct for this problem have been developed (16), but it is
still gratifying to see that all groups working in this area are
now analyzing primary human cell types. As listed in
Tables 1 and 2, some impressive studies of ASE or eQTLs
have now been published using osteoblasts, non-transformed
fibroblasts, keratinocytes, human ES cells or induced pluripo-
tent stem cells (iPS), primary peripheral blood mononuclear
cells, resting and PHA-stimulated T-lymphocytes, monocytes,
adipose tissues and normal liver samples. Some studies are
finding substantial overlap (up to 30% of eQTLs) between
different types, including LCLs, suggesting the existence of a
category of ‘universal eQTLs’, but more than half of all
eQTLs seem to be private to specific tissues (17). Data from
these pioneering studies on LCLs and primary cells and
tissues are all in public repositories and the resulting maps of
eQTLs and ASE will be a valuable adjunct to studies of
human gene regulation and genetic variation for years to come.

The necessity of using well-chosen cells and tissues is not
just academic; from the studies to date, it is already clear
that the overlap of cis-regulated genes with GWAS signals
will make sense only in a tissue-specific context. For
example, data from analyzing LCLs and T-cells have shown
overlap mainly with GWAS signals for autoimmune diseases,
while data from liver samples have shown overlap with
GWAS signals for lipid profiles, Type II diabetes and coronary
artery heart disease (16,18–20).

So, how many genes show ASE and/or eQTLs in specific
types of human cells or tissues? This number can be a
moving target, as it depends on cell type and the stringency
of the cutoffs for defining a significant allelic bias. For
example, Chakravarti and colleagues developed an unbiased
statistical approach to establish the most lenient cutoff for
calling an observation ASE (7). As defined by their approach,
ASE was found to be quite widespread in LCLs: 19.6% of het-
erozygotes at 78% of SNPs at 84% of genes demonstrated
ASE in these immortalized cell lines, with a mean allelic
bias of 1.6-fold. As listed in Tables 1 and 2, other studies of
LCLs have come to similar figures, even up to 30% of
genes surveyed (16). Estimates in primary tissues have
tended to be somewhat lower, but still of the order of 10–
20% of genes are affected by this phenomenon (Tables 1
and 2). In evaluating the frequency of ASE, it is crucial to
carry out validations of the microarray or NextGen sequencing
data using independent gene-specific molecular assays, as has
been done in some, but not all, of the published studies.
Without independent validations, it is impossible to know
the false-positive rates of the initial screens. Lastly regarding
the frequency and strength of ASE and eQTLs in the human
genome, it is clear that the extent of the allelic bias can vary
substantially among individuals, some of whom are expected
to share the same genotype (7,21). Some of this variation
may be influenced by trans-acting loci or by the environment.
Most environmental effects on ASE are probably not major
when considered singly, but it has been shown that single
types of exposures that have very strong biological impacts,
e.g. cigaret smoking, can produce quantitative effects on
ASE that are detectable when the epidemiological study is suf-
ficiently powered (21). All of these themes are also relevant to
ASM, which I consider next.
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ASM IS ALSO COMMONLY DUE TO CIS-EFFECTS

OF GENETIC POLYMORPHISMS

In 2008, Kerkel et al. (4) used the MSNP method, pre-
digestion of genomic DNA by methylation-sensitive restric-
tion enzyme(s) followed by probe synthesis and hybridization
of SNP arrays (Fig. 1), to examine ASM in several human
tissues, including peripheral blood leucocytes (PBL), hemato-
poietic stem cells and placenta. Their study was designed to
detect new examples of imprinted genes, but they found
only old examples of such genes, instead identifying numerous
examples of previously unsuspected ASM at loci outside of
imprinted regions. Most of these examples of ASM outside
of imprinted genes showed a strong correlation with local
SNP genotypes, indicating cis-regulation of the phenomenon.
The observed ASM, which was validated by pre-digestion
PCR/RFLP assays and bisulfite sequencing, was found to be
tissue-specific, and for a given positive locus, it was seen in
40–95% of heterozygotes. That paper was quickly followed
by other reports (Table 3), including one by Zhang et al.
(22), who used bisulfite sequencing of PBL DNA to document
SNP-dependent ASM in CpG-rich sequences in or near four
genes on human chromosome 21, and larger genome-wide
studies by Schalkwyk et al. (23) who used MSNP on high-
density Affymetrix 6.0 SNP arrays to profile ASM in blood
leukocytes and buccal cells, validating their results by bisulfite

conversion of genomic DNA followed by SNaPshot assays.
Hellman and Chess (24), who had previously published a
method similar to MSNP to study DNA methylation on
human X-chromosomes, went on to use 500K SNP arrays to
study autosomal loci and found that �10% of SNP-tagged
regions have genotype-dependent ASM in LCLs (25). Extend-
ing these types of observations to a well-controlled mouse
model system, Schilling et al. (26) did a genome-wide analysis
in macrophages from two common laboratory strains (C57BL/
6 and BALB/c) and in F1 hybrid offspring. They found that
ASM was frequent and widely distributed across the
genome, and that the allelic asymmetry in DNA methylation
was largely attributable to cis-acting polymorphisms. In
another study, Lee and coworkers (27) carried out 500K
MSNP on human LCLs and esophageal tissues (normal and
cancerous) and observed that methylation profiles are
individual-specific as well as tissue-specific, suggesting an
effect of genetic background on CpG methylation at many
loci. ASM per se was not scored in their study but might be
extractable from their primary data, which has been deposited
at NCBI. From all of these studies, we know that when ASM is
found, it can vary from a highly localized asymmetry in
methylation affecting only one or several CpGs to examples
in which a large number of contiguous CpGs are coordinately
affected. Most examples of ASM affect DNA sequences
outside of CpG islands, but there are rare examples in which

Figure 1. Example of primary data and validations showing non-imprinted ASM. (A) Primary data from MSNP on Affymetrix 6.0 arrays. Pre-digestion of the
genomic DNA (PBL sample) with the methylation-sensitive restriction enzyme HpaII prior to linker ligation and PCR for probe synthesis leads to a dropout of
the B-allele, suggesting that this allele is relatively hypomethylated. (B) Validation by bisulfite conversion of genomic DNA followed by PCR, cloning and
sequencing of multiple clones. Black circles are methylated CpG dinucleotides; white circles are unmethylated CpGs; the dash indicates a CpG SNP in one
individual. The two alleles are distinguished in the group of clones by an SNP (rs2302902) that is not destroyed by the bisulfite conversion. Using pre-
digestion/PCR assays, the hypermethylated allele was the A-allele at rs4762138 in each of 11 informative PBL samples, consistent with cis-regulation of
DNA methylation. (C) Map of the ELK3 gene, containing the intragenic index SNP on the microarrays (rs4762138) and the nearby SNP (rs2302902) that
was utilized for distinguishing the alleles in the bisulfite sequencing. The region with ASM subjected to sequencing (gray bar) is CG-rich but is not a CpG
island; two CpG islands are near the gene promoter (green bars). Black rectangles are exons 1 and 2. The functional role of the allelic asymmetry at this position
in the ELK3 gene is under investigation. Unpublished data are from K. Kerkel and B.T.
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even large CpG-dense islands can show this phenomenon (22).
The region shown in Figure 1 is a typical example of
cis-regulated ASM affecting a moderate-sized cluster of
CpG sites in an intergenic CG-rich region that is not long
enough or CG-dense enough to qualify as an island.

A methylation QTL (mQTL) approach, analogous in design to
prior studies of eQTLs, has also been quite successful, with two
groups applying this strategy to human brain regions and finding
strong evidence for widespread cis-regulation of DNA methyl-
ation patterns (28,29). NextGen sequencing of genomic DNA
after bisulfite conversion can also be useful for analyzing ASM,
as recently shown in a proof-of-principle study by Shoemaker
et al. (30), and as per-sample costs go down, this approach can
be expected to eventually supersede microarray-based methods.

In all of these studies in human cells and tissues, when
sequence-dependent ASM was found at a given locus, its

dependance on the genotype at closely adjacent SNP(s) was
close to absolute. ASM is linked to ASE at some but not all
loci; in the Schalkwyk et al. study, more than 150
ASM-associated SNPs, distributed across each of the human
chromosomes, were found to be significantly associated with
the expression of nearby genes. The frequency with which
ASM is associated with ASE will likely depend on the tissue
being examined and the methods and platforms used; the two
mQTL studies in human brain tissues gave estimates of 5 and
13% of mQTLs associating strongly with eQTLs (28,29).
Whether these estimates might be somewhat on the low side
due to cell-type heterogeneity in brain tissues will no doubt
be answered by future studies using purified neurons and glial
cells. Along these same lines, the theme of individual specificity
from studies of ASE and eQTLs also pertains, quite strikingly,
to ASM and mQTLs (4,23). Is individual specificity of ASM a

Table 3. Methods and conclusions from screens for ASM and mQTLs at non-imprinted loci

Tissues or cell types (n) Primary screening methods and validations Findings and conclusions References

PBL (6); placenta (3); other
normal tissues (7)

MSNP Affy 50K/250K; validations by pre-digestion/
RFLP assays and bisulfite-Seq in larger series of
individuals; ASE tested for selected loci

ASM at non-imprinted loci is a recurrent phenomenon in
humans. At 12/16 validated examples (75%), the ASM
was strongly correlated to SNP genotypes. ASM was
found to be tissue-specific and for a given locus, it was
seen in 40–95% of heterozygotes. For some genes, the
ASM is associated with ASE (e.g. VNN1, CYP2A7)

(4)

Macrophages from
B6 × BALB/c F1 mice

methylation-dependent immunoprecipitation (MeDIP)
on tiling arrays; validations by bisulfite-MS and
bisulfite-Seq

Non-imprinted genes with ASM can be identified in F1
hybrid mice, and the majority (five of six examples
validated by bisulfite-Seq) are regulated in cis by
strain-specific genetic polymorphisms

(26)

PBL (20) Targeted bisulfite-Seq (16 amplicons on Hsa21);
validations by HpaII pre-digestion/Seq

ASM was found in several CGIs (�10%) on Hsa21. For
one example (C21orf81), the ASM was associated
with ASE. ASM was not seen in all heterozygous
individuals (95–13% depending on locus)

(22)

PBL (30); esophageal
carcinoma (30);
normal esophagus (30)

MSNP Affy 500K Methylation profiles are individual-specific as well as
tissue-specific, suggesting an effect of genetic
background on CpG methylation at many loci

(27)

LCL (12); PBL (2) MSNP Affy 500K, with MSRE digestions; validations
by bisulfite-Seq

�10% of SNP-tagged regions have ASM in LCLs;
mostly genotype-dependent. There is a weak but
detectable short-range effect of CpG SNPs on ASM at
adjacent non-polymorphic CpGs

(25)

Cell lines; ES, iPS and
fibroblast (16)

Targeted bisulfite-Seq (padlock probes); �2500
promoter regions

�30% of SNP-tagged regions have ASM in clonal cell
lines, using a lenient cutoff of .0.1 methylation
frequency difference. There is an increased frequency
of CpG SNPs near (non-polymorphic) CpGs with ASM

(30)

PBL (10); buccal cells (10) MSNP Affy 6.0 (1 M) arrays; validations by
bisulfite-Seq in index cases and by MS-SNuPE in a
larger series of individuals. ASE was also
investigated.

Non-imprinted ASM, regulated in cis by nearby DNA
polymorphisms, is widespread (�3.5% of SNP-tagged
regions using a lenient cutoff of .0.1 methylation
frequency difference). At some loci, the
genotype-dependent ASM affects only a few closely
spaced CpGs. For some genes, the ASM is strongly
correlated with ASE

(23)

Cerebellar cortex (153) Methylation on Illumina Infinium 27K; fractional
methylation cross-tabulated to SNPs and mRNA
expression; validations by bisulfite-Pyroseq

Cis-correlations of SNPs with CpG methylation in
promoter regions can be identified by an mQTL
approach and occur over distances equivalent to
haplotype blocks (up to 100 kb). �13% of SNPs that are
highly correlated with CpG methylation are also
associated with genotype-dependent mRNA expression

(28)

Brains (150 individuals; four
regions assayed from each
brain)

Methylation on Illumina 27K Infinium arrays; SNP
genotyping on Illumina HumanHap550 BeadChips;
RNA expression on Illumina HumanRef-8
BeadChips

Both eQTLs and mQTLs were found to be mostly
cis-regulated. There was substantial sharing of eQTLs
and mQTLs across the four brain regions. A low but
significant proportion, about 5% of genes examined,
showed correlations between mQTLs and eQTLs

(29)

Examples from the recent literature are shown. Additional studies are discussed in the text and in another review (42). All experiments include internal statistical
validations of the microarray data; secondary validations refer to downstream assays by independent methods. Cells and tissues are of human origin except where
otherwise stated.
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type of incomplete penetrance due to unpredictable trans-acting
and environmental influences, or does it reflect our incomplete
knowledge of the precise haplotypes surrounding each index
SNP in each individual? The answers might emerge from
genetic epidemiological studies including exposure infor-
mation, and improvements in methods for ascertaining long-
range haplotypes with direct information on phasing of SNPs
and other DNA polymorphisms in each individual.

POSSIBLE MECHANISMS OF CIS-REGULATED

ASE AND ASM

Polymorphisms affecting transcription factor binding

It seems a safe bet a priori that many of these genetic effects
on ASE and ASM will in the end prove to be due to allele-
specific affinity of DNA-binding proteins (transcription
factors in the broad sense) for critical polymorphic cis-acting
regulatory elements. As perhaps the most obvious example,
starting with early work done by the Cedar and Turker labora-
tories and now nicely followed up by others, general transcrip-
tion factors (GTFs) that bind to gene promoters have long been
studied as candidates for playing an active role in protecting
unmethylated CpG islands from a poorly understood but
experimentally measureable process of ‘methylation encroach-
ment’ from their highly methylated flanking sequences (31–
35). According to the model in Figure 2A, SNPs or indels in
the recognition sequences for GTFs like Sp1 could in principle
lead to altered GTF binding, followed by methylation
encroachment on one of the two alleles. Importantly, this
model does not require that the GTF itself have methylation-
dependent binding, simply that it protects the promoter from
methylation encroachment. In fact, Boumber et al. (36)
recently showed that a 12 bp indel polymorphism in a Sp1
GTF-binding site in the promoter of the RIL gene affects the
propensity of this gene to become methylated in human leuke-
mias. This does not necessarily imply that such a mechanism
accounts for instances of ASM in normal cells, but it offers a
good rationale for now performing systematic genome-wide
search for ASM around polymorphic GTF-binding sites.

Polymorphisms affecting CpG dinucleotides

Essentially, all DNA methylation in humans occurs in CpG
dinucleotides. By definition, ASM is measured at non-
polymorphic CpG sites, but the methylation status of such
sites can be influenced, at least in theory, by allele-specific
differences in the density of CpGs in the surrounding local
DNA sequence. Thus, another mechanistic model has SNPs
that create or delete CpGs (‘CpG SNPs’) influencing the pro-
pensity of neighboring non-polymorphic CpGs to become
cytosine-methylated. In regions of the DNA where overall
CpG density is high and CpG SNPs are abundant, one can
imagine more efficient spreading of methylation through the
allele that has a higher preservation of CpGs, perhaps by
more efficient cooperative binding (37) of the enzymes and
cofactors in the methylation machinery (Fig. 2B). Alternatively,
a subset of CpG SNPs could influence the binding of specific
transcription factors, either positively or negatively, similar to
the model in Figure 2A. Intriguingly, two recent genome-wide

surveys of ASM have noted a small but statistically significant
excess of CpG SNPs near loci with ASM (25,30).

Polymorphisms affecting insulators and long-range
chromosome structure

The roles of insulator elements have been well studied at clas-
sical model loci like the globin genes, and also at several differ-
ent imprinted loci where they show parent-of-origin-dependent
ASM (1,38,39). There are already precedents for naturally
occurring genetic lesions in such sequences within the
human genome, for example, micro-deletions in the insulator
located upstream of the imprinted H19 gene, which lead to
over-expression of IGF2 and cause some cases of the Beck-
with–Wiedemann overgrowth syndrome (40). As shown in
Figure 2C, qualitative or quantitative alterations in insulator
function due to SNPs or indels could lead to ASE and ASM.
Lastly, given that large-scale CNVs are fairly common in
human genomes, a gross alteration in chromosome structure
secondary to CNVs is another a priori possibility that could
account for some instances of ASE and ASM.

CIS-REGULATED ASTF IS WIDESPREAD AND

LINKED TO ASE

All of the above mechanistic models can begin to be addressed
by combining ASE/ASM mapping with genome-wide

Figure 2. Possible mechanisms of cis-regulated ASE and ASM. The cis-acting
effects of sequence polymorphisms can be either short-range (A and B) or
long-range (C). Details of each model are discussed in the text. Working
out the relevance of each mechanism will depend on developing efficient
methods for high-resolution mapping of allelic asymmetries and for determin-
ing long-range haplotypes in large collections of primary tissues. Black
circles, methylated CpG dinucleotides; white circles, unmethylated CpGs;
dark gray rectangle and arrow, first exon of the gene.
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mapping of ASTF. Here the abbreviation ASTF broadly
includes allele-specific affinities of insulator-binding proteins
and allele-specific chromatin modifications. In fact, an
impressive initial group of papers have already appeared on
this topic, using ChIP with downstream analysis either by
probe synthesis from the IP DNA and hybridization to SNP
arrays or, more recently, NextGen sequencing to query SNP
representation in the IP DNA (references in Table 4). Taken
together, these studies provide proof-of-principle for
mapping not only allele-specific histone modifications (a
method which has also been extensively used by laboratories
working on imprinted chromosomal domains) but also allele-
specific DNA occupancy of RNA PolII, allele-specific
binding of the transcription factor NF-kB and the insulator-
binding protein/transcription factor CTCF and, as a surrogate
for open chromatin, mapping of allele-specific DNase I hyper-
sensitive sites. In each of these studies, allele specificity has
been found at large numbers of SNP-tagged loci. Encoura-
gingly, in the study by McDaniell et al. (41) at least some
of the allele specificity of CTCF binding could be accounted
for by SNPs located within CTCF consensus-binding motifs.
This observation provides some experimental support for the
mechanistic model in Figure 2C.

APPLICATIONS OF ALLELE-SPECIFIC MAPPING

As introduced by the above discussion, one practical use of
ASE/ASM mapping is to help extract maximum information
from GWAS. Here I paraphrase from my recent commentary
focusing on this application (42). There is some debate now
on the relative merits of the ‘common disease–common
variant’ versus ‘multiple rare variant’ hypotheses for explain-
ing complex disorders. Nonetheless, as predicted by the

common variant model, GWAS have in fact identified many
well replicated and biologically credible loci for disease sus-
ceptibility. In the process, these types of studies have come
up against two technical roadblocks: First, most (�90%) of
the supra-threshold disease association signals are at non-
coding SNPs (43–45). Among these statistical signals which
ones are due to bona fide functional regulatory SNPs, and
how can these SNPs be identified? Second, because of mul-
tiple comparisons, the threshold for significance needs to be
set high, at P , 1027 or P , 5 × 1028, so there are numerous
sub-threshold peaks that are difficult to interpret. Are some of
these signals true-positives that should not be discarded? Inde-
pendent lines of evidence are needed, and a promising direct
approach is to combine statistical evidence from GWAS
with functional evidence for the presence of cis-acting regulat-
ory SNPs, indels or CNVs from mapping of eQTLs, ASE and
ASM (Fig. 3). Statistical methods for carrying out such over-
laps have recently been published [for example (14, 21)].

Beyond providing evidence for rSNPs being near a gene of
interest, mapping ASE can help to close in on the precise pos-
itions of functional SNPs. Forton et al. (46) used ASE and
haplotypes analysis to map cis-regulatory elements in chromo-
some band 5q31, thereby pinpointing the location of cis-acting
DNA sequences that regulate the IL13 gene from a distance of
250 Kb upstream. Other examples in this fast-moving area are
discussed in my previous review (42) and listed here in
Tables 1 and 2. In the future, it will be interesting to see
whether the methods developed for overlapping GWAS with
ASE and eQTL data in these papers can also work using
ASM as the marker for nearby regulatory polymorphisms.
To use this strategy, it will first be necessary to develop
more efficient methods for complete ASM profiling over
megabase regions of DNA to define the epicenters of the
allelic asymmetry.

Table 4. Methods and conclusions from screens for allele-specific chromatin and ASTF at non-imprinted loci

Tissues or cell types
(n)

Primary screening methods and validations Findings and conclusions References

LCL (12; from 2
CEPH families)

RNA PolII and histone modification ChIP–Chip on
Affy 10K SNP arrays; ChIP antibodies validated by
Q-PCR of IPs at imprinted loci

ASTF as measured by PolII occupancy and chromatin
modifications (H3K4, H3K9, H3K27 methylation
state) behaves as a genetically determined trait in
families

(60)

IMR90 fibroblast line
(1)

RNA PolII ChIP-SNP on Illumina Hap300
BeadChips; validations by PCR sequencing of IPs;
ASE by cDNA/gDNA comparison using Illumina
GoldenGate assays

Of 11 9821 heterozygous SNPS, 466 (239 RefSeq genes
and 18 small RNAs) showed allele-specific
enrichment in PolII IPs with an average fold change of
3.98. For 20 examples among these genes, the
allele-specific RNA PolII binding was shown to
correlate with ASE in the IMR90 cells.

(61); see also (62)

LCL (10) RNA PolII and NF-kB ChIP-Seq data overlaid to SNP
genotypes from HapMap and CNVs

SNPs and structural variants are frequently associated
with RNA PolII and NF-kB binding differences. The
fraction of binding differences coinciding with genetic
variations can be very high: 35% for NF-kB and 26%
for PolII in these LCLs

(63)

LCL (6; 4 parents and
2 children from
HapMap project)

DNase I HS site (DNase-Seq) mapping and ChIP-Seq
for CTCF–binding sites; validations by PCR/MS
(Sequenom) on ChIP material

Transmission of SNP alleles suggests a heritable genetic
basis for a large proportion of the allele-specific
binding of CTCF. At sites where CTCF showed ASTF,
the binding motif score tended to be higher for the
favored allele, whereas at sites lacking differences in
CTCF binding, motif scores were similar

(41)

All experiments include internal statistical validations of the microarray data; secondary validations refer to downstream assays by independent methods. Cells and
tissues are of human origin.
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CONCLUSIONS AND REMAINING QUESTIONS

As this field matures over the next decade, there will likely be
two lines of important descriptive work, with continuing
genome-wide analyses moving forward in parallel with more
focused ‘fine-mapping’ studies of genes and chromosomal
regions of interest, to more tightly pin down the identities of
regulatory polymorphisms and haplotypes. Doing so will be
necessary both for testing mechanistic hypotheses and for
completing the tasks started by GWAS—namely to fully
understand the etiologies of complex genetic diseases. Even
the au courant research strategy of searching for rare genetic
variants to explain complex diseases could benefit from incor-
porating ASE, ASM and ASTF mapping. In particular, not all
pathogenic variants, even if rare, will be non-synonymous
coding changes, so the functional significance of rare non-
coding variants will still need to be grappled with. Fine-
mapping ASM to find the true epicenters of allelic asymmetry
will be essential for testing mechanistic models. None of the
available datasets yet provides this type of information. In
the near future, microarrays with custom designs will be
useful for achieving greater coverage of SNPs in CpG-rich
sequences while continuing to achieve high sample throughput
at reasonable costs. NextGen bisulfite sequencing with
reduced genomic representation and padlock probe methods
(30,47), and high-throughput bisulfite PCR on new microflui-
dic and microdroplet instruments (48,49), will also be essential
in the near term for achieving regional genomic coverage at
single base-pair resolution. Ultimately the ‘$1000 epigenome’
will become a reality. But this will not be enough—all ques-
tions in this field come back to understanding the functions
of cis-acting variants in the DNA of a given chromosome
homolog over both short and long distances. So it will also
be important to continue using samples from multi-generation
families, and to develop direct methods for establishing the
phase of SNPs, indels and CNVs, in other words, their phys-
ical linkage over long stretches of the DNA (50).
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